No clues good clues: out of context Lexical Relation Classification

Pitarch, Lucia (Universidad de Zaragoza) ; Bernad, Jordi (Universidad de Zaragoza) ; Dranca, Lacramioara ; Bobed Lisbona, Carlos (Universidad de Zaragoza) ; Gracia, Jorge (Universidad de Zaragoza)
No clues good clues: out of context Lexical Relation Classification
Resumen: The accurate prediction of lexical relations between words is a challenging task in Natural Language Processing (NLP). The most recent advances in this direction come with the use of pre-trained language models (PTLMs). A PTLM typically needs “well-formed” verbalized text to interact with it, either to fine-tune it or to exploit it. However, there are indications that commonly used PTLMs already encode enough linguistic knowledge to allow the use of minimal (or none) textual context for some linguistically motivated tasks, thus notably reducing human effort, the need for data pre-processing, and favoring techniques that are language neutral since do not rely on syntactic structures. In this work, we explore this idea for the tasks of lexical relation classification (LRC) and graded Lexical Entailment (LE). After fine-tuning PTLMs for LRC with different verbalizations, our evaluation results show that very simple prompts are competitive for LRC and significantly outperform graded LE SoTA. In order to gain a better insight into this phenomenon, we perform a number of quantitative statistical analyses on the results, as well as a qualitative visual exploration based on embedding projections.
Idioma: Inglés
DOI: 10.18653/v1/2023.acl-long.308
Año: 2023
Publicado en: Proceedings of the conference - Association for Computational Linguistics. Meeting 1 (2023), 5607--5625
ISSN: 0736-587X

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2020-113903RB-I00
Financiación: info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101057332/EU/Design-based Data-Driven Decision-support Tools: Producing Improved Cancer Outcomes Through User-Centred Research/4D PICTURE
Financiación: info:eu-repo/grantAgreement/ES/MINECO/RYC2019-028112-I
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-02-07-14:40:24)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2024-02-07, última modificación el 2024-02-07


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)