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Abstract. The holonomy of the Bismut connection on Vaisman manifolds is studied.
We prove that if M2n is endowed with a Vaisman structure, then the holonomy group
of the Bismut connection is contained in U(n − 1). We compute explicitly this group for
particular types of manifolds, namely, solvmanifolds and some classical Hopf manifolds.
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1. Introduction

A Hermitian connection on a Hermitian manifold (M,J, g) is a connection which leaves
both J and g parallel. Each Hermitian manifold admits plenty of these connections. Among
them, there is only one whose torsion is totally skew-symmetric. This unique connection
is called the Bismut connection associated to (J, g), and it is also known as the Strominger
connection or the KT connection (for Kähler with torsion). In this article we will denote
it by ∇b.

As with any connection, it is important to determine which are the Hermitian manifolds
whose corresponding Bismut connection is flat. Well-known examples of such manifolds
are given by Lie groups equipped with a bi-invariant Riemannian metric and a compatible
left invariant complex structure (see [21]). In particular, this family contains the Hermitian
manifolds (G, J, g) where G is a compact Lie group, J is one of the left invariant complex
structures constructed by Samelson in [35] and g is a bi-invariant metric. More recently, it
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was proved in [41] that every compact Bismut-flat Hermitian manifold is closely related to
these examples: indeed, if M is a compact Hermitian manifold with flat Bismut connection,
then its universal cover is a Lie group G′ equipped with a bi-invariant metric and a left
invariant complex structure compatible with the metric. In particular, G′ is the product of
a compact semisimple Lie group and a real vector space.

Since the flat case is already settled, it is interesting to analyze other Hermitian manifolds
whose associated Bismut connection have special curvature properties. One way is to
consider the notion of Kähler-like. In [7], the authors conjectured that if the Bismut
connection is Kähler-like, then the metric is pluriclosed (i.e., ∂∂ω = 0, where ω denotes
the fundamental 2-form ω = g(J ·, ·)). This conjecture has been recently proved in [42].
Another way, and this is the aim of the paper, is to study the holonomy group Holb of
the Bismut connection ∇b. Since both the complex structure and the Hermitian metric
are ∇b-parallel we have that Holb ⊆ U(n), where 2n is the real dimension of the manifold.
In particular, 2n-dimensional Hermitian manifolds whose Bismut holonomy is contained
in SU(n) have attracted plenty of attention. These manifolds are known as Calabi-Yau
with torsion, and they appear in heterotic string theory, related to the Strominger system
in six dimensions. It has been shown that this reduction to SU(n) is related in certain
cases to the Hermitian metric being balanced, that is, when the fundamental 2-form ω
satisfies dωn−1 = 0 or, equivalently, d∗ω = 0. For instance, it was shown in [38, 26] that if
the compact Hermitian manifold (M2n, J, g) has holomorphically trivial canonical bundle,
then Holb ⊆ SU(n) if and only if g is conformally balanced; in particular, (M,J) admits a
balanced metric. In the case when M2n is a nilmanifold, that is, M = Γ\G where G is a
nilpotent Lie group and Γ is a co-compact discrete subgroup of G, more can be said, since it
was proved in [17] that an invariant Hermitian structure (J, g) on M satisfies Holb ⊆ SU(n)
if and only if g is balanced.

In the Gray-Hervella classification of almost Hermitian structures, balanced metrics fall
into the class W3. In this article we are interested in Hermitian manifolds which belong
to the class W4, namely locally conformally Kähler manifolds (or LCK for short). As the
name suggests, these Hermitian manifolds are characterized by the property that each point
has a neighbourhood where the metric is conformal to a Kähler metric. This condition is
equivalent to the existence of a closed 1-form θ satisfying dω = θ ∧ ω. The 1-form θ is
known as the Lee form, and it is given by θ = − 1

n−1
d∗ω ◦ J , where 2n is the real dimension

of the manifold. A distinguished class of LCK manifolds is given by those where the Lee
form is parallel with respect to the Levi-Civita connection of the Hermitian metric. These
manifolds were first studied by I. Vaisman in the late ’70s (see for instance [39]) and,
accordingly, they are nowadays known as Vaisman manifolds. Not all LCK manifolds are
Vaisman, for instance, the Oeljeklaus-Toma manifolds of type (s, 1) are compact complex
manifolds which admit LCK metrics but do not admit any Vaisman metric (see [31, 23]).

Our main goal is to study the Bismut holonomy of Vaisman manifolds and exhibit explicit
examples where this holonomy can be computed. We point out that the Riemannian
holonomy of compact Vaisman manifolds has been analyzed in [27]. Examples of Vaisman
manifolds are given by the classical Hopf manifolds, that is, quotients of Cn − {0} by a
group of automorphisms generated by z → λz, where λ is a complex number with |λ| > 1.
These manifolds are all diffeomorphic to S1×S2n−1 and do not admit any Kähler structure.
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Another family of examples of compact Vaisman manifolds was introduced in [14] in
1986. They are defined as compact quotients of the nilpotent Lie groups H2n+1 × R by a
discrete subgroup Γ, where H2n+1 denotes the (2n+ 1)-dimensional Heisenberg Lie group;
they are thus examples of nilmanifolds. In these examples the Vaisman structures are left
invariant, and recently Bazzoni proved in [10] that if a nilmanifold Γ\N admits a Vaisman
structure (invariant or not) then N is isomorphic to H2n+1 × R. Examples of Vaisman
structures on solvmanifolds (i.e., compact quotients of a simply connected solvable Lie
group by a discrete subgroup) first appeared in [28] in 1997. More recently, there have
been advances on the structure of the Lie algebras associated to solvmanifolds equipped
with invariant Vaisman structures, see for instance [2, 6]. In particular, the description
given in [6] will be very useful for us in order to analyze the Bismut connection on these
Vaisman solvmanifolds and compute its holonomy.

The paper is structured as follows: In Section 2 we start collecting some known results
about Gauduchon connections, holonomy and the Ambrose-Singer theorem as a tool for
determining the holonomy. In Section 3 we study the Bismut connection on Vaisman man-
ifolds and its curvature. The main results are Corollary 3.8 and Corollary 3.9 where we
prove that the holonomy of the Bismut connection on Vaiman manifolds of real dimension
2n reduces to U(n − 1) and that the Bismut torsion 3-form is ∇b-parallel. Section 4 is
devoted to solvmanifolds endowed with an invariant Vaisman structure. In this setting, we
prove that the holonomy of the Bismut connection has dimension 1 and it is not contained
in SU(n). Some classical Hopf manifolds are studied in Section 5. Using a global paral-
lelization of these manifolds which is compatible with the Vaisman structure, we determine
explicitly the holonomy group of the Bismut connection, obtaining the group U(n − 1).
Non-Vaisman LCK Oeljeklaus-Toma manifolds are considered in Section 6 and we show
that there is no reduction of the Bismut holonomy in this case. Finally, we study the
parallelism of the Lee form θ of a Vaisman manifold for the line of Gauduchon connections
and more generally, for the 2-parameter family of metric connections introduced in [32].

All manifolds considered in this paper have real dimension ≥ 4.

2. Preliminaries on holonomy and the Ambrose-Singer theorem

We collect here some well-known facts on holonomy groups and the Ambrose-Singer
theorem that will be useful in subsequent sections.

Let ∇ denote any linear connection on a connected manifold M and let us fix a point
p ∈ M . If γ : [0, 1] → M is a piecewise smooth loop based at p, the connection ∇ gives
rise to a parallel transport map Pγ : TpM → TpM , which is linear and invertible. The
holonomy group of ∇ based at p ∈M is defined as

Holp(∇) = {Pγ ∈ GL(TpM) | γ is a loop based at p}.

It turns out that Holp(∇) is a Lie subgroup of GL(TpM). Since M is connected, the
holonomy groups based at two different points are conjugated, and therefore we can speak
of the holonomy group of ∇, denoted simply by Hol(∇). If dimM = n, we can identify
Hol(∇) with a Lie subgroup of GL(n,R), after some choice of basis. The holonomy group
need not be connected, and its identity component is denoted by Hol0(∇); it is known as
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the restricted holonomy group of ∇ and it consists of the parallel transport maps Pγ where
γ is null-homotopic. Clearly, if M is also simply connected then Hol(∇) = Hol0(∇).

We point out that if ∇ is a metric connection on a Riemannian manifold (M, g), i.e.
∇g = 0, then Pγ is an isometry of (TpM, gp), while if ∇ satisfies ∇J = 0 on an almost
complex manifold (M,J) then PγJ = JPγ. Therefore, if ∇ is a Hermitian connection
(∇g = ∇J = 0) on an almost Hermitian manifold (M2n, J, g) then

Hol(∇) ⊆ O(n) ∩GL(n,C) = U(n).

In [19] a monoparametric family {∇t}t∈R of Hermitian connections on any Hermitian
manifold (M, g, J) was introduced. These are known as the Gauduchon connections (or
canonical connections), and they can be written as

g(∇t
XY, Z) = g(∇g

XY, Z)+
t− 1

4
(dcω)(X, Y, Z)+

t+ 1

4
(dcω)(X, JY, JZ), X, Y, Z ∈ X(M),

where ω is the fundamental 2-form ω(X, Y ) = g(JX, Y ) and dc : Ωr(M) → Ωr+1(M) is
the operator defined by dc = (−1)rJdJ . More explicitly, for α ∈ Ω2(M) we have that
dcα(U, V,W ) = −dα(JU, JV, JW ) for any U, V,W ∈ X(M), so that the expression for ∇t

becomes

(1) g(∇t
XY, Z) = g(∇g

XY, Z)− t− 1

4
dω(JX, JY, JZ)− t+ 1

4
dω(JX, Y, Z).

When (M,J, g) is Kähler this family of connections reduces to a single point, given by the
Levi-Civita connection. However, in general, the torsion T t of these connections is non-
zero, where T t is the (1, 2)-tensor defined by T t(X, Y ) = ∇t

XY − ∇t
YX − [X, Y ] for X, Y

vector fields on M .
For particular values of t ∈ R we obtain well-known Hermitian connections. For instance,

for t = 1 we have the Chern connection, while for t = 0 we have the first canonical
connection.

In this article we will focus on the Bismut connection, which is the connection ∇−1 ob-
tained for t = −1. From now on the Bismut connection will be denoted by ∇b, with corre-
sponding torsion T b. It was introduced in [12] and it can be defined as the unique Hermitian
connection whose torsion T b is totally skew-symmetric, i.e. c(X, Y, Z) := g(X,T b(Y, Z)) is
a 3-form on M . It follows from (1) that its expression is given by

(2) g(∇b
XY, Z) = g(∇g

XY, Z) +
1

2
dω(JX, JY, JZ),

and its torsion 3-form c is:

(3) c(X, Y, Z) = dω(JX, JY, JZ),

for any X, Y, Z ∈ X(M).

As notation, we will use Holb(M) to refer to the holonomy of the Bismut connection on
the Hermitian manifold M .

The Ambrose-Singer theorem provides a way to compute the holonomy group of a linear
connection; indeed, it describes the Lie algebra holp(∇) of Holp(∇) in terms of curvature
endomorphisms Rp(x, y) for x, y ∈ TpM :
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Theorem 2.1. [4] The holonomy algebra holp(∇) is the smallest subalgebra of gl(TpM)
containing the endomorphims P−1

σ ◦ Rp(x, y) ◦ Pσ, where x, y run through TpM , σ runs
through all piecewise smooth paths starting from p and Pσ denotes the parallel transport
map along σ.

In particular, holp(∇) contains all the curvature endomorphisms Rp(x, y), x, y ∈ TpM .
This fact will be used in Section 5.

Let us consider the particular case when M = G is a Lie group with Lie algebra g.
A linear connection ∇ on G is said to be left invariant if the left translations on G are
affine maps. As a consequence, if X, Y are left invariant vector fields then ∇XY is also
left invariant. Therefore ∇ is uniquely determined by a bilinear multiplication g× g→ g,
still denoted by ∇. We also denote by ∇x : g → g the endomorphism defined by left
multiplication with x ∈ g. In this case the Ambrose-Singer theorem takes the following
form:

Theorem 2.2. [1] Let ∇ be a left invariant linear connection on the Lie group G, and let
g denote the Lie algebra of G. Then the holonomy algebra hol(∇), based at the identity
element e ∈ G, is the smallest subalgebra of gl(g) containing the curvature endomorphisms
R(x, y) for any x, y ∈ g, and closed under commutators with the left multiplication operators
∇x : g→ g.

This version of the Ambrose-Singer theorem will be used in Sections 4 and 6.

3. Curvature of the Bismut connection on Vaisman manifolds

Let (J, g) be a Hermitian structure on a connected manifold M with fundamental 2-
form ω. This structure is called locally conformally Kähler (LCK for short) if there exists
an open covering {Ui}i∈I of M and differentiable functions fi : Ui → R, i ∈ I, such that
each local metric gi = exp(−fi) g|Ui

is Kähler. Equivalently, (J, g) is LCK if there exists a
closed 1-form θ such that the differential of ω is given by

(4) dω = θ ∧ ω.
The 1-form θ is known as the Lee form. We denote by A ∈ X(M) the vector field which
is metric dual to θ, i.e., g(A,U) = θ(U) for all U ∈ X(M). If, moreover, ∇gθ = 0, the
Hermitian structure (J, g) is called Vaisman.

Remark 3.1. (i) The Lee form is uniquely determined by

(5) θ = − 1

n− 1
(d∗ω) ◦ J,

where d∗ is the codifferential and 2n is the real dimension of M .

(ii) If the Lee form θ is exact, i.e. θ = df with f ∈ C∞(M), then exp(−f)g is a Kähler
metric on M . Therefore any simply connected LCK manifold admits a global Kähler metric;
consequently, “genuine” LCK metrics occur on non-simply connected manifolds.

(iii) The LCK structure is Kähler if and only if θ = 0. Indeed, θ ∧ ω = 0 and ω non
degenerate imply θ = 0.
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Let us start with some results concerning the torsion of the Bismut connection on an
LCK manifold.

Lemma 3.2. Let (M,J, g) be an LCK manifold with fundamental 2-form ω and Lee form θ.
Then the torsion 3-form c of the Bismut connection is given by

c = −Jθ ∧ ω,
where Jθ denotes the 1-form on M defined by Jθ(X) = −θ(JX).

Proof. Recall that the torsion 3-form c is given by c(X, Y, Z) = dω(JX, JY, JZ). It follows
from (4) that

c(X, Y, Z) = θ ∧ ω(JX, JY, JZ)

= θ(JX)ω(JY, JZ) + θ(JY )ω(JZ, JX) + θ(JZ)ω(JX, JY )

= −Jθ(X)ω(Y, Z)− Jθ(Y )ω(Z,X)− Jθ(Z)ω(X, Y )

= −Jθ ∧ ω(X, Y, Z),

for any vector fields X, Y, Z on M . �

Corollary 3.3. The torsion 3-form c of the Bismut connection satisfies c(A, ·, ·) = 0.

Proof. Using the previous expression for the torsion, one gets:

c(A,X, Y ) = (Jθ ∧ ω)(A,X, Y )

= −θ(JA)ω(X, Y )− θ(JX)ω(Y,A)− θ(JY )ω(A,X)

= −g(A, JA)g(JX, Y )− g(A, JX)g(JY,A)− g(A, JY )g(JA,X)

= 0,

since g(A, JA) = 0 and J is skew-symmetric. �

Corollary 3.4. The (1, 2)-torsion tensor T b of the Bismut connection is given by

T b(X, Y ) = θ(JX)JY − θ(JY )JX − ω(X, Y )JA,

for any vector fields X, Y on M .

Proof. Recalling that c(X, Y, Z) = c(Z,X, Y ) = g(Z, T b(X, Y )), this follows easily from
Lemma 3.2. �

As a consequence, we have that

(6) ∇b
XY = ∇g

XY +
1

2
(θ(JX)JY − θ(JY )JX − ω(X, Y )JA) ,

for any vector fields X, Y on M .

From now on, we focus on Vaisman manifolds. Our objective is to compute the Bismut
connection on Vaisman manifolds in terms of the vector fields A, JA and the distribution
D orthogonal to A and JA, and then study the symmetries of the corresponding curvature
tensor Rb. In particular, we obtain that the torsion 3-form c is always ∇b-parallel on a
Vaisman manifold, and we obtain a first reduction of its holonomy.
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3.1. Results about the Bismut connection on Vaisman manifolds. On a Vaisman
manifold, the vector field A g-dual to the Lee form θ satisfies ∇gA = 0. It follows that |A|
is constant on M and, therefore, by rescaling the metric, we may assume from now on that
|A| = 1, so that θ(A) = 1.

In the next result we collect some well-known facts about Vaisman manifolds which will
be used throughout this article.

Proposition 3.5. [39] Let (M,J, g) be a Vaisman manifold with associated Lee form θ.
Let A be the vector field which is metric dual to θ, with |A| = 1. Then:

(a) [A, JA] = 0;
(b) both A and JA are Killing vector fields;
(c) LAJ = LJAJ = 0, where L denotes the Lie derivative. That is, [A, JX] = J [A,X],

[JA, JX] = J [JA,X] for any vector field X on M .

We denote by D the distribution on M such that Dp is the orthogonal complement of
span{Ap, JpAp} in TpM for any p ∈ M . Clearly, D is J-invariant and θ(X) = Jθ(X) = 0
for any X ∈ Γ(D). Moreover, D is not involutive, since using dω(A,X, Y ) = c∧ω(A,X, Y )
and Proposition 3.5 it can be seen that g(JA, [X, Y ]) = ω(X, Y ) for any X, Y ∈ Γ(D).
However, we can show that

Corollary 3.6. If X ∈ Γ(D) then [A,X] ∈ Γ(D) and [JA,X] ∈ Γ(D).

Proof. Since dθ = 0,

0 = dθ(A,X) = A(θ(X))−X(θ(A))− θ([A,X])

= Ag(A,X)−Xg(A,A)− g(A, [A,X])

= −g(A, [A,X]).

If in this expression we replace X ∈ Γ(D) by JX ∈ Γ(D), and using Proposition 3.5, we
obtain

0 = −g(A, [A, JX]) = g(JA, [A,X]).

Thus, [A,X] ∈ Γ(D).
The fact that [JA,X] ∈ Γ(D) follows in the same way from dθ(JA,X) = 0. �

We will prove next that the Lee form θ on an LCK manifold is parallel with respect to
the Levi-Civita connection (i.e. the manifold is Vaisman) if and only if it is parallel with
respect to the Bismut connection. This fact was already mentioned in [36].

Theorem 3.7. Let (M,J, g) be an LCK manifold with fundamental 2-form ω and Lee
form θ. Then (M,J, g) is Vaisman (i.e., ∇gθ = 0) if and only if ∇bθ = 0.
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Proof. Let us compute (∇b
Xθ)Y for any X, Y ∈ X(M):

(∇b
Xθ)Y = X(θ(Y ))− θ(∇b

XY )

= Xg(A, Y )− g(∇b
XY,A)

= g(∇g
XA, Y ) + g(A,∇g

XY )−
(
g(∇g

XY,A) +
1

2
c(X, Y,A)

)
= g(∇g

XA, Y )

according to Corollary 3.3. Since g(∇g
XA, Y ) = (∇g

Xθ)Y , the result follows. �

Since ∇bJ = 0, it follows from Theorem 3.7 that ∇bJθ = 0, or equivalently, ∇bJA = 0.
As an immediate consequence we have the following important result:

Corollary 3.8. If (M,J, g) is Vaisman and dimM = 2n, then the holonomy group Holb(M)
of the Bismut connection is contained in U(n− 1).

Here U(n− 1) is considered as a subgroup of U(n) in the following way:

U(n− 1) ↪→ U(n), A 7→
(

1
A

)
.

Also, combining ∇bJθ = 0 and ∇bω = 0 with Lemma 3.2 we obtain

Corollary 3.9. On any Vaisman manifold the torsion 3-form c of the Bismut connection
is ∇b-parallel.

Remark 3.10. The converse of Corollary 3.9 holds: if (M,J, g) is an LCK manifold such
that the torsion of the Bismut connection is ∇b-parallel then (M,J, g) is Vaisman.

Indeed, according to Lemma 3.2 the torsion of ∇b is c = −Jθ ∧ ω. If ∇b
X(Jθ ∧ ω) = 0

for any vector field X, then ∇b
X(Jθ) ∧ ω = 0, since ∇bω = 0. Since ω is non degenerate,

the operator − ∧ ω is injective on 1-forms, hence ∇b
X(Jθ) = 0. We deduce from Theorem

3.7 that M is Vaisman.

In order to compute the holonomy of the Bismut connection on a Vaisman manifold, we
look first for parallel tensors. Let us consider the following skew-symmetric (1, 1)-tensor:

(7) ϕ = J − θ ⊗ JA+ Jθ ⊗ A.

This tensor was introduced by Vaisman in [39] and it is an f -structure (i.e. ϕ satisfies
ϕ3 + ϕ = 0). It has some important properties related to the Bismut connection, as the
following propositions show.

Proposition 3.11. On any Vaisman manifold, the tensor ϕ is ∇b-parallel.

Proof. For any X ∈ X(M) we have that

∇b
Xϕ = ∇b

XJ +∇b
X(−θ ⊗ JA+ Jθ ⊗ A).
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Since ∇bJ = 0, we only have to check that the second term vanishes. We compute

∇b
X(−θ ⊗ JA+ Jθ ⊗ A) = −∇b

Xθ ⊗ JA− θ ⊗∇b
XJA+∇b

XJθ ⊗ A+ Jθ ⊗∇b
XA

= 0,

using again that ∇bθ = 0, ∇bA = 0 and ∇bJ = 0. �

Proposition 3.12. On any Vaisman manifold, the torsion 3-form c of the Bismut connec-
tion satisfies c(JA,X, Y ) = −g(ϕ(X), Y ).

Proof. For X, Y ∈ X(M), using Proposition 3.2 we have that

c(JA,X, Y ) = −Jθ ∧ ω(JA,X, Y )

= −Jθ(JA)ω(X, Y )− Jθ(X)ω(Y, JA)− Jθ(Y )ω(JA,X)

= −g(JX, Y )− Jθ(X)g(Y,A)− g(A, JY )g(A,X)

= −g(JX, Y )− Jθ(X)g(A, Y ) + θ(X)g(JA, Y )

= −g(ϕ(X), Y ),

and the proof is complete. �

The tensor ϕ is closely related to the 2-form d(Jθ), as the following result shows:

Corollary 3.13. The 2-form d(Jθ) satisfies:

(a) d(Jθ)(X, Y ) = c(JA,X, Y ) (hence also equal to −g(ϕ(X), Y )),
(b) d(Jθ) is ∇b-parallel,
(c) d(Jθ)(JX, JY ) = d(Jθ)(X, Y ) for any X, Y ∈ X(M),
(d) d(Jθ)(A, ·) = d(Jθ)(JA, ·) = 0.

Proof. For X, Y ∈ X(M), we compute

d(Jθ)(X, Y ) = X(Jθ(Y ))− Y (Jθ(X))− Jθ([X, Y ])

= −X(θ(JY )) + Y (θ(JX)) + θ(J [X, Y ])

= −Xg(A, JY ) + Y g(A, JX) + g(A, J [X, Y ]).

Since ∇bg = 0, we have that

d(Jθ)(X, Y ) = −g(∇b
XA, JY )−g(A,∇b

XJY )+g(∇b
YA, JX)+g(A,∇b

Y JX)+g(A, J [X, Y ]).

According to Theorem 3.7, we have that ∇bA = 0. Now, using that ∇bJ = 0 and J is
skew-symmetric, we obtain that

d(Jθ)(X, Y ) = g(JA, T b(X, Y )) = c(JA,X, Y ).

Therefore (a) holds. Now, (b) follows immediately from Proposition 3.12.
Finally, (c) and (d) follow readily from (a). Indeed, for (c) we use that ϕ and J commute,

and for (d) we use that ϕ(A) = ϕ(JA) = 0. �
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3.2. Explicit computation of ∇b. We describe next explicitly the Bismut connection ∇b

on Vaisman manifolds. We begin by computing ∇b
A. Since c(A, ·, ·) = 0 (see Corollary 3.3),

we have that ∇b
AY = ∇g

AY for any Y ∈ X(M). Moreover, due to ∇gA = 0, we have that
∇g
AY = [A, Y ] and therefore ∇b

AY = [A, Y ] for all Y ∈ X(M).

Next, we determine ∇b
JA. In order to do this, we compute first g(∇g

JAX, Y ) for any
X, Y ∈ X(M), using the Koszul formula:

g(∇g
JAX, Y ) =

1

2
{JAg(X, Y ) +Xg(Y, JA)− Y g(JA,X)

+g([JA,X], Y )− g([X, Y ], JA) + g([Y, JA], X)} .
Since JA is a Killing vector field, we have that JAg(X, Y ) = g([JA,X], Y )+g(X, [JA, Y ]),
so that the expression above becomes

g(∇g
JAX, Y ) =

1

2
{2g([JA,X], Y ) +X(Jθ(Y ))− Y (Jθ(X))− Jθ([X, Y ])}

= g([JA,X], Y ) +
1

2
d(Jθ)(X, Y )

= g([JA,X], Y )− 1

2
g(ϕ(X), Y )

= g

(
[JA,X]− 1

2
ϕ(X), Y

)
.

Hence we obtain ∇g
JAX = [JA,X] − 1

2
ϕ(X) for any X ∈ X(M). Now, using (2) and

Corollary 3.12:

g(∇b
JAX, Y ) =g(∇g

JAX, Y ) +
1

2
c(JA,X, Y )

=g([JA,X]− 1

2
ϕ(X), Y )− 1

2
g(ϕ(X), Y )

=g([JA,X]− ϕ(X), Y ),

so that ∇b
JAX = [JA,X]− ϕ(X).

Finally, we obtain from (6) that, for X, Y ∈ Γ(D),

(8) ∇b
XY = ∇g

XY −
1

2
ω(X, Y )JA,

with ∇b
XY ∈ Γ(D). Indeed, observe that

g(∇b
XY,A) = Xg(Y,A)− g(Y,∇b

XA) = 0

and also
g(∇b

XY, JA) = Xg(Y, JA)− g(Y,∇b
XJA) = 0,

so that ∇b
XY ∈ Γ(D).

To sum up, we state the following theorem.

Theorem 3.14. With notation as above, the Bismut connection ∇b on the Vaisman man-
ifold (M,J, g) is given by:

• ∇bA = ∇bJA = 0,
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• ∇b
AX = [A,X] for any X ∈ X(M),

• ∇b
JAX = [JA,X]− ϕ(X) for any X ∈ X(M),

• if X, Y ∈ Γ(D) then ∇b
XY ∈ Γ(D) and, moreover, ∇b

XY = ∇g
XY − 1

2
ω(X, Y )JA.

3.3. Curvature of ∇b. We will use the convention Rb(X, Y )Z = ∇b
X∇b

YZ − ∇b
Y∇b

XZ −
∇b

[X,Y ]Z for the (1, 3)-curvature tensor Rb of the Bismut connection. We will denote also

by Rb the associated (0, 4)-curvature tensor: Rb(X, Y, Z,W ) = g(Rb(X, Y )Z,W ).

In the following result we state some symmetries of the Bismut curvature tensor on
Vaisman manifolds.

Lemma 3.15. On any Vaisman manifold (M,J, g), the curvature tensor Rb of the Bismut
connection satisfies:

(a) Rb(X, Y )JZ = JRb(X, Y )Z,
(b) Rb(X, Y, Z,W ) = Rb(Z,W,X, Y ),
(c) Rb(JX, JY ) = Rb(X, Y ),
(d) Rb(A,X) = Rb(JA,X) = 0,

for any vector fields X, Y, Z,W on M .

Proof. (a) holds for the Bismut connection on any Hermitian manifold, since ∇bJ = 0.

(b) holds for any metric connection with parallel skew-symmetric torsion, according to
[13, Lemma 2.2]. Recall that this is the case for the Bismut connection on a Vaisman
manifold, due to Corollary 3.9.

(c) follows from (a) and (b). Indeed, for any vector fields X, Y, Z,W on M , we have that

g(Rb(JX, JY )Z,W ) = Rb(JX, JY, Z,W )

= Rb(Z,W, JX, JY )

= g(Rb(Z,W )JX, JY )

= g(Rb(Z,W )X, Y )

= g(Rb(X, Y )Z,W ).

(d) follows from (b). Indeed, for vector fields X,U, V on M we compute

g(Rb(A,X)U, V ) = g(Rb(U, V )A,X) = 0

since A is ∇b-parallel. The analogous result holds for JA since it is also ∇b-parallel. �

Next, we will establish an explicit relation between the Bismut curvature Rb and the
Riemannian curvature Rg. For this, we will use the following formula from [21], which in
this case has been simplified since the torsion 3-form c is ∇b-parallel:

Rb(X, Y, Z, U) =Rg(X, Y, Z, U) +
1

2
g(T b(X, Y ), T b(Z,U))

+
1

4
g(T b(X,U), T b(Y, Z)) +

1

4
g(T b(Y, U), T b(Z,X)),
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for any vector fields X, Y, Z, U on M . Using the expression for T b given in Corollary 3.4,
and after lengthy computations, we arrive at:

Rb(X, Y )Z = Rg(X, Y )Z − 1

4
θ(JY )θ(JZ)X +

1

4
θ(JX)θ(JZ)Y

+
1

4
g(ϕ(Y ), Z)JX − 1

4
g(ϕ(X), Z)JY +

1

2
g(ϕ(X), Y )JZ(9)

+
1

4
(−ω(X, Y )θ(JZ) + Jθ ∧ ω(X, Y, Z))A

− 1

4
(Jθ ∧ ω(X, Y, JZ) + θ ∧ ω(X, Y, Z))JA.

Observe that, since Rb(JA, ·) = 0, we obtain from (9) the following expression for
Rg(JA, Y ):

(10) Rg(JA, Y )Z =
1

4
θ(JZ)Y − 1

4
θ(Y )θ(JZ)A+

1

4
{θ(JY )θ(JZ) + g(ϕ(Y ), JZ)}JA,

where we have used Lemma 3.2 and Corollary 3.13.

We study now some properties of the Bismut Ricci curvature Ricb, defined as usual by
Ricb(X, Y ) = tr(Z → Rb(Z,X)Y ). The next result follows easily from Lemma 3.15:

Corollary 3.16. The Bismut Ricci curvature Ricb of a Vaisman manifold satisfies:

(a) Ricb is symmetric;
(b) Ricb(JX, JY ) = Ricb(X, Y ) for any vector fields X, Y .

We point out that Ricb being symmetric is not a surprising fact, since it holds for any
metric connection with parallel skew-symmetric torsion.

Now, we are able to obtain an expression for Ricb, the Bismut Ricci curvature, in terms
of the Riemannian Ricci curvature Ricg. Indeed, let us consider a local orthonormal frame
of the form {A, JA} ∪ {e1, . . . , e2n−2} where ei is a local section of D for each i. Therefore,
for any vector fields Y, Z on M ,

Ricb(Y, Z) = g(Rb(A, Y )Z,A) + g(Rb(JA, Y )Z, JA) +
∑
i

g(Rb(ei, Y )Z, ei)

=
∑
i

g(Rb(ei, Y )Z, ei),

due to Lemma 3.15(d). Using (9) we obtain

Ricb(Y, Z) =
∑
i

g(Rg(ei, Y )Z, ei)

+
∑
i

(
−1

4
θ(JY )θ(JZ)− 1

4
g(Jei, Z)g(JY, ei) +

1

2
g(Jei, Y )g(JZ, ei)

)
=
∑
i

g(Rg(ei, Y )Z, ei)−
1

4

∑
i

(θ(JY )θ(JZ) + g(JZ, ei)g(JY, ei)) .
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Since ∇gA = 0 we have that Rg(A, ·) = 0, hence

Ricg(Y, Z) = g(Rg(JA, Y, )Z, JA) +
∑
i

g(Rg(ei, Y )Z, ei)

=
1

4
g(ϕ(Y ), JZ) +

∑
i

g(Rg(ei, Y )Z, ei)

=
1

4
(g(Y, Z)− θ(Y )θ(Z)− θ(JY )θ(JZ)) +

∑
i

g(Rg(ei, Y )Z, ei),

where we have used (10) in the second equality and the definition of ϕ in the third. There-
fore, combining both expressions:

Ricb(Y, Z) = Ricg(Y, Z)− 1

4
(g(Y, Z)− θ(Y )θ(Z)− θ(JY )θ(JZ))

− 1

4
((2n− 2)θ(JY )θ(JZ) + g(Y, Z)− g(JZ,A)g(JY,A)− g(JZ, JA)g(JY, JA))(11)

= Ricg(Y, Z)− 1

2
g(Y, Z) +

1

2
θ(Y )θ(Z)− n− 2

2
θ(JY )θ(JZ).

As expected, according to Corollary 3.16, Ricb is symmetric since the expression above
is symmetric in Y and Z. It was proved in [21] that the symmetry of Ricb is equivalent to
the torsion 3-form being co-closed, thus we obtain:

Corollary 3.17. On any Vaisman manifold, the Bismut torsion 3-form c is co-closed.

On the other hand, concerning the closedness of the torsion 3-form c, the following result
shows that c is never closed in high dimensions.

Proposition 3.18. On a Vaisman manifold of dimension 2n ≥ 6, the Bismut torsion
3-form c is not closed.

Proof. The 3-form c is given by c = −Jθ ∧ ω, according to Lemma 3.2. Therefore dc is
given by

dc = −d(Jθ) ∧ ω + Jθ ∧ dω = −(d(Jθ)− Jθ ∧ θ) ∧ ω.
So, if dc = 0 then η := d(Jθ)−Jθ∧θ = 0, since in dimensions at least 6 the operator −∧ω
is injective on 2-forms. However, it follows from Corollary 3.13(d) that

d(Jθ)(A, JA) = 0.

On the other hand,

(Jθ ∧ θ)(A, JA) = Jθ(A)θ(JA)− Jθ(JA)θ(A) = −1.

Hence η(A, JA) = 1 6= 0, a contradiction. As a consequence, dc 6= 0. �

Remark 3.19. (i) A Hermitian metric whose associated Bismut torsion 3-form c is closed
is called pluriclosed or strong Kähler with torsion (SKT). This condition is equivalent to
∂∂ω = 0. According to Proposition 3.18, a Vaisman metric in dimension ≥ 6 is never
pluriclosed. This result was already known in the compact case, since it was proved in
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[3] that on a compact Hermitian manifold of dimension at least 6, the Hermitian metric
cannot be LCK and pluriclosed simultaneously, unless the metric is Kähler.

(ii) Notice that according to [18, Theorem A], if (M,J, g) is a 4-dimensional Vaisman
manifold then the Hermitian structure (J, g) is pluriclosed and ∇b satisfies the first Bianchi
identity. In particular, in real dimension 4 the torsion 3-form is harmonic. However, more
can be said: c is also ∇g-parallel, which can be seen from the relation c = − ∗ θ, proved
in [21], which holds for any 4-dimensional LCK manifold. Belgun provided in [11] the
classification of compact complex surfaces which admit Vaisman metrics: they are properly
elliptic surfaces, Kodaira surfaces (either primary or secondary), elliptic Hopf surfaces and
Hopf surfaces of class 1.

(iii) On Vaisman manifolds of dimension greater than or equal to 6, according to Corol-
lary 3.9, Proposition 3.18 and [18, Theorem 3.2], the Bismut connection does not satisfy the
first Bianchi identity, and therefore it is not Kähler-like. However, due to Lemma 3.15(c),
the Bismut connection satisfies the type condition (see for instance [7]).

4. Bismut holonomy of Vaisman solvmanifolds

In this section we will study the Bismut holonomy of a concrete family of Vaisman
manifolds; namely, solvmanifolds equipped with invariant Vaisman structures. We will call
them simply Vaisman solvmanifolds. In order to perform this analysis, we will use the
results appearing in [6].

Let G be a Lie group with a left invariant complex structure J and a left invariant
metric g, i.e. the left translations Lg : G → G defined by Lg(h) = gh for h ∈ G are both
biholomorphisms and isometries. If (G, J, g) satisfies the LCK condition (4), then (J, g) is
called a left invariant LCK structure on the Lie group G. In this case, it follows from (5)
that the corresponding Lee form θ on G is also left invariant.

We will restrict our study to solvable Lie groups equipped with left invariant Vaisman
structures. If the solvable Lie group G is simply connected then any left invariant Vaisman
structure on G turns out to be globally conformal to a Kähler structure. Therefore we
will consider quotients MΓ := Γ\G where Γ is a co-compact discrete subgroup of G, so
that MΓ is a compact manifold such that the canonical projection G → MΓ is a local
diffeomorphism. The compact quotient MΓ is not simply connected (as π1(MΓ) = Γ) and
it inherits a Vaisman structure. The aim of this section is to analyze the holonomy of the
Bismut connection on MΓ associated to this induced structure.

A co-compact discrete subgroup Γ of a simply connected solvable Lie group G is called
a lattice and the quotient MΓ = Γ\G is known as a solvmanifold. We point out that,
according to [29], if G admits a lattice then G is unimodular (i.e., tr adx = 0 for all
x ∈ Lie(G)).

Since we are dealing with left invariant structures on Lie groups, we can work at the Lie
algebra level. Therefore we will consider LCK or Vaisman structures on Lie algebras, that
is, a Hermitian structure (J, 〈· , · 〉) on a Lie algebra g, where 〈· , · 〉 is an inner product on
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g and J : g→ g is a skew-symmetric endomorphism of g that satisfies

J2 = − I, and [Jx, Jy]− [x, y]− J([Jx, y] + [x, Jy]) = 0,

for any x, y ∈ g. Moreover, dω = θ ∧ ω for some closed 1-form θ ∈ g∗, and ∇gθ = 0 in the
Vaisman case.

As before, let A ∈ g denote the vector dual to θ, i.e., θ(U) = 〈A,U〉 for all U ∈ g. We
may assume |A| = 1. In this context, Proposition 3.5 takes the following form:

Proposition 4.1. If (g, J, 〈· , · 〉) is Vaisman then

(a) [A, JA] = 0,
(b) adA and adJA are skew-symmetric;
(c) J ◦ adA = adA ◦J .

Solvable Lie groups equipped with left invariant Vaisman structures, and their associated
Vaisman solvmanifolds, were studied in [6]. We will recall some of the results from that
article that will be needed for our study.

Lemma 4.2. [6] Let g be a unimodular solvable Lie algebra equipped with a Vaisman
structure (J, 〈· , · 〉) and let z(g) denote the center of g. Then JA ∈ z(g). Moreover z(g) ⊂
span{A, JA}.

The subspace ker θ is in fact an ideal of g, since θ is closed, and JA ∈ ker θ. Denoting
k := (span{A, JA})⊥ (which plays the role of D in Section 3), we have a decomposition

ker θ = RJA
⊥
⊕ k.

For x, y ∈ k, we have that [x, y] ∈ ker θ and it can be proved that

(12) [x, y] = ω(x, y)JA+ [x, y]k,

where [x, y]k is the component in k of [x, y].

It follows from [6] that [·, ·]k is a Lie bracket on k and, moreover, (k, [·, ·]k, J |k, 〈· , · 〉|k)
is a Kähler Lie algebra. Therefore ker θ is a 1-dimensional central extension of (k, [·, ·]k):
ker θ = RJA⊕ω k.

Moreover, since g is unimodular we have that k is unimodular as well. Due to a classical
result of Hano [20], it follows that 〈· , · 〉|k is flat. The main result in [6] is:

Theorem 4.3. [6] If (g, J, 〈· , · 〉) is Vaisman with g unimodular and solvable, then:

g = RAn (RJA⊕ω k),

where:

• adA is a skew-symmetric derivation of ker θ = RJA⊕ω k with adA(JA) = 0;
• (k, Jk, 〈· , · 〉|k) is a Kähler flat Lie algebra;
• D := adA |k is a skew-symmetric derivation of (k, 〈· , · 〉|k) which commutes with J |k

(i.e. D ∈ u(k)).
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Example 4.4. In [6] many examples of unimodular solvable Lie algebras were provided.
We recall here one such family of examples. Let us consider the Lie algebras g with basis
{A,B, e1, . . . , e2n−2} and Lie bracket given by

[A, e2i−1] = aie2i, [A, e2i] = −aie2i−1, [e2i−1, e2i] = B, i = 1, . . . , n− 1,

for some ai ∈ R. Let 〈· , · 〉 denote the inner product on g such that the basis above is
orthonormal, and let J denote the skew-symmetric complex structure on g given by

JA = B, Je2i−1 = e2i, i = 1, . . . , n.

Then it is easy to verify that the Hermitian structure (J, 〈· , · 〉) is Vaisman, where the Lee
form θ is the metric dual of A: θ(·) = 〈A, · 〉. Note that ker θ = span{B, e1, . . . , e2n−2} is
isomorphic to the (2n−1)-dimensional Heisenberg Lie algebra h2n−1 (so that g = Rnh2n−1),
and the subspace k = span{e1, . . . , e2n−2}, equipped with the Lie bracket [·, ·]k, is an abelian
Lie algebra (which is clearly a flat Kähler Lie algebra equipped with the restrictions of
(J, 〈· , · 〉).

It was also shown in [6] that whenever ai ∈ Q for every i the corresponding simply
connected Lie group admits lattices. If ai = 0 for all i, then g is the direct product
g = R× h2n−1, with the well-known Vaisman structure given in [14].

We compute next the Bismut connection on unimodular solvable Lie algebras equipped
with Vaisman structures, using Theorem 3.14. We denote by ∇k the (flat) Levi-Civita
connection on the Kähler Lie algebra k. Recall the skew-symmetric operator ϕ defined in
(7); it satisfies ϕ(A) = ϕ(JA) = 0 and ϕ(x) = Jx for x ∈ k.

Lemma 4.5. The Bismut connection ∇b on g is given as follows:

• ∇bA = ∇bJA = 0,
• ∇b

Ax = [A, x] ∈ k for any x ∈ g,
• ∇b

JAx = −ϕ(x) for any x ∈ g,
• ∇b

xy = ∇k
xy ∈ k for any x, y ∈ k.

Proof. The first three items follow directly from Theorem 3.14, recalling that JA is a central
element of g, due to Lemma 4.2. As for the fourth, we compute ∇g

xy for x, y ∈ k. Since
∇gA = 0, we have that

〈∇g
xy, A〉 = −〈y,∇g

xA〉 = 0.

On the other hand, we know that ∇b
xy ∈ k (Theorem 3.14) and it follows from (8) that

〈∇g
xy, JA〉 =

1

2
ω(x, y).

For z ∈ k, we have

〈∇g
xy, z〉 =

1

2
{〈[x, y], z〉 − 〈[y, z], x〉+ 〈[z, x], y〉}

=
1

2
{〈[x, y]k, z〉 − 〈[y, z]k, x〉+ 〈[z, x]k, y〉} (using (12))

= 〈∇k
xy, z〉.

Therefore, ∇g
xy = 1

2
ω(x, y)JA + ∇k

xy for any x, y ∈ k. Comparing with Theorem 3.14 we

obtain ∇b
xy = ∇k

xy, x, y ∈ k. �
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Finally, we are able to compute the curvature tensor Rb of the Bismut connection on g
in terms of the endomorphism ϕ.

Theorem 4.6. If Rb denotes the curvature tensor of the Bismut connection, then Rb is
given by

Rb(u, v) = 〈ϕ(u), v〉ϕ, u, v ∈ g.

Proof. Note first that Rb(u, v)A = Rb(u, v)JA = 0, since both A and JA are ∇b-parallel.
Therefore, we only have to compute Rb(u, v) when evaluated in elements of k.

Next, recall that Rb(A, ·) = Rb(JA, ·) = 0, according to Lemma 3.15(d). Thus, we only
have to compute Rb(x, y)z for x, y, z ∈ k. First note that, according to (12),

∇b
[x,y]z = ∇b

[x,y]k
z + ω(x, y)∇b

JAz = ∇b
[x,y]k

z − ω(x, y)Jz = ∇k
[x,y]k

z − ω(x, y)Jz,

where we have used Lemma 4.5 in the last equality. Hence we have that

Rb(x, y)z = ∇b
x∇b

yz −∇b
y∇b

xz −∇b
[x,y]z

= ∇k
x∇k

yz −∇k
y∇k

xz −∇k
[x,y]k

z + ω(x, y)Jz

= Rk(x, y)z + 〈Jx, y〉Jz
= 〈Jx, y〉Jz

since ∇k is flat. The result follows. �

Corollary 4.7. Any curvature endomorphism Rb(u, v), u, v ∈ g, is parallel with respect
to ∇b.

Proof. This is a straightforward consequence of Theorem 4.6 and Corollary 3.11. �

Regarding the holonomy group of the Bismut connection of a Vaisman solvmanifold, we
have

Theorem 4.8. If M = Γ\G is a 2n-dimensional Vaisman solvmanifold then its holonomy
group Holb(M) has dimension 1 and it is not contained in SU(n).

Proof. The restricted holonomy group Holb0(M) coincides with the holonomy group Holb(G).
According to Theorem 2.2, its Lie algebra holb(M) is generated by all the curvature en-
domorphisms Rb(u, v), u, v ∈ g, together with their covariant derivatives of any order.
Therefore, it follows from Theorem 4.6 and Corollary 4.7 that holb(M) is spanned by ϕ,
therefore it is one-dimensional.
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Moreover, in an adapted basis {A, JA, e1, f1, . . . , en−1, fn−1} with Jei = fi, we have that
the matrix of ϕ is given by

ϕ =



0 0
0 0

0 −1
1 0

. . .
0 −1
1 0


∈ u(n),

but it is clear that ϕ /∈ su(n). �

Moreover, a result stronger than Corollary 4.7 can be obtained also as a consequence of
Theorem 4.6:

Proposition 4.9. On any Vaisman solvmanifold Γ\G, the Bismut curvature tensor Rb is
∇b-parallel: ∇bRb = 0.

Proof. This is an immediate consequence of Theorem 4.6. Indeed, we need only verify that
(∇b

xR
b)(y, z)w = 0 for any x, y, z, w ∈ g. We compute

(∇b
xR

b)(y, z)w = ∇b
x(R

b(y, z)w)−Rb(∇b
xy, z)w −Rb(y,∇b

xz)w −Rb(y, z)(∇b
xw)

= 〈ϕ(y), z〉∇b
xϕ(w)− 〈ϕ∇b

xy, z〉ϕ(w)− 〈ϕ(y),∇b
xz〉ϕ(w)− 〈ϕ(y), z〉ϕ∇b

xw.

The first and the last terms cancel out since ϕ is ∇b-parallel, and the second and third
terms also cancel out, since

〈ϕ∇b
xy, z〉 = 〈∇b

xϕ(y), z〉 = −〈ϕ(y),∇b
xz〉.

This completes the proof. �

Remark 4.10. According to [8], the Bismut connection on a Vaisman solvmanifold is a
Hermitian Ambrose-Singer connection, since ∇bT b = 0 and ∇bRb = 0. In particular, any
Vaisman solvmanifold is a locally homogeneous Hermitian space [24, 37]. However, this is
true for any solvmanifold M := Γ\G equipped with an invariant almost Hermitian structure
(J, g), since the connection on G defined by ∇xy = 0 for any x, y ∈ g = Lie(G) induces a
connection ∇ on M satisfying ∇J = ∇g = 0.

Concerning the Bismut Ricci curvature of a Vaisman solvmanifold, we have the following
straightforward consequence of Theorem 4.6:

Corollary 4.11. The Bismut Ricci curvature of a Vaisman solvmanifold Γ\G is given by

Ricb(u, v) = −〈u, v〉+ θ(u)θ(v) + θ(Ju)θ(Jv), u, v ∈ g.

In particular, Ricb 6= 0.

Using (11) we are able to determine the Riemannian Ricci curvature of a 2n-dimensional
Vaisman solvmanifold Γ\G:

Ricg(u, v) = −1

2
〈u, v〉+

1

2
θ(u)θ(v) +

n

2
θ(Ju)θ(Jv), u, v ∈ g.
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For a general non-Vaisman LCK solvmanifold, we cannot expect a reduction of the
holonomy of the Bismut connection, as the following example shows.

Example 4.12. Let G be the simply connected solvable Lie group with Lie algebra g
generated by {e1, e2, e3, e4} with non-zero brackets given by

[e1, e2] = µe2, [e1, e3] = −µ
2
e3 + ye4, [e1, e4] = −ye3 −

µ

2
e4,

for some µ 6= 0 and y ∈ R. Note that G is an almost abelian Lie group; it was proved
in [5] that for certain values of µ and y the Lie group G admits lattices. The associated
solvmanifolds are Inoue surfaces of type S0.

Consider on g the inner product 〈· , · 〉 such that the basis above is orthonormal and
the endomorphism J : g → g given by Je1 = e2, Je3 = e4, J

2 = − Id. It is easy to
verify that the almost complex structure J is integrable and hence (J, 〈· , · 〉) determines a
Hermitian structure on g with associated fundamental 2-form ω given by ω = e12 + e34.
Here, {e1, e2, e3, e4} is the dual basis of {e1, e2, e3, e4} and eij stands for the wedge product
ei ∧ ej. Note that dω = µe1 ∧ ω, which means that (J, 〈· , · 〉) is LCK since µ 6= 0 and
de1 = 0. Clearly, the Lee form θ is θ = µe1.

Computing the Bismut connection on g using (2), we obtain

∇b
e1

=

 0 −y
y 0

 , ∇b
e2

=


0 µ
−µ 0

0 µ
2

−µ
2

0

 ,

∇b
e3

=


−µ

2
0

0 −µ
2

µ
2

0
0 µ

2

 ∇b
e4

=


0 −µ

2
µ
2

0
0 −µ

2
µ
2

0

 .

Note that ∇bθ 6= 0, so that the LCK metric is not Vaisman. The curvature endomorphisms
Rb(ei, ej) are given by

Rb(e1, e2) =


0 −µ2

µ2 0

0 −µ2

2
µ2

2
0

 , Rb(e1, e3) = −Rb(e2, e4) =


−µ2

4
0

0 −µ2

4
µ2

4
0

0 µ2

4



Rb(e1, e4) = Rb(e2, e3) =


0 −µ2

4
µ2

4
0

0 −µ2

4
µ2

4
0

 , Rb(e3, e4) =


0 µ2

2

−µ2

2
0

0 −µ2

2
µ2

2
0

 .

Since µ 6= 0, it follows easily that all these curvature endomorphisms are linearly indepen-
dent, hence the subspace span{Rb(ei, ej) | i < j} of u(2) has dimension 4. According to

Theorem 2.2, we have that holb = u(2). There is no reduction of the holonomy in this case.

This example will be generalized in Section 6.
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5. Bismut holonomy of Hopf manifolds

In this section we determine explicitly the holonomy group of the Bismut connection on
some classical Hopf manifolds, which are the archetypical examples of compact Vaisman
manifolds. These are defined as a quotient of Cn − {0}, n ≥ 2, by the action of the cyclic
group generated by the transformation z 7→ λz, for some λ ∈ C with |λ| > 1. Their
underlying smooth manifold is S1 × S2n−1, so that its first Betti number is b1 = 1 and
therefore they cannot admit a Kähler metric. We also point out that for different values of
λ the corresponding compact complex manifolds are non-biholomorphic (this can be seen
with the same arguments used in [25] for the case of Hopf surfaces, i.e., for n = 2).

We will describe in more detail their construction for λ ∈ R, λ > 1, exhibiting in this case
an explicit parallelization of S1 × S2n−1, generalizing the one given in [33] (and in greater
length in [34]) for λ = e2π. It will be easy to express the usual Vaisman structure in terms
of this parallelization, and using this expression we will be able to show that the associated
Bismut holonomy group is equal to U(n−1), which is the largest possible holonomy group,
according to Corollary 3.8.

Remark 5.1. These classical Hopf manifolds are not homeomorphic to a solvmanifold for
n > 1. Indeed, the universal cover of a 2n-dimensional solvmanifold is homeomorphic to
R2n, whereas the universal cover of S1 × S2n−1 is R2n − {0}.

5.1. Revisiting the construction of a Vaisman structure on Hopf manifolds. Let
us consider R2n with the usual Cartesian coordinates (x1, . . . , x2n). Let us denote by N the
unit normal vector field of S2n−1 ⊂ R2n, that is, N =

∑2n
i=1 xi

∂
∂xi

. For any i = 1, . . . , 2n,

the orthogonal projection of ∂
∂xi

on S2n−1 gives a vector field Ti on S2n−1, which can be

expressed as Ti = ∂
∂xi
− xiN . The vector field Ti is called the ith meridian vector field on

S2n−1.
Let λ be a real number, λ > 1. Let Γλ be the cyclic infinite group of transformations of

R2n−{0} generated by the map x 7→ λx. Then the projection pλ : R2n−{0} → S1×S2n−1

given by

pλ(x) =

(
exp

(
2πi

log |x|
log λ

)
,
x

|x|

)
induces a diffeomorphism between (R2n − {0})/Γλ and S1 × S2n−1. Consider the smooth
function F : R2n−{0} → R given by F (x) = |x|. Then the vector fields F ∂

∂xi
, i = 1, . . . , 2n,

are Γλ-invariant1 and therefore the vector fields Uλ
i on S1×S2n−1 given by Uλ

i = (pλ)∗(F
∂
∂xi

)

are well-defined and, moreover, {Uλ
1 , . . . , U

λ
2n} defines a parallelization of S1 × S2n−1. In

terms of the meridian vector fields Ti, it can be shown, modifying suitably the computations

1Here we are using λ > 0, this does not hold for general λ ∈ C.
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in [34], that Uλ
i = Ti+

2π
log λ

xi
∂
∂t

, where t denotes the usual coordinate on S1. It follows that

[Uλ
i , U

λ
j ] = xiU

λ
j − xjUλ

i ,

Uλ
i (xj) = δij − xixj,

for i, j = 1, . . . , 2n. Here we are considering the functions xj ∈ C∞(S1 × S2n−1) defined
as xj(e

it, (p1, . . . , p2n)) = pj, for j = 1, . . . , 2n and (p1, . . . , p2n) ∈ S2n−1. In particular,∑2n
j=1 x

2
j = 1. Observe that differentiating this expression we get

(13)
2n∑
j=1

xjdxj = 0.

If 〈· , · 〉 denotes the usual metric on R2n, then the Riemannian metric 1
F 2 〈·, ·〉 on R2n−{0}

is Γλ-invariant and then it induces a Riemannian metric gλ on S1×S2n−1. It can be easily

seen that gλ coincides with the product metric gλ =
(

log λ
2π

)2
gS1 + gS2n−1 , where gSk denotes

the round metric on Sk.
On R2n − {0} there is the canonical complex structure given by

J

(
∂

∂x2i−1

)
=

∂

∂x2i

, J

(
∂

∂x2i

)
= − ∂

∂x2i−1

, i = 1, . . . , n.

This complex structure is Γλ-invariant and therefore defines a complex structure Jλ on
S1 × S2n−1 given by

JλU
λ
2i−1 = Uλ

2i, JλU
λ
2i = −Uλ

2i−1, i = 1, . . . , n.

It is clear that Jλ is gλ-orthogonal and therefore (Jλ, gλ) is a Hermitian structure on S1 ×
S2n−1 for any λ > 1.

Let ηλi denote the 1-form on S1×S2n−1 which is gλ-dual to Uλ
i . Then ηλi = dxi+

log λ
2π
xidt

and it can be seen that dηλi = ηλi ∧ αλ, where αλ is the 1-form defined by αλ :=
∑

j xjη
λ
j .

Note that applying (13) we obtain αλ = log λ
2π
dt.

We summarize all the equations we have obtained so far in the following lemma:

Lemma 5.2. The manifold S1 × S2n−1 admits a family of Hermitian structures (Jλ, gλ)
for λ > 1. In terms of the gλ-orthonormal global frame {Uλ

1 , . . . , U
λ
2n} and functions xi ∈

C∞(S1 × S2n−1), i = 1, . . . , 2n, described above, we have:

JλU
λ
2i−1 = Uλ

2i, JλU
λ
2i = −Uλ

2i−1 for all i,

[Uλ
i , U

λ
j ] = xiU

λ
j − xjUλ

i , Uλ
i (xj) = δij − xixj,

and

dηλi = ηλi ∧ αλ,
where ηλi is the form gλ-dual to Uλ

i and αλ :=
∑

j xjη
λ
j .

Note that these expressions do not actually depend on λ, so that from now on we will
omit the subscript/superscript λ in all the forthcoming computations.
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We will verify next the well-known fact that the previous Hermitian structure (J, g) is
Vaisman. Indeed, computing dω for ω := g(J ·, ·) =

∑
i η2i−1 ∧ η2i and applying (13), we

obtain that
dω = −2α ∧ ω, dα = 0,

so that (J, g) is LCK with Lee form θ = −2α. The vector field H on S1 × S2n−1 which is
g-dual to α will play an important role in our computations. It can be written in terms of
the frame {Ui} as

H =
2n∑
i=1

xiUi,

and coincides with 2π
log λ

∂
∂t

. Observe that H is a multiple of the vector field A defined in

previous sections for any Vaisman manifold; more precisely, H = −A/2. In order to show
that α, or equivalently H, is ∇g-parallel, we determine the Levi-Civita connection ∇g of g
in terms of {Ui}. Using the Koszul formula together with Lemma 5.2 we obtain

Lemma 5.3. The Levi-Civita connection ∇g on S1 × S2n−1 is given by

• ∇g
Ui
Uj = −xjUi, if i 6= j;

• ∇g
Ui
Ui =

∑
k 6=i xkUk = H − xiUi.

Therefore,

∇g
Ui
H = ∇g

Ui
(
∑
j

xjUj)

=
∑
j

(Ui(xj)Uj + xj∇g
Ui
Uj)

= (1− x2
i )Ui + xi(H − xiUi) +

∑
j 6=i

(−xixjUj + xj(−xj)Ui)

= (1− x2
i )Ui + xi(H − xiUi)− xi(H − xiUi)− (

∑
j 6=i

x2
j)Ui

= 0 (since
∑
j

x2
j = 1).

Thus we recover the fact that S1 × S2n−1 with the Hermitian structure (J, g) is a Vaisman
manifold.

5.2. Computation of the Bismut holonomy of Hopf manifolds. In what follows, we
will study the Bismut connection ∇b associated to (J, g). We will first express ∇b in terms
of the frame {Ui}, and later we will determine its curvature tensor Rb and its holonomy
group.

Proposition 5.4. The Bismut connection ∇b associated to (J, g) on S1 × S2n−1 is given
by

• ∇b
U2i−1

U2j−1 = −x2j−1U2i−1 + x2jU2i − x2iU2j, (i 6= j);

• ∇b
U2i−1

U2i−1 =
∑

k 6=2i−1 xkUk = H − x2i−1U2i−1;
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• ∇b
U2i−1

U2j = −x2jU2i−1 + x2iU2j−1 − x2j−1U2i, (i 6= j);

• ∇b
U2i−1

U2i = −
∑

k x2kU2k−1 +
∑

k 6=i x2k−1U2k = JH − x2i−1U2i;

• ∇b
U2i
U2j−1 = −x2jU2i−1 − x2j−1U2i + x2i−1U2j, (i 6= j);

• ∇b
U2i
U2i−1 = −

∑
k x2k−1U2k +

∑
k 6=i x2kU2k−1 = −JH − x2iU2i−1;

• ∇b
U2i
U2j = −x2i−1U2j−1 + x2j−1U2i−1 − x2jU2i, (i 6= j);

• ∇b
U2i
U2i =

∑
k 6=2i xkUk = H − x2iU2i.

Proof. The proof follows from (2), using Lemma 5.3 and the fact that dω = −2α∧ω, where
α =

∑
xjηj, ω =

∑
η2j−1 ∧ η2j. We prove only the first two expressions, the others follow

analogously. Also take into account that ∇b
XU2r = J(∇b

XU2r−1) since J is ∇b-parallel.

For i 6= j:

g(∇b
U2i−1

U2j−1, U2k−1) = −x2j−1δik − α ∧ ω(U2i, U2j, U2k)

= −x2j−1δik,

while

g(∇b
U2i−1

U2j−1, U2k) = α ∧ ω(U2i, U2j, U2k−1)

= α(U2i)ω(U2j, U2k−1) + α(U2j)ω(U2k−1, U2i)

= −x2iδjk + x2jδik.

Therefore: ∇b
U2i−1

U2j−1 = −x2j−1U2i−1 +x2jU2i−x2iU2j. Now, for i = j, and for any vector

field X on S1 × S2n−1 we have that

g(∇b
U2i−1

U2i−1, X) = g(∇g
U2i−1

U2i−1, X)− α ∧ ω(U2i, U2i, JX) = g(∇g
U2i−1

U2i−1, X).

Therefore, ∇b
U2i−1

U2i−1 = ∇g
U2i−1

U2i−1 = H − x2i−1U2i−1, as claimed. �

Next, we will determine the curvature endomorphisms Rb(Ui, Uj) associated to ∇b. This
will be done in Propositions 5.5, 5.6 and 5.7; their proofs are long but straightforward
computations and therefore we omit them2.

Proposition 5.5. For any i = 1, . . . , n, the curvature endomorphism Rb(U2i−1, U2i) is
given by

Rb(U2i−1, U2i)U2i−1 = Rb(U2i−1, U2i)U2i = 0,

Rb(U2i−1, U2i)U2j−1 = 2(1− x2
2i−1 − x2

2i − x2
2j−1 − x2

2j)U2j

+ 2
∑
k 6=i,j

(x2j−1x2k − x2jx2k−1)U2k−1 − 2
∑
k 6=i,j

(x2j−1x2k−1 + x2jx2k)U2k

and Rb(U2i−1, U2i)U2j = J(Rb(U2i−1, U2i)U2j−1) by Lemma 3.15(a).

2Another expression for the Bismut curvature tensor on Hopf manifolds was given recently in [9].
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Proposition 5.6. For any i, j = 1, . . . , n, (i 6= j), the curvature endomorphism
Rb(U2i−1, U2j) is given by

Rb(U2i−1, U2j)U2i−1 = −(1− x2
2i−1 − x2

2i − x2
2j−1 − x2

2j)U2j

+
∑
k 6=i,j

(x2jx2k−1 − x2j−1x2k)U2k−1 +
∑
k 6=i,j

(x2j−1x2k−1 + x2jx2k)U2k

Rb(U2i−1, U2j)U2j−1 = −(1− x2
2i−1 − x2

2i − x2
2j−1 − x2

2j)U2i

+
∑
k 6=i,j

(x2ix2k−1 − x2i−1x2k)U2k−1 +
∑
k 6=i,j

(x2i−1x2k−1 + x2ix2k)U2k

Rb(U2i−1, U2j)U2k−1 = (x2j−1x2k − x2jx2k−1)U2i−1 + (x2j−1x2k−1 + x2jx2k)U2i

+ (x2i−1x2k − x2ix2k−1)U2j−1 + (x2i−1x2k−1 + x2ix2k)U2j

− 2(x2i−1x2j−1 + x2ix2j)U2k (k 6= i, j)

Moreover, Rb(U2i−1, U2j)U2r = J(Rb(U2i−1, U2j)U2r−1) by Lemma 3.15(a).

Proposition 5.7. For any i, j = 1, . . . , n, (i 6= j), the curvature endomorphism
Rb(U2i−1, U2j−1) is given by

Rb(U2i−1, U2j−1)U2i−1 = −(1− x2
2i−1 − x2

2i − x2
2j−1 − x2

2j)U2j−1

+
∑
k 6=i,j

(x2j−1x2k−1 + x2jx2k)U2k−1 +
∑
k 6=i,j

(x2j−1x2k − x2jx2k−1)U2k

Rb(U2i−1, U2j−1)U2j−1 = (1− x2
2i−1 − x2

2i − x2
2j−1 − x2

2j)U2i−1

−
∑
k 6=i,j

(x2i−1x2k−1 + x2ix2k)U2k−1 +
∑
k 6=i,j

(x2ix2k−1 − x2i−1x2k)U2k

Rb(U2i−1, U2j−1)U2k−1 = −(x2j−1x2k−1 + x2jx2k)U2i−1 + (x2j−1x2k − x2jx2k−1)U2i

+ (x2i−1x2k−1 + x2ix2k)U2j−1 + (x2ix2k−1 − x2i−1x2k)U2j

+ 2(x2i−1x2j − x2ix2j−1)U2k (k 6= i, j)

and Rb(U2i−1, U2j−1)U2r = J(Rb(U2i−1, U2j−1)U2r−1) by Lemma 3.15(a).

Remark 5.8. It follows from Lemma 3.15(c) that Rb(U2i, U2j) = Rb(U2i−1, U2j−1) for any
i 6= j.

As a consequence of Propositions 5.5, 5.6 and 5.7, we recover the familiar fact that the
Bismut connection on S1 × S3 is flat:

Corollary 5.9. On S1 × S3 the Bismut connection is flat, i.e., Rb ≡ 0.
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Remark 5.10. It was proved by Samelson in [35] that any compact Lie group of even
dimension admits a left invariant complex structure compatible with a bi-invariant metric.
Moreover, it was shown in [3, 22] that such Hermitian manifold is Bismut flat. We point
out that S1 × S2n−1 (with n ≥ 2) is a Lie group only for n = 2. In this case we have that
S1×S3 is isomorphic to S1×SU(2), and the Hermitian structure (J, g) is left-invariant (in
fact, g is bi-invariant), and it can be obtained with Samelson’s construction.

In what follows we will determine the holonomy group Holb(S1 × S2n−1) of the Bismut
connection ∇b. Since S1 × S2n−1 is connected, we can choose any point p as base point,

and it will be convenient for us to choose p =
(

1, 1√
2n

(1, . . . , 1)
)
∈ S1 × S2n−1. We will

use Theorem 2.1 in order to determine its Lie algebra holb. We begin with some auxiliary
results.

Lemma 5.11. For n ≥ 3, we have that:

(a) the set {Rb(U2i−1, U2j)p | 1 ≤ i < j ≤ n} is linearly independent.
(b) the set {Rb(U2i−1, U2j−1)p | 1 ≤ i < j ≤ n− 1} is linearly independent.

Proof. (a) It follows from Propositions 5.6, evaluating in p =
(

1, 1√
2n

(1, . . . , 1)
)

, that for

i 6= j we have

Rb(U2i−1, U2j)pU2i−1 = −n− 2

n
U2j +

1

n

∑
k 6=i,j

U2k,

Rb(U2i−1, U2j)pU2j−1 = −n− 2

n
U2i +

1

n

∑
k 6=i,j

U2k,

Rb(U2i−1, U2j)pU2k−1 =
1

n
U2i +

1

n
U2j −

2

n
U2k,

for k 6= i, j.

Let us consider a linear combination∑
i<j

cijR
b(U2i−1, U2j)p = 0.

Expanding g(
∑

i<j cijR
b(U2i−1, U2j)pU2r−1, U2s) = 0 for r < s, we obtain

(14) −(n− 2)crs +
∑
r<j 6=s

crj +
∑
i<r

cir +
∑
s<j

csj +
∑
r 6=i<s

cis = 0, 1 ≤ r < s ≤ n.

Therefore (14) defines a homogeneous linear system Mc = 0 of
(
n
2

)
equations with

(
n
2

)
unknowns ordered lexicographically. It turns out that the matrix M is symmetric, the
elements on the diagonal are all equal to −(n− 2), the elements off the diagonal are equal
to either 0 or 1, and all the rows and columns have the same sum, namely, n − 2. The(
n
2

)
×
(
n
2

)
-matrix M̃ = (M̃ij) given by:

M̃ij =


− 2n−6
n(n−2)

, if i = j,

− n−6
2n(n−2)

, if Mij = 1,

− 2
n(n−2)

, if Mij = 0.
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is the inverse of M , which means that the system Mc = 0 has the unique solution cij = 0
for all i < j. The proof of (a) is complete.

(b) It follows from Proposition 5.7, evaluating in p =
(

1, 1√
2n

(1, . . . , 1)
)

, that when i 6= j

we have

Rb(U2i−1, U2j−1)pU2i−1 = −n− 2

n
U2j−1 +

1

n

∑
k 6=i,j

U2k−1,

Rb(U2i−1, U2j−1)pU2j−1 =
n− 2

n
U2i−1 −

1

n

∑
k 6=i,j

U2k−1,

Rb(U2i−1, U2j−1)pU2r−1 = − 1

n
U2i−1 +

1

n
U2j−1,

for r 6= i, j.
Let us consider now a linear combination∑

i<j

′
cijR

b(U2i−1, U2j−1)p = 0,

where
∑′ means that the indices run up to n − 1, i.e. 1 ≤ i < j ≤ n − 1. Expanding

g(
∑
i<j

′
cijR

b(U2i−1, U2j−1)pU2r−1, U2s−1) = 0 for 1 ≤ r < s ≤ n− 1, we obtain

(15) −(n− 2)crs +
∑
r<j 6=s

′
crj −

∑
i<r

′
cir −

∑
s<j

′
csj +

∑
r 6=i<s

′
cis = 0.

Therefore (15) defines a homogeneous linear system Mc = 0 of
(
n−1

2

)
equations with(

n−1
2

)
unknowns ordered lexicographically. It turns out that the matrix M is symmetric,

the elements on the diagonal are all equal to −(n − 2) and the elements off the diagonal
are equal to either 0 or ±1. The

(
n−1

2

)
×
(
n−1

2

)
-matrix M̃ = (M̃ij) given by:

M̃ij =


− 3
n
, if i = j,

∓ 1
n
, if Mij = ±1,

0, if Mij = 0.

is the inverse of M , and therefore cij = 0 for all 1 ≤ i < j ≤ n − 1. The proof of (b) is
complete. �

Now we can prove the main result in this section.

Theorem 5.12. Let n ≥ 3 and λ > 1. If S1 × S2n−1 is equipped with the Vaisman
structure (Jλ, gλ) described above, then the associated Bismut connection ∇b has holonomy
group Holb(S1 × S2n−1) = U(n− 1).

Proof. We will compute, as before, the holonomy group Holb(S1 × S2n−1) (and its Lie

algebra holb := holb(S1 × S2n−1)) at the point p =
(

1, 1√
2n

(1, . . . , 1)
)
∈ S1 × S2n−1.

Let us recall first from Corollary 3.8 that Holb(S1 × S2n−1) ⊆ U(n − 1). Therefore
dim holb ≤ (n− 1)2.
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Now, according to Theorem 2.1, holb ⊆ u(n − 1) contains all the curvature operators
Rb(X, Y )p for any vector fields X, Y on S1 × S2n−1. In particular,

(16) {Rb(U2i−1, U2j)p | 1 ≤ i < j ≤ n} ∪ {Rb(U2i−1, U2j−1)p | 1 ≤ i < j ≤ n− 1} ⊂ holb.

It follows from Lemma 5.11 that each subset in the left-hand side of (16) is linearly inde-
pendent; moreover, it is easy to see that their union is also linearly independent. Hence

dim holb ≥
(
n

2

)
+

(
n− 1

2

)
= (n− 1)2.

Therefore dim holb = (n−1)2. This implies that holb = u(n−1). Since U(n−1) is connected
we have that Holb(S1 × S2n−1) = U(n− 1). �

We end this section this by writing down the Bismut Ricci curvature of the Hopf man-
ifolds we are considering. The following result follows in a straightforward manner from
Propositions 5.5, 5.6 and 5.7.

Proposition 5.13. The Bismut Ricci curvature on (S1 × S2n−1, Jλ, gλ) for λ > 1 is given
in terms of the orthonormal basis {U1, . . . , U2n} by

Ricb(U2r−1, U2s−1) = −2(n− 2)(x2r−1x2s−1 + x2rx2s − δrs),
Ricb(U2r−1, U2s) = −2(n− 2)(x2r−1x2s − x2rx2s−1).

Also, Ricb(U2r, U2s) = Ricb(U2r−1, U2s−1) for all r, s, according to Corollary 3.16.

Corollary 5.14. The Bismut connection associated to (S1 × S2n−1, Jλ, gλ) has Ricb = 0 if
and only if n = 2, and in this case ∇b is flat (see Corollary 5.9).

6. Bismut holonomy of LCK Oeljeklaus-Toma manifolds

In this section we study the Bismut holonomy of Oeljeklaus-Toma manifolds (OT man-
ifolds for short) admitting an LCK metric. OT manifolds appeared in [31], and they are
non-Kähler compact complex manifolds which arise from certain number fields which admit
s real embeddings and 2t complex embeddings (OT manifolds of type (s, t)). When t = 1
these OT manifolds admit LCK metrics. However, it was shown recently in [15, 16, 40]
that they do not admit any LCK metric when t ≥ 2.

It was proved in [23] that all OT manifolds are in fact solvmanifolds, whose complex
structure is induced by a left invariant one on the corresponding solvable Lie group. Using
this solvmanifold structure, Kasuya also showed in [23] that OT manifolds of any type do
not admit Vaisman metrics. Moreover, for OT manifolds of type (s, 1), the LCK Hermitian
structure is also induced by a left invariant one on the solvable Lie group. It can be deduced
from [23] that the Lie algebra g of the Lie group corresponding to an OT manifold of type
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(s, 1) has a basis {A1, . . . , As, B1, . . . , Bs, C1, C2} with Lie brackets given by3:

[Ai, Bi] = Bi, i = 1, . . . , s,

[Ai, C1] = −1

2
C1 + riC2,

[Ai, C2] = −riC1 −
1

2
C2,

for some real numbers ri ∈ R, i = 1, . . . , s. The complex structure J on g takes the
following expression:

JAi = Bi (i = 1, . . . , s), JC1 = C2,

and the fundamental 2-form is given by

ω = 2
∑
i

αi ∧ βi +
∑
i 6=j

αi ∧ βj + γ1 ∧ γ2,

where {α1, . . . , αs, β1, . . . , βs, γ1, γ2} is the dual basis of g∗. If g = ω(·, J ·) denotes the
corresponding Hermitian metric, then (g, J, g) is an LCK Lie algebra, with Lee form θ =
α1 + · · ·+ αs. Note that the non-zero values of the metric g, in terms of the basis of g, are
given by:

g(Ai, Ai) = g(Bi, Bi) = 2, g(Ai, Aj) = g(Bi, Bj) = 1, (i 6= j), g(C1, C1) = g(C2, C2) = 1.

Note that the vectors A and JA, g-dual to the Lee form θ and Jθ respectively, are given
by

A =
1

s+ 1
(A1 + · · ·+ As), JA =

1

s+ 1
(B1 + · · ·+Bs).

The main result of this section is Theorem 6.10 where we set the holonomy group of
OT manifolds of type (s, 1). Since these metrics are not Vaisman, one cannot expect a
reduction of the holonomy group as stated in Corollary 3.8. In fact, in Theorem 6.10 we
obtain the whole group U(s + 1) as holonomy group. In order to get this result, several
computations are needed. We start determining the curvature endomorphisms Rb. Using
the well-known Koszul formula for the computation of the Levi-Civita connection ∇g, we
obtain that ∇g, expressed in terms of the basis of g, is given by the following:

• ∇g
Ai
Aj = 0, ∀i, j

• ∇g
Ai
Bj = −1

2
Bi + 1

2
(1 + δij)JA

• ∇g
Ai
C1 = riC2

• ∇g
Ai
C2 = −riC1

• ∇g
Bi
Aj = −(1

2
+ δij)Bj + 1

2
(1 + δij)JA

• ∇g
Bi
Bj = (1 + δij)

[
1
2
(Ai + Aj)− A

]

• ∇g
Bi
Ck = 0, k = 1, 2

• ∇g
Ck
Ai = 1

2
Ck, k = 1, 2

• ∇g
Ck
Bi = 0, k = 1, 2

• ∇g
Ck
Ck = −1

2
A, k = 1, 2

• ∇g
Ci
Cj = 0, i 6= j.

Applying (6), we arrive at the following result:

Proposition 6.1. The Bismut connection of an OT manifold of type (s, 1), expressed in
terms of the basis {Ai, Bi, C1, C2} of the corresponding Lie algebra g, is given by

3Note that for s = 1 we obtain a Lie bracket isomorphic to the one in Example 4.12.
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• ∇b
Ai
Aj = 0 ∀i, j

• ∇b
Ai
C1 = riC2

• ∇b
Bi
Aj = (1 + δij)(−Bj + JA)

• ∇b
Bi
C1 = −1

2
C2

• ∇b
Ck
Ai = 1

2
Ck, k = 1, 2

• ∇b
C1
C1 = −1

2
A

• ∇b
C2
C1 = 1

2
JA

The missing values can be deduced from ∇b
XJY = J(∇b

XY ).

Using the previous proposition we obtain the following expressions for the curvature Rb.
The proof consists of long but standard computations.

Proposition 6.2. The curvature Rb of the Bismut connection on an OT manifold of type
(s, 1) is given by:

• Rb(Ai, Aj) = 0
• Rb(Ai, Bj) = 0 (i 6= j)
• Rb(Ai, Bi)Aj = (1 + δij)(Bj − JA)
• Rb(Ai, Bi)C1 = 1

2
C2

• Rb(Bi, Bj)Ak =
(1+δjk)Ai−(1+δik)Aj

s+1

• Rb(Bi, Bj)C1 = 0
• Rb(Ai, Ck)Aj = 1

4
Ck (∀i, j, k)

• Rb(Ai, C1)C1 = −1
4
A

• Rb(Ai, C2)C1 = 1
4
JA

• Rb(Bi, C1)Aj =
−s+1+2δij

4(s+1)
C2

• Rb(Bi, C1)C1 = 1
2(s+1)

Bi − 1
4
JA

• Rb(Bi, C2)Aj =
s−1−2δij

4(s+1)
C1

• Rb(Bi, C2)C1 = 1
2(s+1)

Ai − 1
4
A

• Rb(C1, C2)Ai = −1
2
JA

• Rb(C1, C2)C1 = s
2(s+1)

C2

The missing values are either 0 or can be deduced from the ones in this list using that
Rb(·, ·)J = JRb(·, ·).

Remark 6.3. It follows from Proposition 6.2 that the curvature operators Rb(Ai, C1) and
Rb(Ai, C2) are independent of i. We will denote simply

Rb
AC1 := Rb(Ai, C1), Rb

AC2 := Rb(Ai, C2),

for any i. Moreover, for s 6= 2, these operators verify a linear relation with other curvature
operators, since

Rb
AC1 =

1

s− 2

∑
i

Rb(Bi, C2), Rb
AC2 = − 1

s− 2

∑
i

Rb(Bi, C1).

We may now compute the holonomy algebra holb(M) of the Bismut connection associated
to the LCK structure on an OT manifold M = Γ\G of type (s, 1). Recall that holb(M) is
the smallest subalgebra of u(g) ∼= u(s + 1) containing the curvature operators Rb(X, Y ),
X, Y ∈ g, and being closed under commutators with ∇b

X , X ∈ g, due to Theorem 2.2.

For low dimensions, it is straightforward to verify that holb(M) = u(g), that is, there
is no reduction of the Bismut holonomy group. Indeed, computing all the corresponding
curvature operators and the commutators between any two of them we obtain:

Lemma 6.4. For s = 1 and s = 2, the holonomy algebra holb(M) of the Bismut connection
on an OT manifold M of type (s, 1) coincides with u(g).
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Note that the computations for the case s = 1 were carried out in Example 4.12.

Therefore, we assume from now on that s ≥ 3. Our strategy for computing the holonomy
consist on finding two sets of linearly independent homomorphisms belonging to holb(M)
(see Lemma 6.5 and Lemma 6.8) with a suitable number of elements.

Lemma 6.5. The elements of the subset

U := {Rb(Bi, C1), Rb(Bi, C2)}1≤i≤s ∪ {Rb(Bi, Bj)}1≤i<j≤s

of holb(M) are linearly independent.

Proof. Consider a linear combination of elements of U

T :=
∑

1≤i<j≤s

xijR
b(Bi, Bj) +

s∑
i=1

ciR
b(Bi, C1) +

s∑
i=1

diR
b(Bi, C2),

and assume T = 0.
For any k = 1, . . . , s, we look for the coefficient of C1 in T (Ak) = 0 and we obtain,

according to Proposition 6.2,

(s− 3)dk + (s− 1)
∑
i 6=k

di = 0.

This implies

(17) −2dk + (s− 1)
∑
i

di = 0,

and summing this equality over all k = 1, . . . , s, we get

−2
∑
k

dk + s(s− 1)
∑
k

dk = 0,

which is equivalent to

(s+ 1)(s− 2)
∑
k

dk = 0.

Since s ≥ 3, we deduce that
∑

k dk = 0, which together with (17) gives dk = 0 for all k.
Taking into account the coefficient of C2 in T (Ak) = 0 we obtain, in a similar fashion,

that ck = 0 for all k.
Now, T (Ak) = 0 is equivalent to

∑
i<j xijR

b(Bi, Bj)(Ak) = 0, which when expanded
gives ∑

i<j

xij(Ai − Aj) +
∑
i<k

xikAi −
∑
j>k

xkjAj = 0,

for all k. Note that the first sum in the equation above is independent of k, so that∑
i<k

xikAi −
∑
j>k

xkjAj = v

for some constant vector v ∈ span{A1, . . . , As}, for any k. Fix now a pair (p, q) with
1 ≤ p < q ≤ s, we have then∑

i<p

xipAi −
∑
j>p

xpjAj =
∑
i<q

xiqAi −
∑
j>q

xqjAj.
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The coefficient of Aq in the left-hand side is −xpq, whereas on the right-hand side is 0.
Therefore xpq = 0 for all 1 ≤ p < q ≤ s, and the proof is complete. �

According to Lemma 6.5, we can forget about the operators Rb
AC1 and Rb

AC2 when search-
ing for a basis of holb(M). We should also analyze the commutators between any two
curvature operators. We will prove that we need not compute all these commutators, but
only the ones appearing in the next result.

For any i = 1, . . . , s, let Si denote the endomorphism of g defined as follows:

Si(Aj) = δij

(
−sBj +

∑
k 6=j

Bk

)
, Si(C1) = −1

2
C2, SiJ = JSi.

It is easy to verify that Si is skew-symmetric, and therefore Si ∈ u(g). Moreover, the
following result relates them with the curvature operators Rb(Ai, Bi):

Lemma 6.6. The endomorphims {Si}1≤i≤s in u(g) are linearly independent and, further-
more,

span{Si}1≤i≤s = span{Rb(Ai, Bi)}1≤i≤s.

In particular, Si ∈ holb(M).

Proof. The fact that {S1, . . . , Ss} are linearly independent is very easy to verify. As for the
second statement, it is a consequence of the following expressions:

Rb(Ai, Bi) = − 1

s+ 1

(
2Si +

∑
k 6=i

Sk

)
,

and
Si = −sRb(Ai, Bi) +

∑
k 6=i

Rb(Ak, Bk).

�

Let us consider now the endomorphisms Tij ∈ holb(M), i 6= j, defined by

Tij = [Si, R
b(Bi, Bj)].

Direct computations prove the following:

Lemma 6.7. The operators Tij, i 6= j, act on g as follows:

• Tij(Ai) = 1
s+1

(
−sBi − sBj +

∑
k 6=i,j Bk

)
,

• Tij(Aj) = 1
s+1

(
−2sBi + 2

∑
k 6=iBk

)
,

• Tij(Al) = 1
s+1

(
−sBi +

∑
k 6=iBk

)
, for l 6= i, j,

• Tij(C1) = 0.

The missing values can be deduced from TijJ = JTij.
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Lemma 6.8. The elements of the subset

V := {Si}1≤i≤s ∪ {Rb(C1, C2)} ∪ {Tij}1≤i<j≤s

of holb(M) are linearly independent.

Proof. Let us consider a linear combination of elements of V

S :=
s∑
i=1

xiSi + yRb(C1, C2) +
∑

1≤i<j≤s

aijTij,

for some xi, y, aij ∈ R, and assume S = 0. Let us see first that y = 0.
It follows from S(C1) = 0 that

(18)
∑
i

xi =
s

s+ 1
y.

Fix now l ∈ {1, . . . , s}, and consider S(Al) = 0:

(19)

S(Al) = xl(−sBl +
∑
k 6=l

Bk)−
y

2(s+ 1)
(B1 + · · ·+Bs)

+ 1
s+1

∑
i<l ail(−2sBi + 2

∑
k 6=i

Bk)

+ 1
s+1

∑
j>l

alj(−sBl − sBj +
∑
k 6=l,j

Bk) +
1

s+ 1

∑
l 6=i<j 6=l

aij(−sBi +
∑
k 6=i

Bk)

= 0.

The coefficient of Bl in (19) is zero and, using Lemmas 6.6 and 6.7, it is given by

(20) −sxl −
y

2(s+ 1)
+

2

s+ 1
Xl −

s

s+ 1
Yl +

1

s+ 1
Zl = 0,

where
Xl =

∑
i<l

ail, Yl =
∑
j>l

alj, Zl =
∑

l 6=i<j 6=l

aij.

Note that Xl + Yl + Zl =
∑

i<j aij for all l and, moreover,

s∑
l=1

Xl =
∑
i<j

aij,

s∑
l=1

Yl =
∑
i<j

aij,

s∑
l=1

Zl = (s− 2)
∑
i<j

aij.

Summing (20) over l = 1, . . . , s and using (18) we arrive at

−s s

s+ 1
y − s y

2(s+ 1)
+

2

s+ 1

∑
i<j

aij −
s

s+ 1

∑
i<j

aij +
s− 2

s+ 1

∑
i<j

aij = 0.

From this we deduce
−s(2s+ 1)

2(s+ 1)
y = 0,

thus
y = 0.

Fixing again l ∈ {1, . . . , s}, we compute now the coefficient of Br in (19). Using Propo-
sition 6.2, Lemmas 6.6 and 6.7 and y = 0 we obtain the system:
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−sxl +
2

s+ 1
Xl −

s

s+ 1
Yl +

1

s+ 1
Zl = 0, for r = l,

xl − arl +
2

s+ 1
Xl +

1

s+ 1
Yl +

1

s+ 1
Zl = Yr, for r < l,(21)

xl − alr +
2

s+ 1
Xl +

1

s+ 1
Yl +

1

s+ 1
Zl = Yr, for r > l.

Summing all the equations in the system (21) we obtain

−xl −Xl − Yl +
2s

s+ 1
Xl −

1

s+ 1
Yl +

s

s+ 1
Zl =

∑
r 6=l

Yr,

and, since
∑

r 6=l Yr =
∑

r Yr − Yl =
∑

i<j aij − Yl, we deduce

(22) xl =
s− 1

s+ 1
Xl −

1

s+ 1
Yl +

s

s+ 1
Zl −

∑
i<j

aij.

Summing (22) over l = 1, . . . , s, and recalling (18) with y = 0, we get

0 =
∑
l

xl =
s∑
l=1

(
s− 1

s+ 1
Xl −

1

s+ 1
Yl +

s

s+ 1
Zl −

∑
i<j

aij

)
= −2

∑
i<j

aij.

Thus,

(23)
∑
i<j

aij = 0,

which is equivalent to
Xl + Yl + Zl = 0,

for all l. Now, replacing Zl = −Xl − Yl in (22) and using (23) we arrive at

(24) xl = − 1

s+ 1
Xl − Yl.

Now, if we replace this value of xl in the first equation of the system (21), we arrive at

(25) Xl + (s− 1)Yl = 0,

for all l = 1, . . . , s.

Claim: Xl = Yl = Zl = 0 for all l = 1, . . . , s. Observe that it suffices to prove that
Xl = Yl = 0.

The proof of the claim follows by induction on l. We begin with the case l = 1. It is
clear that X1 = 0, and it follows from (25) for l = 1 that Y1 = 0. The case l = 1 is proved.

Next, fix 1 < l ≤ s and assume that Xr = Yr = Zr = 0 for all r < l. With this
hypothesis, the equations corresponding to r < l in the system (21) can be written as

xl − arl +
1

s+ 1
Xl = 0.

Substituting the value of xl from (24), we obtain that

Yl = −arl.
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Summing over r < l, we obtain

(l − 1)Yl = −Xl,

which together with (25) gives

Xl = Yl = 0, for l ≤ s− 1.

For l = s we simply need to point out that Ys = 0, due to the very definition of Ys. It
follows from (25) that Xs = 0 and hence the claim is proved.

We notice next that the claim just proved and (24) imply that xl = 0 for all l. Now it is
clear from the system (21) that aij = 0 for all i < j. �

Lemma 6.9. The subset U ∪ V of holb(M) is linearly independent.

Proof. Analyzing the action on g of each of the operators in U ∪ V , it is easy to verify
that the linear independence of U ∪ V is equivalent to the linear independence of U and V
separately. Thus this result follows from Lemmas 6.5 and 6.8. �

With these lemmas we are able to finally prove the main result of this section.

Theorem 6.10. The holonomy group of the Bismut connection ∇b on an OT manifold M
of type (s, 1) (hence of dimension 2s+2) is Holb(M) = U(s+1), for any s ∈ N. Therefore,
there is no reduction of the Bismut holonomy.

Proof. If s = 1, 2, then holb(M) = u(s+ 1), according to Lemma 6.4.

For s ≥ 3, the cardinal of the subset U is 2s +
(
s
2

)
= s2+3s

2
, whereas the cardinal of V is

s+ 1 +
(
s
2

)
= s2+s+2

2
. Therefore, the cardinal of the subset of holb(M) given in Lemma 6.9

is
s2 + 3s

2
+
s2 + s+ 2

2
= (s+ 1)2,

so that dim holb(M) ≥ (s+ 1)2. On the other hand, we know that holb(M) is a subalgebra
of u(g) ∼= u(s+ 1), so that dim holb(M) ≤ (s+ 1)2. Therefore we arrive at

holb(M) = u(g) ∼= u(s+ 1).

Since U(s+ 1) is connected, this implies that Holb(M) = U(s+ 1), for all s ≥ 1. �

7. Gauduchon connections and the Vaisman condition

In the last section of the article we study the relation between the Gauduchon connections
on an LCK manifold and the Vaisman condition. In fact, we prove that if the Lee form of
a compact LCK manifold is non-zero and parallel with respect to a Gauduchon connection
∇t, then the LCK manifold is Vaisman and, moreover, t = −1. In other words, the Lee
form can only be parallel with respect to the Bismut connection and in this case it is also
parallel with respect to the Levi-Civita connection (recall Theorem 3.7).
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Theorem 7.1. Let (M,J, g) be a connected compact LCK manifold with corresponding Lee
form θ and let {∇t}t∈R be the family of associated Gauduchon connections (1). If ∇tθ = 0
for some t ∈ R then either:

(a) θ = 0, i.e., (M,J, g) is Kähler (and therefore ∇t = ∇g for all t), or
(b) (M,J, g) is Vaisman and t = −1 (therefore ∇−1 = ∇b is the Bismut connection).

Proof. As usual, let us denote by A the vector field on M which is g-dual to θ. Then it
follows from (1) that, for any X, Y ∈ X(M),

(∇t
Xθ)(Y ) = g(∇t

XA, Y )

= g(∇g
XA, Y )− t− 1

4
dω(JX, JA, JY )− t+ 1

4
dω(JX,A, Y ).

From (3) we obtain that dω(JX, JA, JY ) = c(X,A, Y ), where c is the torsion 3-form of
the corresponding Bismut connection. Taking now into account Corollary 3.3 we arrive at
dω(JX, JA, JY ) = 0 for any X, Y . As a consequence the expression for (∇t

Xθ)(Y ) becomes

(∇t
Xθ)(Y ) = g(∇g

XA, Y )− t+ 1

4
θ ∧ ω(JX,A, Y )

= g(∇g
XA, Y )− t+ 1

4

(
θ(JX)g(JA, Y ) + |A|2g(X, Y )− g(A,X)g(A, Y )

)
.

Therefore, if ∇tθ = 0 for some t ∈ R then

(26) ∇g
XA =

t+ 1

4

(
|A|2X − θ(X)A+ θ(JX)JA

)
for any vector field X on M . Note that the (1, 1)-tensor ∇gA is symmetric (in accordance
with θ being closed) and, moreover, it commutes with the complex structure J . Hence, it
follows from [30, Lemma 3] that A is holomorphic, i.e., LAJ = 0.

Next, we observe that, since ∇t is a metric connection and θ is ∇t-parallel, |A| is a
constant function. That is, |A| = c for some c ∈ R, c ≥ 0. If c = 0 then θ = 0 and therefore
(M,J, g) is Kähler.

Assume now c > 0. We have proved that A is holomorphic with constant length. Accord-
ing to [30, Theorem 1(i)], we have that the compact LCK manifold (M,J, g) is actually Vais-
man, that is, ∇gA = 0. Choosing 0 6= v ∈ TpM for some p ∈ M with θp(v) = θp(Jpv) = 0,
it follows from (26) that

0 = ∇g
vA =

t+ 1

4
c2v.

Thus t = −1, and the proof is complete. �

Example 7.2. There exist compact LCK manifolds which admit a Hermitian connection
with respect to which the Lee form is parallel, but the Hermitian structure is not Vaisman.
Indeed, consider a solvmanifold M = Γ\G from Example 4.12 equipped with the LCK
structure exhibited there. We can define a Hermitian connection ∇ on G in terms of the
basis {e1, . . . , e4} of left invariant vector fields simply by setting

∇e1e3 = e4, ∇e1e4 = −e3, ∇eiej = 0,

for all other possible choices of (i, j). The Lee form on G is parallel with respect to ∇ and
the same happens on M with the induced connection.
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We can generalize Theorem 7.1 to a larger class of metric connections. Indeed, in [32]
a 2-parameter family {∇ε,ρ | (ε, ρ) ∈ R2} of metric connections was introduced on any
Hermitian manifold. Inspired by formula (1), these connections are defined by

(27) g(∇ε,ρ
X Y, Z) = g(∇g

XY, Z)− ε dω(JX, JY, JZ)− ρ dω(JX, Y, Z).

Note that the Gauduchon connections ∇t correspond to ∇ε,ρ with ε+ρ = 1
2

and t = 1−4ε.

In particular, ∇b = ∇1/2,0; moreover, ∇g = ∇0,0.
It is clear that all these connections are metric, i.e., ∇ε,ρg = 0, since the expression

ε dω(JX, JY, JZ) + ρ dω(JX, Y, Z) is skew-symmetric in Y, Z. However, it is not true that
they are all compatible with J : it was proved in [32] that

∇ε,ρJ = −2

(
ε+ ρ− 1

2

)
∇gJ ;

therefore, if (M,J, g) is not Kähler, then ∇ε,ρ is a Hermitian connection if and only if
ε+ ρ = 1

2
, i.e., it is a Gauduchon connection.

With the exact same proof of Theorem 7.1 we can show the following result.

Theorem 7.3. Let (M,J, g) be a connected compact LCK manifold with corresponding Lee
form θ and consider the metric connections ∇ε,ρ on M defined as in (27). If ∇ε,ρθ = 0 for
some (ε, ρ) ∈ R2 then either:

(a) θ = 0, i.e., (M,J, g) is Kähler (and therefore ∇ε,ρ = ∇g for all (ε, ρ)), or
(b) (M,J, g) is Vaisman and ρ = 0.

We point out that on a Vaisman manifold (M,J, g) with Lee form θ the line {∇ε,0 | ε ∈ R}
of metric connections goes through ∇g (for ε = 0) and ∇b (for ε = 1/2) and, moreover, θ
is parallel with respect to each one of them.

Corollary 7.4. On a Vaisman manifold (M,J, g) with Lee form θ there exist infinite metric
connections which respect to which θ is parallel.
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