000131341 001__ 131341
000131341 005__ 20240207154753.0
000131341 0247_ $$2doi$$a10.1063/5.0174793
000131341 0248_ $$2sideral$$a136797
000131341 037__ $$aART-2024-136797
000131341 041__ $$aeng
000131341 100__ $$aKoutsogiannis, Panagiotis
000131341 245__ $$aEngineering polar distortions in multiferroic Sr1-xBaxMnO3-d thin films
000131341 260__ $$c2024
000131341 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131341 5203_ $$aThe physical properties of perovskite oxide thin films are governed by the subtle interplay between chemical composition and crystal symmetry variations, which can be altered by epitaxial growth. In the case of perovskite-type multiferroic thin films, precise control of stoichiometry and epitaxial strain allows for gaining control over the ferroic properties through selective crystal distortions. Here, we demonstrate the chemical tailoring of the polar atomic displacements by tuning the stoichiometry of multiferroic Sr1−xBaxMnO3−δ (0 ≤ x ≤ 0.5) epitaxial thin films. A combination of x-ray diffraction and aberration-corrected scanning transmission electron microscopy enables unraveling the local polarization orientation at the nanoscale as a function of the film’s composition and induced crystalline structure. We demonstrate experimentally that the orientation of polarization is intimately linked to the Ba doping and O stoichiometry of the films and, with the biaxial strain induced by the substrate, it can be tuned either in-plane or out-of-plane with respect to the substrate by the appropriate choice of the post-growth annealing temperature and O2 atmosphere. This chemistry-mediated engineering of the polarization orientation of oxide thin films opens new venues for the design of functional multiferroic architectures and the exploration of novel physics and applications of ferroelectric textures with exotic topological properties.
000131341 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER E28-23R$$9info:eu-repo/grantAgreement/EC/H2020/ 861153/EU/Materials for Neuromorphic Circuits/MANIC$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 861153-MANIC$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3$$9info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2020-112914RB-I00
000131341 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131341 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131341 700__ $$0(orcid)0000-0002-4698-3378$$aAlgarabel, Pedro A.
000131341 700__ $$0(orcid)0000-0002-0111-8284$$aPardo, José A.$$uUniversidad de Zaragoza
000131341 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César
000131341 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000131341 773__ $$g12, 1 (2024), [11 pp.]$$pAPL mater.$$tAPL Materials$$x2166-532X
000131341 8564_ $$s10624708$$uhttps://zaguan.unizar.es/record/131341/files/texto_completo.pdf$$yVersión publicada
000131341 8564_ $$s816830$$uhttps://zaguan.unizar.es/record/131341/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131341 909CO $$ooai:zaguan.unizar.es:131341$$particulos$$pdriver
000131341 951__ $$a2024-02-07-14:41:17
000131341 980__ $$aARTICLE