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Abstract We prove three results on the dimension structure of complexity
classes.

1. The Point-to-Set Principle, which has recently been used to prove sev-
eral new theorems in fractal geometry, has resource-bounded instances.
These instances characterize the resource-bounded dimension of a set X of
languages in terms of the relativized resource-bounded dimensions of the
individual elements of X, provided that the former resource bound is large
enough to parametrize the latter. Thus for example, the dimension of a
class X of languages in EXP is characterized in terms of the relativized
p-dimensions of the individual elements of X.

2. Every language that is ≤Pm-reducible to a p-selective set has p-dimension 0,
and this fact holds relative to arbitrary oracles. Combined with a resource-
bounded instance of the Point-to-Set Principle, this implies that if NP
has positive dimension in EXP, then no quasipolynomial time selective
language is ≤Pm-hard for NP.
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3. If the set of all disjoint pairs of NP languages has dimension 1 in the set
of all disjoint pairs of EXP languages, then NP has positive dimension in
EXP.

1 Introduction

Alan Selman was a pioneer and a leader in elucidating the structure of com-
plexity classes. He initiated many of the most important concepts of structural
complexity theory, he investigated them brilliantly, and he inspired generations
of computer scientists to contribute to this endeavor.

Our objective in this paper is to show how resource-bounded dimension,
which is a generalization of classical Hausdorff dimension, can extend Selman’s
research program in fruitful new directions. To this end, we present three new
results, one bringing the Point-to-Set Principle into complexity classes, one on
dimension and p-selective sets, and one on dimension and disjoint NP pairs.
The rest of this introduction motivates and explains these three results.

Hausdorff dimension, developed in 1919 [16,6], is a scheme for assigning a
dimension dimH(E) to every subset E of a given metric space. Assume for a
moment that this metric space is a Euclidean space Rn. Then dimH(Rn) = n,
and the Hausdorff dimension is monotone, i.e., E ⊆ F implies that dimH(E) ≤
dimH(F ). For integers d = 0, . . . , n, subsets E of Rn that are intuitively d-
dimensional have dimH(E) = d. However, every real number s ∈ [0, n] is the
Hausdorff dimension of infinitely many (in fact, 2|R| many) subsets of Rn.
In general, dimH(E) < n implies that E is a Lebesgue measure 0 subset of
Rn. (The converse does not hold.) Hausdorff dimension can thus be regarded
as a measure of the “sizes” of Lebesgue measure 0 subsets of Rn. Hausdorff
dimension has become a powerful tool for investigations in fractal geometry,
probability theory, and other areas of mathematical analysis [6,41,36,2].

We momentarily shift the focus of our discussion from Euclidean spaces
Rn to another metric space, the Cantor space C consisting of all decision
problems, which are equivalently regarded as subsets of {0, 1}∗ or as infi-
nite binary sequences. At the beginning of the present century, the first au-
thor proved a theorem characterizing Hausdorff dimension in C in terms of
betting strategies called gales, which are minor but convenient generaliza-
tion of martingales. Based on this characterization, he introduced two related
methods for effectivizing Hausdorff dimension, i.e., imposing computability or
complexity constraints on these gales. The first of these methods [25], called
resource-bounded dimension imposes Hausdorff dimension structure on com-
plexity classes. For example this theory defines, for every subset X of C,
a quasipolynomial-time (i.e., npolylogn-time) dimension dimqp(X) in such a
way that dim(X | EXP) = dimqp(X ∩ EXP) is a coherent notion of the di-
mension of X within the complexity class EXP = TIME(2polynomial). The
second method [26], algorithmic dimension (also called constructive dimen-
sion or effective dimension) has to date been more widely investigated, partly
because of its interactions with algorithmic randomness (i.e., Martin-Löf ran-
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domness [35]) and partly because of its applications to classical fractal geom-
etry [29,31]. Algorithmic dimension plays a motivating role in this paper, but
resource-bounded dimension is our main topic.

Several recent results in algorithmic fractal dimensions are based on the
2017 Point-to-Set Principle introduced by the first two authors [28]. This prin-
ciple is a family of theorems, the first of which says that, for any set E ⊆ Rn,

dimH(E) = min
A∈C

sup
x∈E

dimA(x), (1.1)

where dimA(x) is the algorithmic dimension of the individual point x relative
to the oracle A. This theorem completely characterizes the classical Hausdorff
dimensions of sets E in terms of the relativized algorithmic dimensions of their
elements x. The term “classical” here does not mean “old,” but rather refers
to mathematical concepts and theorems that, like Hausdorff dimension, do
not involve computability or logic in their formulations. Thus the left-hand
side of (1.1) is classical, but the right-hand side, involving computability, is
not. The characterization theorem (1.1) is called the Point-to-Set Principle
for Hausdorff dimension, because it enables one to prove lower bounds on the
Hausdorff dimensions of sets by reasoning about the relativized algorithmic
dimensions of judiciously chosen individual points in those sets. The paper [28]
also proved a second instance of the Point-to-Set Principle that characterizes
another classical fractal dimension, the packing dimension [6], in a manner
dual to (1.1). These instances of the Point-to-Set Principle have recently been
used to prove several new theorems in classical fractal geometry [34,33,32,30].
The authors also recently extended (1.1) and its dual from Rn to arbitrary
separable metric spaces and to Hausdorff and packing dimensions with very
general gauge families [30].

The above instances of the Point-to-Set Principle characterize classical frac-
tal dimensions of sets in terms of the relativized algorithmic dimensions of the
individual elements of those sets. In Section 4 below, we prove more general in-
stances of the Point-to-Set Principle that characterize the classical or perhaps
somewhat effective dimensions of sets in C in terms of the relativized more
effective dimensions of the individual elements of those sets. One example of
this says that, for every subset X of C,

dimH(X) = min
B∈C

sup
A∈X

dimB
p (A). (1.2)

That is, we can replace the algorithmic dimension on the right-hand side
of (1.1) by the more effective polynomial-time dimension. Another example
characterizes the quasipolynomial-time dimension of each subset X of C by

dimqp(X) = min
g∈qp

sup
A∈X

dimg
p(A), (1.3)

i.e., in terms of the more effective polynomial-time dimensions of the indi-
vidual elements A of X. The instances (1.2), and (1.3), are special cases of
Theorem 4.2 in Section 4.
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In 1979, Alan Selman adapted Jockusch’s computability-theoretic notion of
semirecursive sets [19], creating the complexity-theoretic notion of p-selective
sets [38]. Briefly, a decision problem A ⊆ {0, 1}∗ is p-selective, and we write
A ∈ p-SEL, if there is a polynomial-time algorithm that, given an ordered
pair (x, y) of strings x, y ∈ {0, 1}∗, outputs a string z ∈ {x, y} such that
{x, y} \ A 6= ∅ =⇒ z ∈ A. (We note that the terms“p-selective” and “P-
selective” have both been widely used for this notion. In fact, both have been
used in papers with Selman as an author.) Every set A ∈ P is clearly p-
selective, but there are uncountably many p-selective sets, so the converse does
not hold. There is an extensive literature on p-selective sets and the related
notions that they have spawned. We especially refer the reader to the books by
Hemaspaandra and Torenvliet [17] and Zimand [43] and the references therein.

Selman [38] proved that no p-selective set can be ≤Pm-hard for EXP and
that, if P 6= NP, then no p-selective set can be ≤Pm-hard for NP. In order to
extend the class of provably intractable problems, the first author [21] defined a
language H to be weakly ≤Pm-hard for EXP if µ(Pm(H) | EXP) 6= 0, i.e., if the
set Pm(H) of languages A such that A ≤Pm H does not have measure 0 in EXP
in the sense of resource-bounded measure [22,24,43]. Buhrman and Longpré [3]
and, independently, Wang [42] proved that µ(Pm(p-SEL) | EXP) = 0, where
for a class X ⊆ C, Pm(X) =

⋃
H∈X(Pm(H)). It follows that no p-selective set

can be weakly ≤Pm-hard for EXP. (They in fact proved the stronger fact that
this also holds for ≤Ptt-reductions.) See [43] for a host of related results.

After the development of resource-bounded dimension [25], Ambos-Spies,
Merkle, Reimann, and Stephan [1] defined a language H to be partially ≤Pm-
hard for EXP if dim(Pm(H) | EXP) > 0. It is clear that weak hardness implies
partial hardness, and it was shown in [1] that the converse does not hold. In
Section 5 we use Theorem 4.2 (i.e., the Point-to-Set Principle) to prove that
dim(Pm(qp-SEL) | EXP) = 0, where the set qp-SEL of qp-selective sets is
the obvious quasipolynomial-time analog of p-SEL. This implies that no qp-
selective set can be partially ≤Pm-hard for EXP and that, if dim(NP | EXP) >
0, then no qp-selective set can be ≤Pm-hard for NP.

In 1984, Even, Selman, and Yacobi [5] defined a promise problem to be
an ordered pair (A,B) of disjoint languages. A solution of a promise problem
(A,B) is an algorithm or other device that decides any separator of (A,B),
i.e., any language S such that A ⊆ S and S ∩ B = ∅. Intuitively, we are
promised that every input will be an element of A∪B, so we are only required
to correctly distinguish inputs in A from inputs in B.

A disjoint NP pair is a promise problem (A,B) with A,B ∈ NP. Disjoint
NP pairs were first investigated by Selman and collaborators to better under-
stand public key cryptosystems [5,13,39,18]. Razborov [37] later established
a deep connection between disjoint NP pairs and propositional proof systems,
associating with each propositional proof system a canonical disjoint NP pair.
Glaßer, Selman, Sengupta, and Zhang [10,9,11,12] investigated this connec-
tion further, and it is now known that the degree structure of propositional
proof systems under the natural notion of proof simulation is identical to the
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degree structure of disjoint NP pairs under reducibility of separators. See [8]
for a survey of this and related results and [4] for more recent work.

In 2012, Fortnow, the first author, and the third author [7] investigated
strong hypotheses involving the intractability of disjoint NP pairs. Among
other things, this paper proved that

µ(disjNP | disjEXP) 6= 0 =⇒ µ(NP | EXP) 6= 0 (1.4)

and that µ(NP | EXP) 6= 0 implies the existence, for every k, of disjoint NP

pairs that cannot be separated in 2n
k

time. (Here disjNP is the set of disjoint
NP pairs, and disjEXP is the set of disjoint EXP pairs, the latter endowed
with a natural measure.)

In Section 6, we prove a dimension-theoretic analog of (1.4), namely that

dim(disjNP | disjEXP) = 1 =⇒ dim(NP | EXP) > 0. (1.5)

Our proof of (1.5) is somewhat simplified by the use of Theorem 4.2 (i.e.,
the Point-to-Set Principle).

2 Resource Bounds

We work in the Cantor space C consisting of all decision problems (i.e., lan-
guages) A ⊆ {0, 1}∗. We identify each decision problem A with its character-
istic sequence

Js0 ∈ AK Js1 ∈ AK Js2 ∈ AK . . . ,

where s0, s1, s2, . . . is the standard enumeration of {0, 1}∗ and

JϕK = if ϕ then 1 else 0

is the Boolean value of a statement ϕ. We thus regard C as either the power
set P({0, 1}∗) of {0, 1}∗ or as the set {0, 1}ω of all infinite binary sequences,
whichever is most convenient in a given context.

A resource bound in this paper is any one of several classes of functions
from {0, 1}∗ to {0, 1}∗ that we now specify.

The largest resource bound is the set

all =
{
f | f : {0, 1}∗ → {0, 1}∗

}
we also use the resource bound

comp = {f ∈ all | f is computable}.

As in [20,23,25], we define a hierarchy G0, G1, G2, . . . of classes of growth
rates f : N → N by the following recursion. (All logarithms in this paper are
base-2.)

G0 = {f | (∃k)(∀∞n)f(n) ≤ kn}

Gi+1 = 2Gi(logn) =
{
f
∣∣∣ (∃g ∈ Gi)(∀∞n)f(n) ≤ 2g(logn)

}
.
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Note that G0 is the class of O(n) growth rates and that G1 is the class of
polynomially bounded growth rates. For each i ∈ N, define a canonical growth
rate ĝi ∈ Gi by ĝ0(n) = 2n and ĝi+1(n) = 2ĝi(logn). It is easy to verify that
each Gi is closed under composition, that each f ∈ Gi is o(ĝi+1), and that
each ĝi is o(2n). Thus all growth rates in the Gi-hierarchy are subexponential.

Within the resource bound comp, we use the resource bounds

pi = {f ∈ all | f is computable in Gi time} (i ≥ 1)

and
pispace = {f ∈ all | f is computable in Gi space} (i ≥ 1).

(The length of the output is included as part of the space used in computing
f .) We write p for the polynomial-time resource bound p1 and qp for the
quasipolynomial-time resource bound p2. Similarly the notations pspace and
qpspace denote the space resource bounds p1space and p2space, respectively.

In this paper, a resource bound Γ or ∆ is one of the classes all, comp,
pi (i ≥ 1), pispace (i ≥ 1) defined above. We will also use relativizations
∆A or ∆g of a resource bound ∆ to oracles A ⊆ {0, 1}∗ or function oracles
g : {0, 1}∗ → {0, 1}∗.

A constructor is a function δ : {0, 1}∗ → {0, 1}∗ such that δ(w) is a proper
extension of w (i.e., w is a proper prefix of δ(w)) for all w ∈ {0, 1}∗. The result
of a constructor δ is the unique sequence R(δ) ∈ C such that δn(λ) is a prefix
of R(δ) for all n ∈ N. (Here δn(λ) is the n-fold application of δ to the empty
string λ.)

The result class of a resource bound ∆ is the class R(∆) consisting of all
languages R(δ) such that δ ∈ ∆ is a constructor. The following facts are easily
verified.

1. R(all) = C.
2. R(comp) = DEC, the set of all decidable languages.
3. For all i ≥ 1,

R(pi) = Ei = TIME(2Gi−1).

In particular,
R(p) = E = TIME(2linear)

and
R(qp) = EXP = TIME(2poly).

4. For all i ≥ 1,

R(pispace) = Ei SPACE = SPACE(2Gi−1).

In particular,

R(pspace) = ESPACE = SPACE(2linear)

and
R(qpspace) = EXPSPACE = SPACE(2poly).
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Many of our functions will be of the form f : D → [0,∞), where D is a discrete
domain such as {0, 1}∗ or N×{0, 1}∗ and [0,∞) is the set of nonnegative real
numbers. If ∆ is a resource bound, then such a function f is ∆-computable if
there is a rational-valued function f̂ : D×N→ Q∩ [0,∞) such that |f̂(r, x)−
f(x)| ≤ 2−r for all x ∈ D and r ∈ N and f̂ ∈ ∆ (with r coded in unary and

f̂(x, r) coded in binary).
We say that f is lower semicomputable if there is a computable function

f̂ : D × N → Q ∩ [0,∞) such that the following two conditions hold for all
x ∈ D.

(i) For all t ∈ N, f̂(x, t) ≤ f̂(x, t+ 1) ≤ f(x).

(ii) lim
t→∞

f̂(x, t) = f(x).

3 Resource-Bounded Dimensions

This section briefly reviews the elements of resource-bounded dimension de-
veloped in [25].

Definition 1. For s ∈ [0,∞), an s-gale is a function d : {0, 1}∗ → [0,∞)
such that, for all w ∈ {0, 1}∗,

d(w) = 2−s[d(w0) + d(w1)].

2. A martingale is a 1-gale.

Observation 3.1 ([26]) A function d : {0, 1}∗ → [0,∞) is an s-gale if and
only if the function d′ : {0, 1}∗ → [0,∞) defined by d′(w) = 2(1−s)|w|d(w) is a
martingale.

An s-gale d succeeds on a language A ⊆ {0, 1}∗, and we write A ∈ S∞[d],
if

lim sup
w→A

d(w) =∞,

where the limit superior is taken over successively longer prefixes of A.

Notation For X ⊆ C, let G(X) be the set of all s ∈ [0,∞) such that there is
an s-gale d for which X ⊆ S∞[d].

Readers unfamiliar with fractal geometry can safely use the following char-
acterization as the definition of the Hausdorff dimension dimH(X) of each set
X ⊆ C.

Theorem 3.2 (gale characterization of Hausdorff dimension [25]) For
all X ⊆ C,

dimH(X) = inf G(X).
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Intuitively, an s-gale is a strategy for betting on the successive bits of
languages A ∈ C. The payoffs of these bets are fair if s = 1 and unfair if
s < 1. Intuitively and roughly, Theorem 3.2 says that the Hausdorff dimension
of X is the most hostile betting environment in which a gambler can succeed
on every language A ∈ X.

Motivated by the above characterization of classical Hausdorff dimension,
the first author defined resource-bounded dimensions and algorithmic dimen-
sions as follows.

Notation ([25,26]) Let ∆ be a resource bound, and let X ⊆ C.

1. G∆(X) is the set of all s ∈ [0,∞) such that there is a ∆-computable s-gale
d for which X ⊆ S∞[d].

2. Galg(X) is the set of all s ∈ [0,∞) such that there is a lower semicomputable
s-gale d for which X ⊆ S∞[d].

Definition ([25,26]) Let ∆ be a resource bound, let X ⊆ C, and let A ∈ C.

1. The ∆-dimension of X is

dim∆(X) = inf G∆(X).

2. The ∆-dimension of X in R(∆) is

dim(X | R(∆)) = dim∆(X ∩R(∆)).

3. The ∆-dimension of A is

dim∆(A) = dim∆({A}).

4. The algorithmic dimension of X is

dimalg(X) = inf Galg(X).

5. The algorithmic dimension of A is

dim(A) = dimalg({A}).

(Algorithmic dimension has also been called constructive dimension and ef-
fective dimension.)

The papers [25,26] showed that the above-defined dimensions are coherent,
well-behaved “versions” of Hausdorff dimension. All the defined dimensions lie
in [0, 1], and all can take any real value in [0, 1]. The dimensions 1., 2., and 4.,
have the crucial dimension properties that they are monotone in X and that
they are stable in the sense that the dimension of X∪Y is the maximum of the
dimensions of X and Y . Classical Hausdorff dimension (i.e., dimH = dimall) is
also countably stable, meaning that

dimH

(⋃
i∈I

Xi

)
= sup

i∈I
dimH(Xi) (3.1)
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holds for all countable index sets I. The dimensions 1. and 2. are not countably
stable for ∆ smaller than all, but they are ∆-countably stable in that (3.1)
holds if the countable union is “∆-effective.” The algorithmic dimension 4.
is absolutely stable in the sense that (3.1) holds, regardless of whether I is
countable. In particular, this implies that, for all X ⊆ C,

dimalg(X) = sup
A∈X

dim(A). (3.2)

As a consequence of (3.2), investigations of algorithmic dimension focus al-
most entirely on the dimensions dim(A) of individual languages (or, in other
contexts, individual sequences or individual points in a metric space) A.

Turning to complexity classes, i.e., the cases where ∆ is some resource
bound pi or pispace, the dimension 2. is non-degenerate in the sense that
dim(R(∆) | R(∆)) = 1. If X ⊆ R(∆) is finite or even “∆-countable,” then
dim(X | R(∆)) = 0. This implies for example that, for each fixed k ∈ N,

dim(TIME(2kn) | E) = dim(TIME(2n
k

) | EXP) = 0. (3.3)

Finally, we mention interactions of dimensions with randomness. A lan-
guage A ∈ C is ∆-random if no ∆-computable martingale succeeds on it [23].
A language A ∈ C is algorithmically random (or Martin-Löf random [35]) if
no lower semicomputable martingale succeeds on it. Since a martingale is a
1-gale, this implies that dim∆(A) = 1 holds for every ∆-random language and
dim(A) = 1 holds for every algorithmically random language. In neither case
does the converse hold.

4 The Point-to-Set Principle

As noted in the introduction, previous instances of the Point-to-Set Principle
have characterized classical fractal dimensions of sets in terms of the rela-
tivized algorithmic dimensions of the elements of these sets. Here we make
the Point-to-Set Principle more widely applicable by proving instances of it in
which “classical” and “algorithmic” are replaced by resource bounds ∆ and
Γ , respectively, with Γ smaller (“more effective”) than ∆.

To this end, we partially order our resource bounds by

pi < pi+1 < comp,

pispace < pi+1space < comp,

and
pi ≤ pispace

for all i ≤ 1 and
comp < all.

Aside from reflecting current knowledge about the inclusions among these
classes, this ordering has the crucial property that, if Γ and ∆ are resource



10 Jack H. Lutz, Neil Lutz, Elvira Mayordomo

bounds with Γ < ∆, then ∆ parametrizes Γ in the sense that there is a
function f ∈ ∆ such that

Γ = {fk | k ∈ N},

where each fk : {0, 1}∗ → {0, 1}∗ is the kth slice of f , defined by fk(x) =
f(0k1x) for all x ∈ {0, 1}∗. Moreover, this parametrization relativizes in the
sense that, for each function oracle g : {0, 1}∗ → {0, 1}∗, there is a function
fg ∈ ∆g such that

Γ g = {fgk | k ∈ N}.

Theorem 4.1 If Γ and ∆ are resource bounds with Γ < ∆, then for each
function oracle g : {0, 1}∗ → {0, 1}∗, there is a ∆g-computable function dg

such that {dgk | k ∈ N} is the set of all martingales that are Γ g-computable and
satisfy dgk(λ) ≤ 1.

Proof This is implicit in the proofs of the time and space hierarchy theo-
rems [15,40] (minus the “disagreement” step of the diagonalizations), together
with the well-known fact that these proofs relativize. ut

The following theorem is the main result of this section.

Theorem 4.2 (Point-to-Set Principle for Resource-Bounded Dimen-
sions) If Γ and ∆ are resource bounds with Γ < ∆, then, for all X ⊆ C,

dim∆(X) = min
g∈∆

sup
A∈X

dimg
Γ (A). (4.1)

Theorem 4.2 follows immediately from the following two lemmas, which we
prove separately.

Lemma 4.3 If Γ , ∆, and X are as in Theorem 4.2 and g ∈ ∆, then

dim∆(X) ≤ sup
A∈X

dimg
Γ (A). (4.2)

Lemma 4.4 If Γ , ∆, and X are as in Theorem 4.2, then there exists g ∈ ∆
such that, for all A ∈ X,

dimg
Γ (A) ≤ dim∆(X). (4.3)

Proof of Lemma 4.3 Let Γ , ∆, X, and g be as given, and let s ∈ Q satisfying

s > sup
A∈X

dimg
Γ (A). (4.4)

It suffices to show that

dim∆(X) ≤ s. (4.5)

Since Γ < ∆, Theorem 4.1 tells us that there is a ∆g-computable function
dg : {0, 1}∗ → [0,∞) such that the set {dgk | k ∈ N} of all slices of dg is the set
of all martingales that are Γ g-computable and satisfy dgk(λ) ≤ 1. In fact, since
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g ∈ ∆, this function dg is ∆-computable. Define the function dg,s : {0, 1}∗ →
[0,∞) so that

dg,s(0k1x) = 2(s−1)|x|dg(0k1x)

holds for all k ∈ N and x ∈ {0, 1}∗. Then dg,s is ∆-computable, and Obser-
vation 3.1 tells us that {dg,sk | k ∈ N} is the set of all Γ g-computable s-gales
that satisfy dg,sk (λ) ≤ 1. Define d : {0, 1}∗ → [0,∞) by

d =

∞∑
k=0

2−kdg,sk . (4.6)

Then d is a ∆-computable s-gale, so to confirm (4.5) it suffices to show that

X ⊆ S∞[d]. (4.7)

For this, let A ∈ X. Then, by (4.4), there is a Γ g-computable s-gale d̃ such that
A ∈ S∞[d̃]. Then there exists k ∈ N such that dg,sk = d̃, whence A ∈ S∞[dg,sk ].
But then (4.6) tells us that

lim sup
w→A

d(w) ≥ 2−k lim sup
w→A

dg,sk (w) =∞,

whence (4.7) holds. ut

Proof of Lemma 4.4 Let Γ , ∆, and X be as given, and let s ∈ Q satisfy

s > dim∆(X). (4.8)

If suffices to exhibit g ∈ ∆ such that, for all A ∈ X,

dimg
Γ (A) ≤ s. (4.9)

By (4.8), there is a ∆-computable s-gale d such that

X ⊆ S∞[d]. (4.10)

Observation: d can be chosen to be linearly bounded, that is, |d(w)| = O(|w|).
Let g = d̂ ∈ ∆ testify to the ∆-computability of d as defined in Section 2.
Then d is a Γ g-computable s-gale, and (4.10) tells us that, for all A ∈ X,
A ∈ S∞[d], whence (4.9) holds. ut

This completes the proof of Theorem 4.2.
The Point-to-Set Principle for Hausdorff dimension [28], stated in the con-

text of C, says that, for all X ⊆ C,

dimH(X) = min
B∈C

sup
A∈X

dimB(A), (4.11)

thus characterizing the classical Hausdorff dimension of X in terms of the
relativized algorithmic dimensions of its individual elements. Since dimall =
dimH, Theorem 4.2 tells us, for example, that we also have, for all X ⊆ C,

dimH(X) = min
B∈C

sup
A∈X

dimB
p (A). (4.12)
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5 Selectivity

Definition ([38]) For any resource bound ∆, a language A ⊆ {0, 1}∗ is ∆-
selective if there is a selector function f ∈ ∆ such that, for all pairs a, b ∈
{0, 1}∗, we have f(〈a, b〉) ∈ {a, b} and

a ∈ A or b ∈ A =⇒ f(〈a, b〉) ∈ A,

where 〈·, ·〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a standard pairing function.

Theorem 5.1 If A,B ∈ C and g : {0, 1}∗ → {0, 1}∗ are such that B is
pg-selective and A ≤Pm B, then dimg

p(A) = 0.

Proof Let A, B, and g be as in the theorem statement. Let f ∈ pg be a selector
for A, let h : {0, 1}∗ → {0, 1}∗ be a ≤Pm-reduction from A to B, and let s > 0.
We will show that dimg

p(A) ≤ s by constructing an s-gale that succeeds on A
and is computable in polynomial time relative to g.

Let k ∈ N be sufficiently large so that

2ks

k + 1
> 1. (5.1)

We will consider blocks of k consecutive strings. For each q ∈ N, define the
directed graph Gq whose vertex set is {0, . . . , k − 1} and edge set is

{(i, j) | f(〈h(sqk+i), h(sqk+j)〉) = h(sqk+j)} .

Notice that if sqk+i ∈ A and sqk+j 6∈ A, then h(sqk+i) ∈ B and h(sqk+j) 6∈ B.
In this situation, the edge (i, j) cannot be present in Gq, and more generally
there cannot be any path from i to j in Gq.

Let G′q be the directed acyclic graph obtained by contracting each strongly
connected component of Gq to a single vertex. Define a linear order ≺q on
{0, . . . , k − 1} by topologically sorting G′q, breaking ties within each strongly
connected component arbitrarily. In this order, i �q j implies that there is a
path from i to j in Gq.

Thus, if i �q j and sqk+i ∈ A, then sqk+j ∈ A. Extending ≺q by defining
i ≺q k for all i ∈ {0, . . . , k − 1}, it follows that

A ∩ {sqk, . . . , sqk+k−1} = {sqk+j | i �q j} (5.2)

for some i ∈ {0, . . . , k}.
Define d : {0, 1}∗ → [0,∞) and, for each i ∈ {0, . . . , k}, di : {0, 1}∗ →

[0,∞) recursively as follows. For w ∈ {0, 1}∗, let qk + j = |w|, where j ∈
{0, . . . , k − 1}.

– For all i ∈ {0, . . . , k}, di(λ) = d(λ) = 1.

– d(w) = 1
k+1

∑k
i=0 di(w).
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– For all i ∈ {0, . . . , k} and j = 0,

di(w0) =

{
0 if i �q j
2sd(w) otherwise,

di(w1) =

{
2sd(w) if i �q j
0 otherwise,

– For all i ∈ {0, . . . , k} and j ∈ {1, . . . , k − 1},

di(w0) =

{
0 if i �q j
2sdi(w) otherwise,

di(w1) =

{
2sdi(w) if i �q j
0 otherwise.

Informally, each di represents a betting strategy, and d is an aggregate betting
strategy that evenly re-allocates between the di after each block of k bits.
Observe that d is an s-gale, although the individual di are not.

Now consider d(A � n). If n = 0, then d(A � n) = 1. Otherwise, n = qk+ j
for some q ∈ N and j ∈ {1, . . . , k}. Let i ∈ {0, . . . , k} be the value satisfying
equation (5.2) for this q. Then

d(X � n) ≥ di(X � n)

k + 1

=
2jsd(X � n− j)

k + 1

=
2(qk+j)s

(k + 1)q

>

(
2ks

k + 1

)q
.

By inequality (5.1), this lower bound is monotonically increasing and un-
bounded, so lim infn→∞ d(A � n) = ∞. Therefore the s-gale d succeeds on
A. Furthermore, for all w ∈ {0, 1}∗, the value d(w) can be computed in poly-
nomial time relative to g by:

– k calls to the polynomial-time reduction function h on inputs

sqk, . . . , sqk+k−1,

each of which has length O(log |w|);
– k2 calls, for each ordered pairs from {sqk, . . . , sqk+k−1}, to the selector

function f , which runs in polynomial time relative to g; and
– standard graph algorithms on Gq, which has k = O(1) vertices.

We conclude that dimg
p(A) < s, and the theorem follows immediately. ut
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Lemma 5.2 Let qp′ be the set of all functions in qp whose output length is
polynomially bounded. There is a function h ∈ qp′ such that qp′ = ph.

Proof By standard techniques of clocking Turing machines and bounding their
running times and output lengths, we can form an enumerationM0,M1,M2, . . .
of Turing machines such that qp′ is exactly the set of functions computed by
Turing machines in this list. Define h : {0, 1}∗ → {0, 1}∗ by

h(u) =

{
Mk(x) if u = 0k1x

λ if u does not contain a 1.

It is clear that ph = qp′. ut

Theorem 5.3 dim(Pm(qp-SEL) | EXP) = 0.

Proof Let h be as in Lemma 5.2, and let A ∈ Pm(qp-SEL). Then there exists
some language B ∈ C and function g ∈ qp′ = ph such that A ≤Pm B and g is
a selector for B, i.e., B is ph-selective. By Theorem 5.1, then, dimh

p(A) = 0.
This holds for all A ∈ Pm(qp-SEL), so we can apply Theorem 4.2:

dimqp(Pm(qp-SEL)) ≤ sup
A∈Pm(qp-SEL)

dimh
p(A)

= 0.

Since dim(Pm(qp-SEL) | EXP) is defined as

dimqp(Pm(qp-SEL) ∩ EXP) ≤ dimqp(Pm(qp-SEL)),

this completes the proof. ut

Corollary 5.4 No qp-selective set is partially ≤Pm-hard for EXP.

Corollary 5.5 If dim(NP | EXP) > 0, then no qp-selective set is ≤Pm-hard
for NP.

6 Disjoint NP Pairs

In this section we improve the results in [7] by proving that the dimension of
disjNP in disjEXP is related to the dimension of NP inside EXP.

Definition ([14,27]) For s ∈ [0,∞) and distribution β on alphabet Σ, a
β-s-gale is a function d : Σ∗ → [0,∞) such that, for all w ∈ Σ∗,

d(w) =
∑
a∈Σ

d(wa)β(a)s.

A β-s-gale succeeds on a language A ⊆ Σ∗, and we write A ∈ S∞[d], if

lim sup
w→A

d(w) =∞.
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Let ∆ be a resource bound, β a distribution on alphabet Σ, and X ⊆ P(Σ∗).
Then G∆,β(X) denotes the set of all s ∈ [0,∞) such that there is a ∆-
computable β-s-gale d for which X ⊆ S∞[d], and the ∆-β-dimension of X
is

dim∆,β(X) = inf G∆,β(X).

We code disjoint pairs as in [7], using the alphabet {0, 1,−1}. For a pair
(A,B), 1 corresponds to A, −1 to B, and 0 to (A ∪B)c.

We fix a probability distribution γ0 on {0, 1,−1} as γ0(0) = 1/4, γ0(1) =
γ0(−1) = 3/8, that is the natural distribution used in [7]. For disjoint pairs we
write dim∆(X) for dim∆,γ0(X). Theorem 4.2 extends routinely to this setting.

The main theorem of this section is the following

Theorem 6.1 If dim(disjNP | disjEXP) = 1, then dim(NP | EXP) > 0.

The proof of Theorem 6.1 is based on the following two results and Theo-
rem 4.2.

Theorem 6.2 Let β be a positive distribution on {0, 1}, X ⊆ C, and g :
{0, 1}∗ → {0, 1}∗. If dimg

p(X) = 0, then dimg
p,β(X) < 1.

Theorem 6.3 Let β = (1/4, 3/4) and g : {0, 1}∗ → {0, 1}∗. If dimg
p,β(NP) <

1, then dimg
p(disjNP) < 1.

Theorem 6.2 is a consequence of the following lemma.

Lemma 6.4 Let g : {0, 1}∗ → {0, 1}∗, let s be such that dimg
p(X) < s, and let

β be a distribution on {0, 1}. If max(β(0), β(1)) < 2−s, then dimg
p,β(X) < 1.

Proof of Lemma 6.4 Let s′ > s and t ∈ (0, 1) be such that max(β(0), β(1)) <
2−s

′/t. Let d be a pg-computable s-gale. Define

d′(wb) = d′(w)
d(wb)

2sd(w)

1

β(b)t
.

Then d′ is a pg-computable β-t-gale. Furthermore,

d′(w) ≥ d(w)2−s|w|
1

β(w)t
> d(w)2−s|w|2s

′|w|,

and therefore S∞[d] ⊆ S∞[d′]. ut

Theorem 6.3 is a consequence of the following lemma.

Lemma 6.5 Let g : {0, 1}∗ → {0, 1}∗, γ a positive distribution on {0, 1,−1},
β a distribution on {0, 1} with β(0) = γ(0), and X ⊆ C a class that is closed
under union. If dimg

p,β(X) < 1, then dimg
p,γ(disjX) < 1.
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Proof of Lemma 6.5 If dimg
p,β(X) < s < 1 and d is a pg-computable β-s gale

succeeding on X, let s′ ∈ (0, 1) with β(1)s ≥ γ(1)s
′

+ γ(−1)s
′

and β(0)s ≥
γ(0)s

′
.

We define a pg-computable γ-s′ gale D by

D(w0) = D(w)
d(w0)

d(w)

β(0)s

γ(0)s′

D(w1) = D(w − 1) = D(w)
d(w1)

d(w)

β(1)s

γ(1)s′ + γ(−1)s′
,

where

w[i] = 0 if w[i] = 0

w[i] = 1 if w[i] = 1 or w[i] = −1.

That is, if w is a prefix of (A,B) then w is a prefix of A ∪B.
Notice that D(w) ≥ d(w) for every w.
Thus if (A,B) ∈ disjX, then A ∪B ∈ X and D succeeds on (A,B). ut

Proof of Theorem 6.1 We prove the contrapositive. Suppose that dim(NP |
EXP) = 0. By Theorem 4.2, there is a g ∈ qp such that dimg

p(NP) = 0.
Let β = (1/4, 3/4). By Theorem 6.2, dimg

p,β(NP) < 1. By Theorem 6.3,
dimg

p(disjNP) < 1.
Using Theorem 4.2 again, dim(disjNP | disjEXP) = dimqp(disjNP) < 1.

ut

Acknowledgements We thank an anonymous reviewer for several small corrections.
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