000131342 001__ 131342
000131342 005__ 20250923084415.0
000131342 0247_ $$2doi$$a10.1002/aelm.202300522
000131342 0248_ $$2sideral$$a136798
000131342 037__ $$aART-2024-136798
000131342 041__ $$aeng
000131342 100__ $$aBarriuso, Eduardo
000131342 245__ $$aEpitaxy-driven ferroelectric/non-ferroelectric polymorph selection in an all-fluorite system
000131342 260__ $$c2024
000131342 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131342 5203_ $$aFilms of ferroelectric hafnia have hitherto been deposited on electrodes with a non‐fluorite crystal structure. As a result, they are polycrystalline, contain fractions of non‐ferroelectric polymorphs or have poor crystal quality. Here, a strategy that circumvents all these limitations is shown. Seven nanometers‐thick epitaxial Hf0.5Zr0.5O2 (HZO) films are deposited directly on yttria‐stabilized zirconia (YSZ) single‐crystals. The fluorite structure of the whole system enables coherent epitaxy, while the substrate orientation induces polymorph‐selective growth, being the HZO films orthorhombic on YSZ(111) and monoclinic on YSZ(001). Besides, the YSZ substrate can play the role of a buried floating electrode under the appropriate measuring conditions (temperature and frequency) thanks to its thermally‐activated oxygen conductivity. Indeed, out‐of‐plane ferroelectric switching is confirmed in the orthorhombic HZO samples at 185 °C and 0.01 Hz frequency. This original approach avoids the need to deposit conducting bottom layers, allowing high‐quality orthorhombic hafnia to be obtained directly on the substrate and its ferroelectric nature to be studied. Moreover, it constitutes a case of ion‐driven ferroelectric switching, and thus gives support to the recently proposed relationship between ionic conductivity, and ferroelectricity in fluorite systems.
000131342 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2019-107338RB-C64$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2020-112914RB-100/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2021-128281NA-I00$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/TED2021-130871B-C21
000131342 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131342 590__ $$a5.3$$b2024
000131342 592__ $$a1.478$$b2024
000131342 591__ $$aPHYSICS, APPLIED$$b43 / 187 = 0.23$$c2024$$dQ1$$eT1
000131342 593__ $$aElectronic, Optical and Magnetic Materials$$c2024$$dQ1
000131342 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b52 / 147 = 0.354$$c2024$$dQ2$$eT2
000131342 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b140 / 460 = 0.304$$c2024$$dQ2$$eT1
000131342 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131342 700__ $$aJiménez, Ricardo
000131342 700__ $$aLangenberg, Eric
000131342 700__ $$aKoutsogiannis, Panagiotis
000131342 700__ $$0(orcid)0000-0002-0809-641X$$aLarrea, Ángel
000131342 700__ $$aVarela, Manuel
000131342 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César
000131342 700__ $$0(orcid)0000-0002-4698-3378$$aAlgarabel, Pedro A.
000131342 700__ $$aAlgueró, Miguel
000131342 700__ $$0(orcid)0000-0002-0111-8284$$aPardo, José A.$$uUniversidad de Zaragoza
000131342 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000131342 773__ $$g10, 5 (2024), 2300522 [8 pp.]$$pAdv. Electron. Mater.$$tAdvanced Electronic Materials$$x2199-160X
000131342 8564_ $$s4461805$$uhttps://zaguan.unizar.es/record/131342/files/texto_completo.pdf$$yVersión publicada
000131342 8564_ $$s2499409$$uhttps://zaguan.unizar.es/record/131342/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131342 909CO $$ooai:zaguan.unizar.es:131342$$particulos$$pdriver
000131342 951__ $$a2025-09-22-14:32:33
000131342 980__ $$aARTICLE