000131344 001__ 131344 000131344 005__ 20240319081030.0 000131344 0247_ $$2doi$$a10.1007/s00209-022-03108-2 000131344 0248_ $$2sideral$$a136806 000131344 037__ $$aART-2022-136806 000131344 041__ $$aeng 000131344 100__ $$aAndrada, Adrián 000131344 245__ $$aBismut connection on Vaisman manifolds 000131344 260__ $$c2022 000131344 5060_ $$aAccess copy available to the general public$$fUnrestricted 000131344 5203_ $$aThe holonomy of the Bismut connection on Vaisman manifolds is studied. We prove that if M2n is endowed with a Vaisman structure, then the holonomy group of the Bismut connection is contained in U(n-1). We compute explicitly this group for particular types of manifolds, namely, solvmanifolds and some classical Hopf manifolds. 000131344 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2020-115652GB-I00$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E22-17R 000131344 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000131344 590__ $$a0.8$$b2022 000131344 591__ $$aMATHEMATICS$$b170 / 329 = 0.517$$c2022$$dQ3$$eT2 000131344 592__ $$a1.138$$b2022 000131344 593__ $$aMathematics (miscellaneous)$$c2022$$dQ1 000131344 594__ $$a1.4$$b2022 000131344 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000131344 700__ $$0(orcid)0000-0001-6790-7342$$aVillacampa, Raquel 000131344 773__ $$g302, 2 (2022), 1091-1126$$pMath. Z.$$tMATHEMATISCHE ZEITSCHRIFT$$x0025-5874 000131344 85641 $$uhttps://link.springer.com/article/10.1007/s00209-022-03108-2$$zTexto completo de la revista 000131344 8564_ $$s450095$$uhttps://zaguan.unizar.es/record/131344/files/texto_completo.pdf$$yPostprint 000131344 8564_ $$s1578305$$uhttps://zaguan.unizar.es/record/131344/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000131344 909CO $$ooai:zaguan.unizar.es:131344$$particulos$$pdriver 000131344 951__ $$a2024-03-18-17:06:32 000131344 980__ $$aARTICLE