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OptiMo-LDLr: An Integrated In Silico Model with Enhanced
Predictive Power for LDL Receptor Variants, Unraveling Hot
Spot Pathogenic Residues

Asier Larrea-Sebal, Iñaki Sasiain, Shifa Jebari-Benslaiman, Unai Galicia-Garcia,
Kepa B. Uribe, Asier Benito-Vicente, Irene Gracia-Rubio, Harbil Bediaga-Bañeres,
Sonia Arrasate, Ana Cenarro, Fernando Civeira, Humberto González-Díaz,
and Cesar Martín*

Familial hypercholesterolemia (FH) is an inherited metabolic disease affecting
cholesterol metabolism, with 90% of cases caused by mutations in the LDL
receptor gene (LDLR), primarily missense mutations. This study aims to
integrate six commonly used predictive software to create a new model for
predicting LDLR mutation pathogenicity and mapping hot spot residues. Six
predictive-software are selected: Polyphen-2, SIFT, MutationTaster, REVEL,
VARITY, and MLb-LDLr. Software accuracy is tested with the characterized
variants annotated in ClinVar and, by bioinformatic and machine learning
techniques all models are integrated into a more accurate one. The resulting
optimized model presents a specificity of 96.71% and a sensitivity of 98.36%.
Hot spot residues with high potential of pathogenicity appear across all
domains except for the signal peptide and the O-linked domain. In addition,
translating this information into 3D structure of the LDLr highlights
potentially pathogenic clusters within the different domains, which may be
related to specific biological function. The results of this work provide a
powerful tool to classify LDLR pathogenic variants. Moreover, an open-access
guide user interface (OptiMo-LDLr) is provided to the scientific community.
This study shows that combination of several predictive software results in a
more accurate prediction to help clinicians in FH diagnosis.
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1. Introduction

Familial hypercholesterolemia (FH) is
a common inherited metabolic disease
causing the malfunction of cholesterol
metabolism[1] with a prevalence between
1:200 and 1:250 in several populations.[2]

In >90% of the cases, FH is caused by
mutations in the LDL receptor gene (LDLR),
being missense mutations the most com-
mon ones.[3] In fact, >1300 mutations
causing amino acid substitution have al-
ready been reported in ClinVar, a freely
accessible public archive reporting disease-
related genomic variations.[4] Missense
mutations in the LDLR have different im-
pact on protein activity depending on the
protein’s domain they locate. Hence, muta-
tions residing in functionally or structurally
relevant regions are more susceptible of be-
ing pathogenic.[5] The LDL receptor (LDLr)
is a trans-membrane protein involved in
plasma LDL cholesterol (LDL-c) clearance,
a process that occurs upon binding of LDLr
to apolipoprotein B-100 (ApoB-100) a main
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component of the LDL particle.[6] LDLr consists of 860 amino
acids organized in nine different domains as follows: signal pep-
tide (SP), LDL binding domain (LBD), epidermal growth factor
like domain A (EGF-A), epidermal growth factor like domain
B (EGF-B), 𝛽-propeller, epidermal growth factor-like domain C
(EGF-C), Oxygen-linked glycosylation domain (O-linked), trans-
membrane domain and the cytosolic domain.[6]

The different impact on the biological effect caused by the
amino acid substitutions in the LDLr makes essential determin-
ing their pathogenicity to facilitate definitive diagnosis and to
gain information about the cardiovascular risk of each variant.[7]

In addition to traditional cascade screening and in vitro assess-
ment of the activity of genetic variants, computational predictive
software has arisen as a powerful tool to predict the pathogenic-
ity of LDLR variants;[8] among them, Polyphen-2 (Polymorphism
Phenotyping v2),[9] MutationTaster,[10] SIFT (Sorting Intoler-
ant From Tolerant)[11] REVEL (Rare Exome Variant Ensemble
Learner)[12] and VARITY.[13] Very recently, more specific software
designed for LDLR, such as MLb-LDLr (Machine Learning based
low-density lipoprotein receptor software) has been developed[14]

or SFIP-MutID (Structure-based functional impact prediction for
mutation identification).[15] This seven software represent the
state of the art in 2023, providing comprehensive and advanced
tools for predicting the pathogenicity of LDLR variants.

Currently, discrepancies arise in the results provided by indi-
vidual software programs due to variations in the criteria they
employ to infer the pathogenicity of substitutions, therefore col-
lective analysis of predictions from multiple software tools is fre-
quently undertaken to increase overall predictive efficacy. To en-
hance the prediction of pathogenic variants in the LDLR, this
study aims to integrate the predicted effects of each missense
mutation using existing software, thereby enhancing the individ-
ual predictive capabilities of these tools. The optimized model,
integrated into the OptiMo-LDLr software, enhances the pre-
dictive capacity for pathogenicity of LDLr variants. The results
of this work not only provide a powerful tool for classifying
LDLR pathogenic variants but also contribute to deciphering
pathogenic hot spots within the receptor. This information is fur-
ther translated to the 3D structure of the LDLr, elucidating po-
tentially pathogenic regions within different domains that may
be associated with specific biological functions. Additionally, an
open-access guide user interface (https://www.ehu.eus/es/web/
hypercholesterolemia-mechanisms/optimo-ldlr) is made avail-
able to the scientific community.

2. Experimental Section

2.1. Predictive Software

The human wild-type (wt) LDLr amino acid sequence (Uniprot
#P01130) was used as template.

Six software that predict the pathogenicity caused by amino
acid substitution were selected, those not specifically dedi-
cated to LDLr (PolyPhen-2, SIFT, MutationTaster, REVEL and
VARITY) and one specifically developed for LDLr (MLb-LDLr).
Each software uses different databases and methodologies for
predicting pathogenicity. Concerning the general prediction
software, PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)
combines sequence- and structure-based approaches,[9] SIFT

(https://sift.bii.a-star.edu.sg/index.html) infers pathogenic-
ity from sequence similarity,[11] MutationTaster (https:
//www.mutationtaster.org/) is based on evolutionary conser-
vation, splice-site changes, protein’s features loss and changes
that might affect mRNA expression level,[10] REVEL (https:
//sites.google.com/site/revelgenomics/) incorporates many
predictive tools, but is trained on recently discovered variants not
used by them[12] and VARITY (http://varity.varianteffect.org/)
has been optimized to predict the pathogenicity of rare missense
variants.[13] Regarding the specific software for LDLR, MLb-
LDLr (https://www.ehu.eus/en/web/hypercholesterolemia-
mechanisms/mlb-ldlr1) considers several factors such as con-
servation, physicochemical characteristics of amino acids and
structural features of LDLr.[14] SFIP-MutID, a predictive software
specifically designed for LDLR[15] was not included in the ensem-
ble model developed in this study due to its limited predictive
capacity.

2.2. Database

In addition, the public database of human genetic variants and
their significance to disease (ClinVar),[16] managed by the Na-
tional Centre for Biotechnology Information (NCBI), was used
as a source for gathering information related to the LDLR vari-
ants described so far. ClinVar database categorizes LDLR vari-
ants into six subtypes attending the type of mutation: frameshift,
missense, nonsense, splice site, noncoding RNA, and untrans-
lated region (UTR). However, the biological effect of most of
these subtypes could be easily predicted without the use of any
predicting tool. Frameshift, nonsense, and splice site variants
were mostly pathogenic, and the only variable was the position
in which the mutation occurs. On the other hand, noncoding
RNA and UTR variants did not affect the protein directly, so
their effects were mostly benign. Among all mutation types, mis-
sense mutations were the most appealing ones to map hot spots
within the LDLr sequence. Altering a single amino acid, as in the
site-directed mutagenesis analysis, the biological significance of
that residue could be inferred. Therefore, missense mutations
were selected to perform a hot spot amino acid analysis within
LDLr due to the relevance of this kind of mutations on pro-
tein activity. Out of 1475 missense variants annotated in ClinVar
(Last update: July 18th, 2023) a datasheet containing 669 was ob-
tained after excluding variants without clinical significance and
those appearing in more than one subtype.90% of the obtained
variants were classified as pathogenic or likely pathogenic and
10% as benign or likely benign.[4] Missense variants classified
as Pathogenic/Likely Pathogenic or Benign/Likely Benign were
grouped, making not distinction among them throughout this
work.

2.3. Data Acquisition, Homogenization, Normalization, and
Combination

First, the scores (B) provided by each software (s) for all the
substitutions were obtained. Although some software provides
pathogenicity predictions for all possible mutations for each
residue (19 mutations per residue), REVEL and VARITY only pro-
vide predictions for the most probable variants, those in which
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a single nucleotide was modified. As all the mutations in Clin-
Var belong to this group, it was next decided to only analyze
the most probable mutations, those obtained due to the modi-
fication of a single nucleotide. This means that the number of
probable mutations per residue varies depending on the amino
acid.

PolyPhen-2 and SIFT provide the option of batch querying,
while MutationTaster and MLb-LDLr only allow for individual
queries. A script was written to automatize data acquisition for
MutationTaster using Python (v.3.10.4). MLb-LDLr prediction
data was obtained from the information published previously.[14]

In the case of REVEL and VARITY, predictions for all probable
mutation have already been made, and are readily available for
download.

Acquisition of pathogenicity score for some substitutions
(mainly the ones located in splicing sites) was not possible in
MutationTaster and therefore, to get comparable scores the ob-
tained data was homogenized and normalized as follows: the for-
mat of the obtained data was homogenized without altering its
meaning, calculating the probability of each substitution (i) be-
ing pathogenic (P = 1) according to each software (s). That value
was denominated p( Psi = 1) in which 1 is considered as the
most pathogenic value and 0 as the least. The scores provided by
PolyPhen-2, REVEL, and VARITY already meet the previous con-
ditions, so no adaptation was needed. MutationTaster and MLb-
LDLr provide the probability of each substitution to be benign
or pathogenic according to the most likely effect. Therefore, the
probability of a substitution to be benign is provided p(Psi = 0),
instead of pathogenic, p(Psi = 1), when p(Psi = 1) < ts, consid-
ering ts as the threshold between classifying a substitution as be-
nign or pathogenic for each software. In order to homogenize the
scores, p(Psi = 1) was calculated for all the substitutions when
p(Psi = 0) was provided following Equation (1). Regarding the
data given by SIFT, values between 0 and 0.05 are considered as
pathogenic, and the ones >0.05 as benign. This score had also to
be adapted to establish 1 as maximum pathogenicity value and
0 as minimum, similarly to the rest of the software, following
Equation (2).

p(Psi = 1) = 1 − p(Psi = 0) (1)

p(PSIFT,i = 1) = 1 − BSIFT (2)

Then, all the data from the different software was normal-
ized, rescaling them between 0 (most benign value) and 1 (most
pathogenic value) considering 0.5 as the threshold. Therefore,
a linear mathematical expression which does not perturb the
original meanings was used (Equation (3)) where p(Psi = 1)
represents the previously homogenized score for each software
and substitution, max[ p(Psi = 1)] its maximum value (equal
to 1 in all the software) and min[ p(Psi = 1)] its minimum
value (equal to 0 in all the software); ts is the threshold be-
tween considering a substitution as benign or pathogenic in the
original scale (which can be also interpreted as the minimum
value of the substitutions predicted as pathogenic and the max-
imum of the ones predicted as benign), and p( Psi = 1)Nor rep-
resents the normalized probability for each software and sub-
stitution. The values equal to the threshold were considered as

pathogenic, including them in the first sub equation of Equa-
tion (2), as SIFT, the only model that provides those, considers
them so.

p
(

Psi = 1
)

Nor
=

⎧⎪⎪⎨⎪⎪⎩

p(Psi = 1) ≥ ts;
p(Psi = 1) − ts

max
[
p(Psi = 1)

]
− ts

p(Psi = 1) < ts;
p(Psi = 1) − min

[
p(Psi = 1)

]
ts − min

[
p(Psi = 1)

]

(3)

After normalization, the new (p( Psi = 1)Nor) values were com-
bined creating a new score that represents the overall predicted
pathogenicity of each substitution, f(Pi)calc, between 0 (most be-
nign value) and 4 (most pathogenic value), considering 2 as
the threshold. f(Pi)calc values were calculated according to Equa-
tion (4). The combined score of the substitutions in which the
data from MutationTaster was missing, was rescaled by multiply-
ing it by 6

5
to avoid their misinterpretation.

f
(
Pi

)
calc

=
s = 6∑
s = 1

p
(

Psi = 1
)

Nor
(4)

2.4. Pathogenicity of Amino Acid Substitutions: Statistical
Analysis

The normalized pathogenicity score predicted by each software,
p( Psi = 1)Nor, was compared by determining the standard devia-
tion between the obtained values and calculating the divergence
in the predictions made by each software. Besides, specificity and
sensitivity were calculated with the already characterized LDLR
substitutions in ClinVar for each software. After performing the
combination of the normalized scores, f(Pi)calc, specificity and
sensitivity were also determined for the new score with the al-
ready characterized substitutions in ClinVar.

2.5. Potential Pathogenicity of Residues

To determine the biological importance of each residue, the
potential pathogenicity (PP) function was calculated for each
residue (r) and software (s), f(PPrs). High potential pathogenicity
values correspond to residues whose probable substitutions were
mostly predicted as pathogenic. Hence, they were interpreted
as biologically relevant for the function of LDLr. Starting from
the normalized scores of each software, p( Psi = 1)Nor, the po-
tential pathogenicity was determined by calculating the average
value of the probable substitutions for each residue and software,
f(PPrs)av, according to Equation (5). This way, a value between
0 (low importance) and 1 (high importance) was obtained, con-
sidering 0.5 as the threshold. In Equation (5), nsr represents the
number of substitutions in which pathogenicity scores are pro-
vided for each residue in each software. The calculated values by
each software were then combined according to Equation (6) cre-
ating a new score system, f(PPr)calc, between 0 (low importance)
and 7 (high importance) in which 3.5 is considered the threshold
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Figure 1. OptiMo-LDLr flowchart. Pathogenicity predictions of six software were applied to 669 LDLR variants with known pathogenicity obtained from
ClinVar. A non-optimized predictive model was developed using the predictions of the 6 software, and the potential pathogenicity of each residue in LDLr
was calculated. Afterward, the model was optimized using ESEA algorithm to increase the accuracy of the predictions. The pathogenicity predictions of
the resulting model were implemented into a user-friendly software. The potential pathogenicity of each LDLr residue were calculated using the optimized
model, and the results were displayed in a hot spot map.

value. This represents the overall predicted potential pathogenic-
ity of each residue.

f
(
PPrs

)
av
= 1

nsr
×

i =nsr∑
i = 1

p
(

Psi = 1
)

Nor
(5)

f
(
PPr

)
calc

=
s=6∑
s=1

f
(
PPrs

)
av

(6)

2.6. Optimization of the Software Combination

The calculated software combination (f(Pi)calc) was optimized by
modifying the weight of each software in the final score. There-
fore, coefficients for each software (e) were optimised using Ex-
cel Solver Evolutionary Algorithm (ESEA) (detailed in the Sup-
porting Information).[17] The threshold (es) that defines the mini-
mum pathogenicity value of a pathogenic variant was also used as
an optimization variable. The optimization coefficients were es-
timated by maximizing F0, which was determined according to
Equation (7) using the data available in ClinVar. This allowed ob-
taining a balanced tool able to accurately predict both pathogenic
and benign substitutions.

F0 = Specificity × Sensitivity (7)

The optimized score that represents the overall predicted
pathogenicity of each substitution (f(Pi)opt) was determined ac-
cording to Equation (8). In the cases where data from Mutation-
Taster was missing the optimized combination scores of the sub-
stitutions were rescaled by multiplying it by 6

(6−eMutT )
to avoid their

misinterpretation.

f
(
Pi

)
opt

= et −
s = 6∑
s = 1

es × p
(

Psi = 1
)

Nor
(8)

The optimization coefficients were also used for the calcula-
tion of the optimized potential pathogenicity values (f(PPr)opt)
for each residue. These were applied to weight the combination
of the potential pathogenicity values determined for each soft-
ware (f(PPrs)av) that had been previously calculated through Equa-
tion (3). The optimized potential pathogenicity was calculated ac-
cording to Equation (9).

f
(
PPr

)
opt

= et −
s = 6∑
s = 1

es × f
(
PPrs

)
av

(9)

2.7. OptiMo-LDLr Model Verification

In order to obtain an unbiased model, the database was di-
vided into two groups: training (T) and validation (V). Variants
in training group were used to optimize the parameters (es and
the threshold that divides benign and pathogenic variants) of
the model. Afterward, those parameters were used with the val-
idation group. This division prevents the creation of an over
trained model, where its accuracy was overestimated. The vari-
ants were randomly assigned to training or validation series.
Three-quarters of the pathogenic variants (n = 457) were used
for training and the remaining (n = 152) to validate the model.
In the case of benign variants, two-thirds (n = 40) were used
in the training group, and the remaining (n = 20) were used
in the validation group due to the limited number of annotated
variants.

In addition, random bootstrapping training and validation
subsets of the same sample size with replacement were used to
test the sampling distribution. One thousand bootstrapped sam-
ples were tested, and sensitivity and specificity values were pre-
sented with 95% confidence intervals.

A detailed flowchart illustrating the step-by-step development
of the OptiMo-LDLr predictive model is shown in Figure 1.
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Figure 2. Original pathogenicity scores provided by A) Polyphen-2, B) SIFT, C) MutationTaster, D) MLb-LDLr, E) REVEL, and F) VARITY. Each point
represents the scores provided by each software. The black dotted line is the threshold between considering a substitution as benign or pathogenic.
In (A,B,E,F) values above the threshold are considered pathogenic and the ones below the threshold, benign. In (C) values above 50 represent the
probability of being pathogenic and below −50 of being benign. In (D) values above 0.5 represent the probability of being pathogenic and below −0.5 of
being benign. SP: Signal Peptide; LBD: Ligand Binding Domain; EGF: Epidermal Growth Factor; O-linked: Oxygen-linked glycosylation domain.

2.8. Identification of Pathogenic Hot Spots

The obtained optimized combination of the potential pathogenic-
ity was used to map pathogenic hot spots of LDLr. To achieve this
objective, the residues of LDLr were categorized based on their
estimated potential pathogenicity values. Those with values be-
low 4.5 were represented in white, while those falling within the
ranges of (4.5–4.9), (4.9–5.3), (5.3–5.7), (5.7–6.1), and (6.1–6.5) in-
cluding the upper limit were depicted using varying intensities of
red. The most intense shade of red was used to indicate the high-
est potential pathogenicity values. The resulting hot spot map

was then analyzed and interpreted using existing bibliographi-
cal references about the structure and function of LDLr and data
available in ClinVar.

2.9. Hot spot 3D Mapping

For the 3D mapping of LDLr hot spot regions, the crystallo-
graphic structure of LDLr was obtained from PDB (Experimen-
tal PDB structure: 1N7D) and the software Pymol (The PyMOL
Molecular Graphics System, Version 2.0 Schrödinger, LLC) was
used for colouring the residues.
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Figure 3. Normalized scores of A) Polyphen-2, B) SIFT, C) MutationTaster, D) MLb-LDLr, E) REVEL, and F) VARITY. The original scores were rescaled
using Equation (3) to obtain comparable values. The black dotted line represents the threshold between considering a substitution as benign, when
its score is below it, or pathogenic, when it is above it. SP: Signal Peptide; LBD: Ligand Binding Domain; EGF: Epidermal Growth Factor; O-linked:
Oxygen-linked glycosylation domain.

3. Results

3.1. Combination of the Normalized Data Improves its Predicting
Skills

First, the pathogenicity scores provided by Polyphen-2, Muta-
tionTaster, SIFT, MLb-LDLr, REVEL and VARITY were obtained
(Figure 2). Polyphen-2, REVEL and VARITY provide the data
in a scale between 0 (the most benign value) and 1 (the most
pathogenic value), establishing the threshold in 0.5 for Polyphen-
2 and VARITY (Figure 2A,F). Given that REVEL does not inher-
ently specify a threshold value, we established a threshold of 0.5

for REVEL in our analysis (Figure 2E). For SIFT (Figure 2B),
the threshold is defined as 0.05, where 0 represents the most
pathogenic value and 1 the most benign. In contrast, Mutation-
Taster (Figure 2C) and MLb-LDLr (Figure 2D) offer the probabil-
ity of each substitution being benign or pathogenic, rather than
directly indicating pathogenicity. Consequently, MutationTaster
or MLb-LDLr assign values above 50 and 0.5 to substitutions
considered pathogenic and values below −50 and −0.5 to those
deemed benign, respectively.

The described data was then rescaled (between 0 as the most
benign value, and 1, the most pathogenic value, considering
0.5 as the threshold) aiming to obtain comparable values. The

Adv. Sci. 2024, 2305177 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2305177 (6 of 15)
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Figure 4. Non-optimized combination of the normalized scores. The normalized scores from the different software were combined using Equation (4).
Black dotted line represents the threshold between considering a substitution as benign (scores below it), or pathogenic (scores above it). SP: Signal
Peptide; LBD: Ligand Binding Domain; EGF: Epidermal Growth Factor; O-linked: Oxygen-linked glycosylation domain.

pathogenicity probability estimated by Polyphen-2, REVEL, and
VARITY (Figure 3A,E,F) remain constant, as the new normalized
scale is equal to its original one. Besides, its scores are equally dis-
tributed on the new scale. Regarding SIFT (Figure 3B), the sub-
stitutions over the threshold appear scaled, due to fact that the
values of the predicted pathogenic substitutions in the original
scale were scored between 0 and 0.05, having only two decimal
places. The scores are also equally distributed on the new scale.
On the other hand, the pathogenicity probabilities estimated by
MutationTaster (Figure 3C) are polarized, being the majority in
the most extreme values, and MLb-LDLr (Figure 3D) shows the
opposite phenomena, as the scores calculated are located close to
the threshold.

In order to integrate the different predictive software, we next
combined the normalized data (Figure 4) thus allowing to inte-
grate the different pathogenicity prediction strategies of each soft-
ware. As shown in Figure 4, it is noticeable that the graphical rep-
resentation of the combination shows a high dependency on the
LDLr domains, as it had been previously observed in the results of
some software, specially MLb-LDLr, REVEL and VARITY, whose
graphical representation (Figure 3D,E,F) shows higher similarity
to the software combination.

3.2. Potential Pathogenicity of Residues

The potential pathogenicity for each residue and each software
was estimated as described in Experimental Section. The po-
tential pathogenicity in Polyphen-2 (Figure 5A), MutationTaster
(Figure 5C), MLb-LDLr (Figure 5D), REVEL (Figure 5E), and
VARITY (Figure 5F) show high similarity to the rescaled muta-
tions (Figure 3A,C–F), but with a lower density of scores. Con-
cerning SIFT (Figure 5B), the previously described escalation of
the scores (Figure 3B) disappears as the 4–7 probable substi-
tutions for each residue have been considered to calculate the
potential pathogenicity. The values obtained from each software
were also combined as described in Materials and Methods. As

shown in Figure 5F, the potential pathogenicity shows similar
distribution pattern than the pathogenicity predictions (Figure 4).

3.3. Optimization of Software Combination Improves its
Predictive Skills

Finally, the combination of the substitutions’ pathogenicity score
and of the potential pathogenicity were optimized. The optimiza-
tion coefficients were estimated using ESEA to weight the contri-
bution of each software and the threshold, and the final model is
shown in Equation (10).

f
(
Pi

)
opt

= −3.43 + 0.76∗
(
PSIFT = 1

)
Nor

+ 1.38∗ (PPolyPhen2 = 1)
Nor

+ 0.67∗ (PMLb−LDLr = 1)Nor + 0.91∗ (PMutationTaster = 1)Nor

+ 0.51∗
(
PREVEL = 1

)
Nor

+ 1.82∗ (PVERITY = 1)Nor (10)

where NTraining = 497, NValidation = 172, NTotal = 669, 𝝌2 = 452 and
P<0.05. The model classifies correctly 96.5% of pathogenic vari-
ants (440 of 456) and 97.5% of benign variants (40 of 41) on train-
ing, and 97.4% of pathogenic (149 of 153) and 100.0% of benign
(20 of 20) on validation. Statistics of each software and model are
shown in Table 1 and the prediction of each individual software
is shown in Table S1 (Supporting Information).

Regarding the predictive capacity of the software, nearly all
sensitivity values are above 90%, while the specificity values
are ≈80% with some exceptions. OptiMo-LDLr is the most
sensitive (98.36%) and specific (96.7%) model, as well as the
most balanced one, due to the optimization process followed in
Equation (7). Both MutationTaster and REVEL show the second-
best sensitivity values, but they are by far the least specific ones
with 67.86% and 36.66%, respectively. In the case of REVEL, the
observed low specificity might potentially be attributed to the
threshold we established for the model, although it is not consid-
ered a significant factor affecting its overall contribution to the
model. Regarding the non-optimized model, the specificity value

Adv. Sci. 2024, 2305177 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2305177 (7 of 15)
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Figure 5. Potential pathogenicity of LDLr obtained from the predicted pathogenicity score of A) Polyphen-2, B) SIFT, C) MutationTaster, D) MLb-LDLr, E)
REVEL, F) VARITY, and G) their non-optimized combination. The potential pathogenicity value is the average of each residue‘s probable substitutions’
normalized score and represents the biological transcendence of each. The black dotted line represents the threshold between considering a substitution
as benign, when its score is under it, or pathogenic, when the score is above it. SP: Signal Peptide; LBD: Ligand Binding Domain; EGF: Epidermal Growth
Factor; O-linked: Oxygen-linked glycosylation domain.
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Table 1. Accuracy of predictive software.

Specificity [%] Sensitivity [%]

SIFT 86.67 89.00

PolyPhen-2 81.67 94.42

Mutation Taster 67.86 97.12

MLb-LDLr 81.67 92.28

REVEL 36.66 97.37

VARITY 95.56 91.66

Non-optimized 81.67 97.53

OptiMo-LDLr 96.71 98.36

matches that obtained by Polyphen-2 and MLb-LDLr (Specificity
= 81.67%). However, the sensitivity rate is enhanced, achieving
the second-best value (Sensitivity = 97.53%) (Table 1).

Variants annotated on ClinVar database were used to test the
accuracy of the software. NPathogenic = 583, NBenign = 58.

To test the validity of these results, a random bootstrapping
resampling was performed to measure the effect of the starting
dataset on the final results. The more similar the statistics are in
both cases, the less the effect of the starting dataset. Sensitivity
and specificity values of the predictive software and the combi-
nation before and after the bootstrapping process are shown in
Table 2.

Statistics of the original sampling and randomly bootstrapped
sampling. Variants annotated on ClinVar database were used
to test the accuracy of the software. NTraining/pathogenic = 457
NTraining/benign = 40 NValidation/pathogenic = 152 NValidation/benign = 20.
One thousand bootstrapped samples were used, and the results
are shown with a 95% confidence interval. T = Training; V = Val-
idation; Sn = Sensitivity; Sp = Specificity.

All statistics of non-bootstrapped samples are within the 95%
confidence interval obtained from bootstrapping, meaning that
the sampling is unbiased. In addition, statistics in both training
and validation groups are similar, even with the difference in the
variant number.

Next, we performed the Area Under Receiver Operating Curve
(AUROC) test to determine the model’s ability to discriminate
between positive and negative cases. It is obtained by modi-
fying the threshold of the model, thus, its prediction of each

Table 2. Model training, validation, and bootstrapping statistics.

Statistics Non-bootstrapped Bootstrapped

T V T V

Sp Sn Sp Sn Sp Sn Sp Sn

SIFT 85.00 89.93 90.00 86.18 86.60 88.88 86.93 88.81

PolyPhen-2 82.50 95.19 80.00 92.11 81.60 94.44 81.61 94.40

Mutation Taster 72.22 96.67 60.00 98.52 69.80 96.45 70.49 96.50

MLb-LDLr 77.50 92.56 90.00 91.45 81.48 92.29 81.99 92.31

REVEL 37.34 96.89 34.53 98.52 36.89 95.62 35.34 98.23

VARITY 95.89 92.02 95.00 90.94 94.79 90.62 95.98 92.48

Non-optimized 80.00 96.72 82.00 97.37 80.52 97.17 83.98 90.58

OptiMo-LDLr 97.56 96.49 100 97.38 97.33 95.68 95.25 96.89

Figure 6. Performance of predictive software by Area Under Receiver Op-
erating Curve (AUROC). AUROC test was carried out by modifying the
threshold of each software and opposing sensitivity and specificity values.

variant. AUROC tests the performance of the model when
different specificity and sensitivity values are needed. Hence,
the higher the AUROC value, the more flexible the model is
(Figure 6).

AUROC values are given in percentages and models >80% are
considered accurate. All the analyzed models demonstrate AU-
ROC values exceeding 90%, indicating their reliability as pre-
dictive models. VARITY and OptiMo-LDLr exhibit the highest
scores, followed by PolyPhen-2 and REVEL, respectively. While
OptiMo-LDLr significantly outperforms the others in terms of ac-
curacy, the difference in AUROC values is not as substantial. This
might be attributed to several factors. First, AUROC values are in-
herently large, with most software yielding AUROC values above
94%, leaving limited room for further improvement. In addition,
the model is optimized for a specific threshold (the peak shown
by OptiMo-LDLr in Figure 6), although the bootstrapping results
(Table 2) indicate that the accuracy does not decrease when using
different variables for the model.

Additionally, we assessed the agreement among the predictive
software. To facilitate a visual comparison of their concordance,
we employed an UpSet graph (Figure 7). This graphical repre-
sentation provides an intuitive depiction of set intersections,

Adv. Sci. 2024, 2305177 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2305177 (9 of 15)
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Figure 7. Visualization of comparative concordance of software using Up-
Set. This graph represents the overlaps and differences in the prediction
of the software. Each set in the graph represents a unique combination
of correct predictions, while the intersections indicate shared elements
among the predictive software outputs. The smaller bars to the left indi-
cate the number of correct predictions per software. Agreement between
two software tools is not represented.

highlighting both the overlaps and discrepancies in the predic-
tions made by the different software tools. Each set within the
graph represents a unique combination of correct predictions,
and the intersections indicate shared elements among the
predictive software outputs. The smaller bars situated to the left
denote the number of correct predictions per software.

Figure 7 shows that there is a high level of agreement among
all software tools for the majority of variants, with 464 out of 669
(69%) variants receiving unanimous agreement. Approximately
150 variants exhibit agreement among 5 to 6 software tools, while
another 50 variants are predicted correctly by only 1 or 2 software
tools. Remarkably, only 6 variants remain unpredicted by any of
the software tools. Notably, there are no variants that are exclu-
sively and correctly predicted solely by OptiMo-LDLr.

Once demonstrated that the optimization model had better
prediction abilities, we calculated the pathogenicity of each prob-
able LDLR variant and the potential pathogenicity of each residue
(Figure 8). Figure 8A,B are similar to Figure 4 and 5D, respec-
tively. However, for the optimization the scale has been increased,
being the maximum value 7.

Finally, we measured the performance of the optimized model
in each LDLr domain (Table 3). Except for the specificity on the
O-linked domain, the accuracy of the model is >90%, conclud-
ing that it can predict variant pathogenicity with high accuracy
in any domain. Statistics of each software are shown in Table S2
(Supporting Information).

Variants annotated on ClinVar database were used to test the
accuracy of the software. Sn = Sensitivity; Sp = Specificity; Numb
= Number of variants correctly predicted; % = Percentage of vari-
ants correctly predicted; LBD = Ligand Binding Domain; EGF-
A = Epidermal Growth Factor A domain; EGF-B = Epidermal
Growth Factor B domain; B-prop = 𝛽-propeller; EGF-C = Epi-
dermal Growth Factor C domain; Transm = Transmembrane do-
main.

3.4. Experimental Validation of the Model

To validate the model, we obtained the predicted pathogenic-
ity scores of 93 LDLR variants classified as Benign/Likely Be-
nign /Pathogenic/Likely Pathogenic by the ClinVar expert panel.
These 93 variants were independently classified by the experts at
ClinVar after the development of OptiMo-LDLr. We used a thresh-
old of 3.5 to distinguish between pathogenic and benign variants.

A comparison was then made between the model’s predicted
pathogenicity values and the classifications assigned by the Clin-
Var expert panel. Out of the 93 LDLR variants, OptiMo-LDLr cor-
rectly predicts 95.7% of the variants. Notably, it correctly classifies
100% of the benign variants (5/5) and 95.4% of the pathogenic
variants (84/88). Table S3 (Supporting Information) shows that
only the values of 5 variants differed from the assigned classifi-
cation by the ClinVar expert panel. This outcome supports the
accuracy of the model in predicting the pathogenicity of these
variants.

3.5. The Optimized Potential Pathogenicity Allows to Map LDLr
Pathogenic Hotspots

Once the optimized potential pathogenicity of each residue was
determined, these values were used to map the biological signif-
icance of each LDLr residue, identifying the calculated potential
pathogenicity values with different colors (Figure 9). This allowed
to illustrate LDLr regions of biological importance, i.e., hot spots.

As shown in Figure 9, hot spot residues with high potential
of being pathogenic when substituted appear across all domains
except for the signal peptide, the O-linked domain and the trans-
membrane domain. It is important to note that each 6 cysteines
of the LBD are predicted as hot spot residues. On the other hand,
the residues of the LBDs linker sequences are more permissive
to be substituted presenting low pathogenicity potential. Regard-
ing the 𝛽-propeller, as shown in Figure 9, the identified hot spot
residues are those responsible of maintaining the domain’s con-
formation. Finally, the residues within NPxY domain show also
high potential pathogenicity (Figure 9).

In addition, translating this information into 3D structure of
the LDLr highlights potentially pathogenic clusters within the
different domains, which might be related to specific biologi-
cal function. Clearly, when analysing the hot spot residues be-
yond the primary structure, 3D mutational hotspots are revealed,
grouped as clusters of amino acids performing different func-
tions. In example, as shown in Figure 10A, the hot spots de-
tected in the LBD-4 form a cluster that coordinates the calcium
ion and the cysteines maintain the subdomain’s structure. Very
interestingly, residues that are very distant in the primary struc-
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Figure 8. Optimized combination of A) normalized pathogenicity of substitutions and B) potential pathogenicity of residues. The optimization was
performed using ESEA and Equation (8) for the optimized pathogenicity of substitutions, and Equation (9) for the optimized combination of potential
pathogenicity, which represents the biological importance of each residue. The black dotted line represents the threshold between considering a substi-
tution as benign, when its score is under it, or pathogenic, when the score is above it. SP: Signal Peptide; LBD: Ligand Binding Domain; EGF: Epidermal
Growth Factor; O-linked: Oxygen-linked glycosylation domain.

Table 3. Accuracy (Sn, Sp and predicted mutations) of the optimized model
for each domain and the whole protein.

Domain Statistic Numb % Domain Statistic Numb %

Signal sequence Sn 4 100 EGF-C Sn 34 92

Sp 3 100 Sp 3 100

LBD Sn 292 98 O-Linked Sn 0 0

Sp 19 95 Sp 6 100

EGF-A Sn 20 95 Transm Sn 1 100

Sp 1 100 Sp 2 100

EGF-B Sn 37 100 Cytosolic Sn 12 86

Sp 2 100 Sp 2 100

B-prop Sn 191 95 Total Sn 586 96

Sp 21 100 Sp 60 98

ture cluster into a 3D hot spot as shown by residues of the bind-
ing domain with those of the 𝛽-propeller which constitute the
hinge. This interaction maintains the closed conformation of
the receptor at acidic pH to allow receptor’s recycling function
(Figure 10B). As shown in Figure 10B, the two hot spot residues

allow the interaction of both domains at acidic pH. Finally, as
shown in Figure 10C, the 6 YWTD repeats arranged in 4 𝛽-sheets
𝛽-propellers have a specific folding pattern that brings neighbour-
ing modules into close proximity and may have important con-
sequences for the architecture of the LDLr, constitute a 3D hot
spot cluster, which indicates the importance of the residues in-
volved in maintaining this structural domain of the LDLr. Also,
in Figure 10C it is shown the importance of calcium coordination
in the LBD, each LBD repetition forms a cluster that maintaining
the subdomain’s structure.

4. Discussion

This study focuses on enhancing LDLR pathogenic variant pre-
diction by integrating existing software that predicts the effects
of mutations on LDLR. The development of OptiMo-LDLr model
significantly improves the predictive accuracy for LDLR variant
pathogenicity and also allows to map hot spot residues of the
LDLr causing FH. OptiMo-LDLr model shows higher reliability
than the individual ones and as the result of optimizing each soft-
ware contribution, this model provides a higher predictive power

Adv. Sci. 2024, 2305177 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2305177 (11 of 15)
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Figure 9. Potential pathogenicity map of LDLr residues. Each colour represents the potential pathogenicity ranges indicated at the top of the figure.
LDLr domains and subdomains are indicated at the left of the image (SP: signal peptide; LBD: ligand binding domain; O-link: O-linked domain; TM:
transmembrane domain; CD: cytosolic domain). Regarding the LBD domain, the seven LA repeats in which the domain is divided are indicated and the
𝛽-propeller is divided into the six YWTD sequences. The alignment of LBD and 𝛽-propeller domains has been performed following the one previously
described.[18,19]

than each software when tested individually both in pathogenic
and benign LDLR variants.

OptiMo-LDLr has the highest specificity and sensitivity val-
ues (specificity of 96.71% and a sensitivity of 98.36%). As ex-
pected, the algorithm resulting from software integration pro-
vided here is the most balanced model with an AUROC value
only surpassed by VARITY. This is because the used algorithm
improves the model for a certain threshold instead of for any pos-
sible one. By doing so, the obtained model is the most accurate
one for those specific conditions. However, the fact that the non-
optimized model surpasses most of the predictive software sug-
gests that the combination of them is a good predictive method.

Another good feature of OptiMo-LDLr is that high predictive
accuracy is maintained throughout the entire protein, as shown
in Table 3. Despite the limited number of annotated variants
in ClinVar for certain LDLr domains, the model exhibits a per-
formance exceeding 90% accuracy in the majority of these do-
mains.. On the other hand, the obtained potential pathogenic-
ity values and the ClinVar annotated information about LDLr
agree, ensuring the usefulness of the approach. The accuracy
of OptiMo-LDLr was assessed through an independent evalua-
tion of predicted pathogenicity for 93 LDLR variants, which had

been classified by the expert panel at ClinVar. Notably, these vari-
ants were deliberately excluded from the training and validation
datasets. The results demonstrated a substantial concurrence be-
tween OptiMo-LDLr predictions, and the classifications made by
the expert panel, affirming the robustness and reliability of the
model.

The LDLr is recognized for its high cysteine content, and the
formation of disulphide bonds between pairs of cysteines plays a
pivotal role in ensuring the correct folding of its ten major func-
tional modules.[19,20] According to data sourced from the ClinVar
database, there have been identified missense mutations in 60
out of the 63 cysteines of the LDLr (with 95.2% of these variants
being classified as pathogenic). Additionally, OptiMo-LDLr iden-
tifies 60 out of those 63 cysteines as highly pathogenic, under-
scoring the significance of these residues in maintaining the pro-
tein’s functionality. Interestingly, the ClinVar database also shows
a high number of mutations occurring in Trp and Asp residues,
following the pattern seen with cysteines. Among them, ClinVar
shows that in 65% of Trp, pathogenic mutations have been found,
and in 47% of the Asp. Moreover, the prediction of the OptiMo-
LDLr identifies 25 out of the 35 Asp residues and 12 out of the 20
Trp residues as highly pathogenic. On the other hand, only 8 of
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Figure 10. Potentially pathogenic clusters within the different LDLr domains. A) the hot spots detected in the LBD-4 form a cluster that coordinates the
calcium ion, and the cysteines maintain the subdomain’s structure. B) Residues very distant in the primary structure that maintain the hinge allowing
the closed conformation of the receptor at acidic pH. C) the 6 YWTD repeats arranged in 4 𝛽-sheets 𝛽-propellers maintaining the architecture of the
LDLr (red rectangle) and the LBD repetitions coordinating calcium to maintain the LDB subdomain’s structure (red circles).

the 40 Asp in which no pathogenic mutation has been found,
present a high value of potential pathogenicity. In the case of
Trp, 3 of the 7 residues have a high pathogenicity value. These
findings provide robust evidence underscoring the critical signif-
icance of these specific residues in ensuring the proper function-
ing of the LDLr.

Using OptiMo-LDLr, we can infer detailed functional informa-
tion about the hot spot residues within each LDLr domain. As an
example, we will briefly examine the ligand-binding domain, 𝛽-
propeller, O-glycosylated, and cytosolic domains.

The ligand-binding domain of the LDLr is composed of 7 A-
type repeating sequences of ≈40 amino acids each (LA repeats),
represented as LBD-1, LBD-2, etc. Each LBD contains 6 cysteine
residues that form three disulphide bridges (C1-3, C2-5, C4-6),
supporting the domain structure.[18,19] Interestingly, our analysis
identified all of these cysteines as high-potential pathogenicity
residues on the resulting hot spot map, with 35 out of 42 classi-
fied with the maximum pathogenicity. Moreover, the Ca+2 coordi-
nation region between the fifth and sixth cysteines of each LBD,
necessary for correct folding, was also identified as important on
the potential pathogenicity map.[21]

The linker sequence between the LA repeats, consisting of 4
amino acids preceding the first cysteine of the LA repeat, was
predicted to have low potential pathogenicity, consistent with
experimentally described data.[22] Additionally, a high potential
pathogenicity value was predicted for the threonine typically lo-
cated at position 4 of these linker sequences, potentially due to
O-glycosylation, which plays a key role in the proper structure of
LBD and its interaction with ApoB-100.[23–25]

In our examination of the functional implications of LR mo-
tifs in the LDL receptor’s ligand-binding domain, we specifically
focused on exon 4. Exon 4 contains the three central LR motifs
(LR3, LR4, and LR5), which have been considered to contain 3–4

times more mutations compared to other regions of the LDLR
gene. To date, there are 61 variants affecting exon 4 of the LDLR.
To gain further insights, we calculated the mutation index nor-
malized by exon length, enabling a fair comparison of mutation
frequencies in different exons, considering their varying lengths
and the overall mutation rate across all exons. Our analysis re-
vealed a mutation index normalized by exon length value of 1.51
for exon 4, significantly higher than the average mutation index
of LDLR exons, which is 0.32 ± 0.15. Interestingly, the mutation
frequency in exon 4 of the LDLR was calculated to be 4.8 times
higher than that of the remaining exons in agreement with pre-
viously reported data. This finding indicates a relatively higher
concentration of mutations within exon 4 compared to the aver-
age mutation rate observed across all exons, highlighting its po-
tential functional significance. Notably, all 18 cysteine residues
within Exon 4 have been identified with pathogenic mutations.
This reinforces the notion that these cysteine residues serve as
pivotal hot spots within the LDLr.

Moreover, a high mutation index normalized by exon length
has been observed for exon 9, which at 1.7 and with a mutation
frequency of 6.6 surpasses that of exon 4. It is noteworthy that
although these exons exhibit a higher number of mutations, a
significant portion of them occurs at the same amino acid posi-
tion, thereby reinforcing the concept of hot spots. These findings
underscore the importance of exons 4 and 9 in the mutational
landscape of the LDLR and support their potential functional rel-
evance.

Exon 9 codifies YWTD-2 and YWTD-3 two of the 6 blades that
scaffold the 𝛽-propeller. The 𝛽-propeller is a structural domain
formed by 6 YWTD repeats arranged in 4 𝛽-sheets. This struc-
ture is essential for the release of LDL in low pH environments,
such as endosome, which allows LDLr recycling. As indicated
by OptiMo-LDLr, residues sustaining this conformation, such
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as YWTD repeats and glutamic acid, exhibit elevated potential
pathogenicity, underscoring their physiological significance.[26]

The results provided by OptiMo-LDLr identifies the Tyr and Trp
residues of YWTD-[2–5] as high-potential pathogenicity residues
on the resulting hot spot map. It has been shown that the side
chains of hydrophobic amino acids on YWTD-2 and YWTD-
3 contact with the linker that connects the 𝛽-propeller to the
C-terminal EGF-like module, thus positioning this module in
contact with the second and third blades of the 𝛽-propeller.[27]

High number of mutations within the YWTD region of the
LDLr are already annotated in ClinVar and alter crucial con-
served scaffolding residues of the 𝛽-propeller. The results ob-
tained from OptiMo-LDLr indicate that the YWTD region, partic-
ularly YWTD-2 and YWTD-3, represents critical hot spot essen-
tial for maintaining the structural integrity and functional activity
of the LDLr 𝛽-propeller domain.

As for O-glycosylated domain, very low potential pathogenicity
residues have been predicted. This is consistent with the data ob-
tained in ClinVar, where most variants located within this domain
are classified as benign.[6] It has been proposed that the function
of this domain is to stabilize the receptor in the membrane.[28]

This could be the reason of its low potential pathogenicity values.
Finally, areas of high potential pathogenicity have been found

in the cytosolic domain, especially at the beginning of it (FD-
NPVY). These residues correspond to the NPxY domain, which
has been described as relevant on the internalization of LDLr,[29]

confirming their biological importance. Moreover, translating the
identified hot spots in the primary sequence into 3D structure of
the LDLr delineates 3D hotspot regions on the level of amino acid
positions, 3D protein structure and the biological functions.

Considering the similarity between the optimized potential
pathogenicity values and the known information about LDLr
functional sites, the LDLr hot spot mapping presented here could
be used as a tool for identification of pathogenic residues.

A potential avenue for future research involves extending the
OptiMo-LDLr model to predict pathogenicity for other genes
linked to FH, such as APOB and PCSK9. However, this expan-
sion faces a challenge due to the limited availability of well-
characterized variant databases for these proteins. A more exten-
sive dataset is crucial for unlocking the full potential of the model
in predicting pathogenicity for APOB and PCSK9, emphasizing
the need for continued efforts in comprehensive variant charac-
terization and data accumulation.

In conclusion, the integration of predictive software tools
in OptiMo-LDLr demonstrates notable reclassification power to
pathogenicity, surpassing the individual use of isolated software.
This is evident from the elevated specificity and sensitivity values
attained by the optimized model. Moreover, the ability of OptiMo-
LDLr to effectively identify pathogenic hot spots across the entire
protein reinforces its superior reclassification potential. OptiMo-
LDLr is a more robust and precise prediction approach, making
it a valuable tool for advancing genetic diagnoses and providing
comprehensive insights into the pathogenicity of LDLR variants
associated with Familial Hypercholesterolemia.

4.1. Study Limitations

SFIP-MutID was excluded from this work as its method for pre-
dicting pathogenicity resulted not compatible with the rest of the

software. In fact, SFIP-MutID estimates the pathogenicity by ana-
lyzing different structural characteristics without weighting their
importance. Therefore, any adaptation of their score to the one
used in this work could distort its meaning.

As it has been concluded by the study of the standard devia-
tion among normalized pathogenicity values, the divergence of
predictions between software varies according to the regions of
LDLr. The prediction accuracy improves with increased agree-
ment among the software in the combination. Besides, the prop-
erties of the variants used to optimize the combination of soft-
ware cause the predictions to be more reliable in some domains
than in others.

4.2. Clinical perspectives

Despite being one of the most prevalent genetic disorders, FH is
frequently underdiagnosed. Developing novel in silico tools for
predicting pathogenicity holds promise for enhancing the diag-
nosis and management of the disease. This study demonstrates
that, notwithstanding the variations in predictions among differ-
ent software, a synergistic integration of their results strengthens
the predictive capacity, thereby facilitating more accurate genetic
diagnoses. OptiMo-LDLr not only enables precise classification
of pathogenic variants but also harbors significant clinical impli-
cations, providing a user-friendly interface for the scientific com-
munity to explore and apply in both research and clinical settings.
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