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Up to now, the effects of having heterogeneous networks of contacts have been studied mostly for diseases
which are not persistent in time, i.e., for diseases where the infectious period can be considered very small
compared to the lifetime of an individual. Moreover, all these previous results have been obtained for closed
populations, where the number of individuals does not change during the whole duration of the epidemics. Here,
we go one step further and analyze, both analytically and numerically, a radically different kind of diseases:
those that are persistent and can last for an individual’s lifetime. To be more specific, we particularize to the
case of Tuberculosis’ (TB) infection dynamics, where the infection remains latent for a period of time before
showing up and spreading to other individuals. We introducean epidemiological model for TB-like persistent
infections taking into account the heterogeneity inherentto the population structure. This sort of dynamics
introduces new analytical and numerical challenges that weare able to sort out. Our results show that also for
persistent diseases the epidemic threshold depends on the ratio of the first two moments of the degree distribution
so that it goes to zero in a class of scale-free networks when the system approaches the thermodynamic limit.

PACS numbers: 87.23.Ge, 89.20.-a, 89.75.Fb

I. INTRODUCTION

Disease spreading has been the subject of intense research since long time ago [1–3]. Our current knowledge comprises
mathematical models that have allowed to better understandhow an epidemic spreads and to design more efficient immunization
and vaccination policies [1–3]. These models have gained incomplexity in recent years capitalizing on data collections which
have provided information on the local and global patterns of relationships in the population [4–6]. In particular, with the advent
of modern computational resources and tracking systems, itis now feasible to contact-trace the way the epidemic spreads or at
least to predict the paths that a given pathogen might follow. In this way, some of the assumptions at the basis of the theoretical
models that were difficult to test -the backbone through which the diseases are transmitted- are now more accurately incorporated
into epidemiological models [7–11].

Strikingly, the systems on top of which diseases spread showcommon nontrivial topological and statistical properties[12, 13].
A large number of networks of contacts in real-world social,biological and technological systems have been found to be best
described by the so-called scale-free (SF) networks. In SF networks, the number of contacts or connections of a node withother
nodes in the system, the degree (or connectivity)k, follows a power law distribution,P (k) ∼ k−γ . Recent studies have shown
that the SF topology has a great impact on the dynamics and function of the system under study [12–15]. The reason is that,
at variance with homogeneous or regular networks, SF architectures are a limiting case of heterogeneity where the connectivity
fluctuations diverges if2 < γ ≤ 3 as the system size tends to infinity (the thermodynamic limit). This means that there are
nodes in the network which has an eventually unbounded number of connections compared to the average degree. Examples of
such networks include the Internet [16, 17], the world-wide-web (WWW) [18], food-webs, and metabolic or protein networks
[13, 19].

In the context of disease spreading, SF networks lead to a vanishing epidemic threshold in the limit of infinite population when
γ ≤ 3 [20–23]. This is because the ratio〈k〉/〈k2〉 determines the epidemic threshold above which the outbreakoccurs. When
2 < γ ≤ 3, 〈k〉 is finite while〈k2〉 goes to infinity, that is, the transmission probability required for the infection to spread goes to
zero. Moreover, the previous result holds both for the Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Removed
(SIR) epidemiological models [20–22].

In this paper, we will deal with a different kind of diseases -those that are persistent in time and shows a latent period that
can be as large as an individual’s lifetime. Our first aim is toenlarge the epidemiological framework for complex networks
reported previously for the SIS model [20] and proposed as well for the SIR model [21, 22] by integrating the spreading
dynamics of persistent diseases within it. With this purpose, we consider a variation of the Susceptible-Exposed-Infected-
Removed model [24] on complex heterogeneous networks. As wewill see, this kind of dynamics introduces new challenges
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essentially different to other successfully treated before. In particular, as the latent period is high enough, we shall work with an
open system in which new individuals are born and others deadfor causes not directly related to the spreading of the disease.
We present novel analytical and numerical methods that allow us to obtain the epidemic threshold for this kind of diseasein
heterogeneous populations. Moreover, we introduce a numerical method that is well-suited to deal with the kind of problems we
face. Our results point out that also for persistent infections the virtually unbounded fluctuations of the degree distribution have
an important enhancing effect on the epidemic spreading.

II. THE MODEL

To be more precise and without loss of generality, we will particularize our model to one case of persistent infection -the most
threatening one which is tuberculosis (TB). TB is an old disease whose world-wide prevalence had been diminishing even before
vaccination and prophylaxis strategies were firstly accomplished [25–27]. Its recent return in developing countries,mainly in
Southeast Asia, have attracted renewed interest in it. The current world estimate of prevalence is about 33% while the number
of deaths per year that it is causing reaches more than 3 million people [28]. Depending of the kind and the intensity of immune
response that the host immune system performs after initialinfection with M. tuberculosis bacillus, the individual can suffer
latent infection, (in which the bacteria are under a growth-arrest regime and the individual neither suffer any clinical symptom
nor becomes infectious) or active infection, where the hostsuffers clinical symptoms and can transmit the pathogen by air
[29, 30]. Latently infected individuals can, generally after an immune-depression episode, reach the active phase. Estimating the
probability of developing direct active infection after a contact, or alternatively, the lifetime’s risk for a latent infected individual
to evolve into the active phase, are not easy tasks. However,it is generally accepted that only 5-10% of the infections directly
produce active TB [29, 30], while the ranges concerning the estimation of typical “half-life” of latent state rounds about 500
years [24].

The spreading dynamics of TB like diseases has been studied in recent years. However, to the best of our knowledge,
these works assume the homogeneous mixing hypothesis, thatis, a perfectly homogeneous system in which all individualsare
dynamically equivalent. As mentioned above, many of the systems on top of which diseases spread, are better described by
scale-free connectivity patterns. Therefore, in what follows, our main objective will be to assemble a basic model fitted for
tuberculosis spreading that firstly takes into account the heterogeneity in the distribution of the networks of contacts. We note
that the increasingly alarming situation about TB epidemiology evidences the need to increase the effort in TB researchin a
global way. In the context of the study of its epidemiology, new models must be developed in order to gain predictive skills,
incorporating the recent theoretical advances referring to disease spreading on complex heterogeneous substrates aswell as
meta-population approaches and new computational tools for numerical analysis and simulation. In this sense, ours is afirst
contribution that addresses one of the most important parameters in epidemiological description: the epidemic threshold.

Let us then introduce our model. We consider that individuals in the population are compartmentalized into three groups:
healthy -U(t)-, infected but not infectious -or latently infectedL(t)- and sick individualsT (t) which are infected and are
infectious as well. The transition between these subpopulations proceeds in such a way that a healthy individual acquires the
bacteria through a contact with an infectious subject with probabilityλ. In its turn, this newly infected individual may develop
the disease directly with probabilityp. However, the most common case is the establishment of a dynamic equilibrium between
the bacillus and the host’s immune system, which allows the survival of the former inside the latter. When this happens, newly
infected individuals become latently infected, because despite harboring the bacteria in blood, neither becomes sicknor is able
to infect others.

On the other hand, after a certain period of time (which may beseveral years) and usually following an episode of immuno-
suppression, the balance between the bacterium and its hostcan be broken. In this case, the bacteria grow and the individual
falls ill beginning to develop the clinical symptoms of the disease. In addition, if the infection attacks the lungs (pulmonary TB),
the bacillus is present in the sputum, making the guest infectious.

The dynamics of the disease, in a well mixed population, is then described by the following system of nonlinear differential
equations:

dU(t)

dt
= bN(t) − λβU(t)

T (t)

N(t)
− µU(t),

dL(t)

dt
= (1 − p)λβU(t)

T (t)

N(t)
− (µ + r)L(t), (1)

dT (t)

dt
= pλβU(t)

T (t)

N(t)
+ rL(t) − (µ + µtb)T (t),

in which:



3

N(t) = U(t) + L(t) + T (t) represents the total population at timet,

β is the number of contacts per time unit,

λ is the probability that the bacteria is transmitted to a new host after a contact with an infectious subject,

b is the birth rate per capita and per unit time,

µ is the natural death rate per capita and unit time,

µtb is the rate of disease-related deaths per capita and unit time,

r is the transition frequency of latent infection (i.e., the probability that a latently infected individual becomes infectious),

with the closure relationship:

dN(t)

dt
= (b − µ)N(t) − µtbT (t). (2)

The model above is a variation of the archetypal SIR model to which a fourth class has been added (latency class L). This kind
of model has been largely treated in the literature in its well-mixed version, and it is frequently referred as SEIR model. As a
first step, in this work, we will identify the removed individuals mostly with dead ones, and therefore we do not consider the
possibility of natural or medical recovery (this simplification is in part justified by the large latency period of infected individuals
and the constant flow of newborns into the system). A more refined model would consist of introducing such eventual recovery
fluxes in the model, as well as the possibility of further relapses (the so called endogenous reactivation). These phenomenologies
might be important mainly for diseases (like TB) for which the only feasible treatment in many areas consists of supplying large
series of antibiotics. Thinking on the tuberculosis case, further refinements, like the inclusion of varieties of less infectious
extra-pulmonary diseases [31], could also have consequences on the disease’s dynamics.

III. STRUCTURED POPULATIONS

A. Dynamics

The previous system of differential equations describes the dynamics of the epidemics in the well-mixed case. However,as
argued above, the number of contacts of a given individual ina population can vary, which is reflected in an heterogeneous
distribution of the number of contacts in the system. To account for this fact, we next consider a structured population described
by a connectivity distributionP (k). The system of Eqs (1) has to be modified accordingly. Assuming that all individuals with
the same number of contacts, i.e., belonging to the same connectivity classk, are dynamically equivalent, the new system of
differential equations are formulated for each degree class. Therefore, for a structured population, we have that:

Nk(t) = P (k)N(t), (3)

with:

Uk(t) + Lk(t) + Tk(t) = Nk(t). (4)

Moreover, it is convenient to express the previous equations in terms of densities, also defined within each connectivity class:

uk(t) =
Uk(t)

Nk(t)
,

lk(t) =
Lk(t)

Nk(t)
, (5)

tk(t) =
Tk(t)

Nk(t)
,

so that the following closure relation for any value ofk is verified:

uk(t) + lk(t) + tk(t) = 1 ∀(k, t). (6)

On the other hand, the probabilityΘ that any given link points to an infectious individual is given by:
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Θ(t) =

∑

k kTk(t)
∑

k kNk(t)
=

∑

k kP (k)tk(t)

〈k〉
, (7)

which leads to the following set of equations that describesthe dynamics within each connectivity class:

dUk(t)

dt
= bP (k)N − λkΘ(t)Uk(t) − µUk(t),

dLk(t)

dt
= (1 − p)λkΘ(t)Uk(t) − (µ + r)Lk(t), (8)

dTk(t)

dt
= pλkΘ(t)Uk(t) + rLk(t) − (µ + µtb)Tk(t).

Finally, the number of individuals with connectivityk evolves according to:

dNk(t)

dt
= (b − µ)Nk(t) − µtbTk(t) = (b − µ − µtbtk)Nk(t). (9)

At this point, and building on the previous equation, it is important to point out a feature of the model: the influence of the
infection dynamics on the connectivity distributionP (k). First, if we add the above equation for allk, we obtain that the total
population evolves as:

dN(t)

dt
= (b − µ)N(t) − µtb

∑

k

Tk(t) =

(

b − µ − µtb

∑

k

P (k)tk

)

N(t). (10)

However, if we substituteNk(t) = P (k)N(t) directly into Eq. (9) and assumeP (k) to be constant, we would arrive to:

P (k)
dN(t)

dt
= P (k) (b − µ − µtbtk)N(t).

The last expression is only compatible with Eq. (10) under the unrealistic assumption that all connectivity classes have the
same proportion of sick individuals. We must therefore assume that the distribution of connectivity is also a function of time:
P (k, t), and therefore:

dNk(t)

dt
=

d[P (k, t)N(t)]

dt
= N(t)

dP (k, t)

dt
+ P (k, t)

dN(t)

dt
, (11)

so, if we substitute Eq. (11) into Eq. (9) we get:

N(t)
dP (k, t)

dt
+ P (k, t)

dN(t)

dt
= P (k) (b − µ − µtbtk)N(t),

expression from which, if we replacedN(t)/dt from Eq. (10), we get the temporal evolution ofP (k, t) as:

dP (k, t)

dt
= −P (k, t)µtb [tk(t) − 〈tk〉(t)] , (12)

where

〈tk〉(t) =
∑

k

P (k, t)tk(t). (13)

Reformulating the equations in terms of densities using thedefinitions of the densities given above, Eqs. (8) become

duk(t)

dt
= b − uk(t)(b + λkΘ(t) − µtbtk(t)),

dlk(t)

dt
= (1 − p)λkΘ(t)uk(t) − (b + r)lk(t) + µtblk(t)tk(t), (14)

dtk(t)

dt
= pλkΘ(t)uk(t) + rlk(t) − (b + µtb)tk(t) + µtbtk(t)2.
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B. Evolution of the degree distribution

At this point it is appropriate to point out one aspect that will hinder any numerical characterization of the epidemic threshold.
Our main goal will be to calculate both numerically and analytically the critical valueλc beyond which the population presents
an endemic proportion of sicks individuals. However, we expectλc to be dependent on the ratio〈k〉〈k2〉 , which is in turn a function
of the connectivity distributionP (k). The degree distribution, as previously shown, changes in time as the dynamics of infection
progresses. As we should see, we can handle this time dependence analytically, but we should be forced to design a simulation
method to account for the rate of births and deaths and the effects of these two processes on the degree distribution.

The aforementioned features might lead to a situation in which the infection dynamics would modify the underlying structure
of the network through which the disease is being spread. Therefore,λc could also vary as one expects it to be intrinsically
related to the first two moments of a seemingly time-dependent degree distribution. The reason why we consider the distribution
of contacts per unit time as heterogeneous, even for the current airborne-transmitted disease is based on the observation that
the number of contacts a person can have per unit of time is subjected to two sources of heterogeneity. Firstly, what we can
call geo-demographic, macroscopicheterogeneity, in which the number of contacts depends on the population density in the
region in which an individual inhabits. Secondly, at a moreindividual, microscopiclevel, the heterogeneity arises because the
number of contacts depends, in a region of constant population density (i.e., a town or neighborhood in a city), on the daily
activity pattern of the individual within that region. These two factors define, ultimately, the functionP (k). Having that said,
the assumption implicitly incorporated in the first equation of system (8) does not hold. Note that this equation impliesthat the
connectivity of individuals is hereditary and therefore that the number of births within eachk class equals the birth rate times
the number of individuals within eachk class,Nk = P (k, t)N .

The above situation would be equivalent to assume that the dynamics of the disease being studied is the only one that influences
the demographic structure of a population, which is not truesince it is clear that there are countless cultural, economic and social
factors that ultimately define the above two levels of heterogeneity. We therefore assume in what follows that the newborns of
each generation are distributed among thek classes according to an invariant distribution function, which we further assume
to be the initial degree distribution of the original network: P (k, to). As we shall see, this assumption, besides being more
plausible, has the advantage that makes the connectivity distribution to be roughly stable, and so will be the critical valueλc.

So, we have the following reformulation of the system of differential equations (8):

dUk(t)

dt
= bP (k, to)N − λkΘ(t)Uk(t) − µUk(t),

dLk(t)

dt
= (1 − p)λkΘ(t)Uk(t) − (µ + r)Lk(t), (15)

dTk(t)

dt
= pλkΘ(t)Uk(t) + rLk(t) − (µ + µtb)Tk(t),

with the definition of the number of individuals in each classof connectivity:

Nk(t) = N(t)P (k, t), (16)

and inside each class:

Uk(t) = Nk(t)uk(t),

Lk(t) = Nk(t)lk(t), (17)

Tk(t) = Nk(t)tk(t).

Now the total population within each connectivity class verifies:

dNk(t)

dt
= bNP (k, to) − µNP (k, t) − µtbTk(t), (18)

so that, if we add ink, the last modification has no effect on the variation of the total volume of the population. The temporal
evolution of the degree distribution is now given as:

dP (k, t)

dt
= b [P (k, to) − P (k, t)] − P (k, t)µtb [tk(t) − 〈tk〉(t)] . (19)
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Finally, writing the equations in terms of the densities we get

duk(t)

dt
= b

P (k, to)

P (k, t)
(1 − uk(t)) − uk(t) (λkΘ(t) − µtbtk(t)) ,

dlk(t)

dt
= (1 − p)λkΘ(t)uk(t) −

(

b
P (k, to)

P (k, t)
+ r

)

lk(t)+

+µtblk(t)tk(t), (20)

dtk(t)

dt
= pλkΘ(t)uk(t) + rlk(t) −

(

b
P (k, to)

P (k, t)
+ µtb

)

tk(t) + µtbtk(t)2.

C. Characterization of the equilibrium points.

The previous set of differential equations tells us how the different densities of interest evolves within each connectivity class.
Their corresponding macroscopic quantities are defined as

〈u〉(t) =
∑

kP (k, t)uk(t),

〈l〉(t) =
∑

kP (k, t)lk(t), (21)

〈t〉(t) =
∑

kP (k, t)tk(t),

where〈u〉(t), 〈l〉(t) and〈t〉(t) are the mean densities of healthy, latent and sick individuals, respectively.
Let us now go one step further and characterize the equilibrium points. The magnitudes of interest are the average densities,

so that an equilibrium point(〈u〉∗, 〈l〉∗, 〈t〉∗) must verify by definition:
(

d〈u〉∗

dt
,
d〈l〉∗

dt
,
d〈t〉∗

dt

)

= (0, 0, 0).

We also impose a further constraint which is that the degree distribution of the network is stationary, that is:

dP (k)∗

dt
= 0 ∀k.

At this point one must ask whether macroscopic stability also implies stability within each connectivity class. The answer is
yes, if we also demand stability of the degree distribution.Admittedly, if we equate expression (19) to zero and solve for the
stationaryP (k, t)∗ we get:

P (k, t)∗ =
bP (k, to)

b + µtb(t∗k − 〈t〉∗)
,

which shows that this value depends on the microscopic scaletk. Therefore, the stability of the degree distribution imposes a
stationary condition ontk for all k, which in its turns extends to the other densitiesl∗k andu∗

k. Hence, we have:
(

du∗
k

dt
,
dl∗k
dt

,
dt∗k
dt

)

= (0, 0, 0) ∀k.

The above condition is trivially satisfied for the solution(u∗
k, l∗k, t∗k) = (1, 0, 0) ∀k, which leads to a degree distribution exactly as

the initial distribution. We next analyze the stability of this solution, which shall allow us to characterize the epidemic threshold.

D. Epidemic threshold

As stated before, in this section we will study the stabilityof the solution(u∗
k, l∗k, t∗k) = (1, 0, 0) ∀k. At this point, as no latent

or infected individuals are introduced in the network, the degree distribution does not change in time; so thatP (k)∗ = P (k, t) =
P (k, to). This situation allows to work with the system of differential equations given by (14) instead of working with the more
general case given by the system (20).
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1. Casep = 1

For simplicity and to gain some preliminary insight into theproblem, we first study the casep = 1, which means that there is
no latent phase (i.e., the latent subpopulation disappears, lk = 0 ∀k). Usinguk + tk = 1 we get,

duk

dt
= b − uk(b + λkΘ − µtb) − µtbt

2
k,

where we have omitted temporal dependences, as we will do from now on. Looking for the stationary solution, we have that the
conditionduk

dt
= 0 implies:

uk = −

(

1

2µtb

)

(

b + λkΘ − µtb ±
√

(b + λkΘ − µtb)2 + 4bµtb

)

,

from which the meaningful solution is the one with the negative sign. The previous expression is consistent with the meaning of
u∗ since we recover the expected resultu∗ = 1 whenΘ = 0. Moreover, if we calculate the derivative with respect toΘ we get:

du∗
k(Θ)

dΘ
=

λk

2µtb

(

−1 +
b + λkΘ − µtb

√

(b + λkΘ − µtb)2 + 4bµtb

)

< 0,

which guarantees thatu∗ will always be less than unity and therefore is a real, valid solution. The study of the value ofΘ in the
steady state help us to identify the epidemic threshold. We write:

Θ∗ =
1

〈k〉

∑

k

kP (k)t∗k = 1 −
1

〈k〉

∑

k

kP (k)u∗
k,

which, after substitutingu∗
k for its value, leads to:

Θ∗ = f(Θ) =
1

2
−

b

2µtb
+

λ〈k2〉

2µtb〈k〉
Θ−

−
1

2µtb〈k〉

∑

k

kP (k)
√

(b + λkΘ − µtb)2 + 4bµtb.

The graphical interpretation of the above equation indicates that the existence of an equilibrium point in whichΘ∗ > 0 is
equivalent to the existence of a point at whichf(Θ) crosses the bisector of the first quadrant. Evaluating the second derivative
of f(Θ) one gets:

d2f(Θ)

dΘ2
=

−2bλ2

〈k〉

∑

k

P (k)k3

[(b + λkΘ − µtb)2 + 4bµtb]
< 0,

which ensures that the condition for the existence of such intersection is reduced to:
(

df(Θ)

dΘ

)

Θ=0

=
λ〈k2〉

〈k〉

1

b + µtb

= 1,

from which the epidemic threshold is derived as:

λc =
(b + µtb)〈k〉

〈k2〉
.

Note that apart from the factor(b + µtb), the previous result, formally coincides with the epidemicthreshold of the SIR model.

2. Casep 6= 1

This is a somewhat more involved case. For structured populations, the resolution of the system of differential equations
(20) cannot be done explicitly. We next find the epidemic threshold for the casep 6= 1 using two approaches. On one hand,
we study the time derivative ofΘ. On the other hand, we will also make use of the singularity ofthe Jacobian at the point
(uk, lk, tk) = (1, 0, 0) to argue that the expression for the critical threshold is given by:

(λ)c =
〈k〉

〈k2〉

(r + b)(µtb + b)

pb + r
. (22)
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a. Time evolution ofΘ in populations with a low number of sicks.A first approach to characterize the epidemic threshold
in heterogeneous networks whenp 6= 1 is to study the sign of the derivative ofΘ at the onset of an epidemic outbreak. We
consider an initially healthy population in which a small proportion of infectious individuals is introduced so thattk << 1 ∀k.
The derivative ofΘ is:

(

dΘ

dt

)

Θ∼0

=

∑

k P (k)k dtk

dt

〈k〉
+

∑

k tkk dP (k)
dt

〈k〉
−

−

[∑

k P (k)ktk
〈k〉

]

[

∑

k k dP (k)
dt

〈k〉

]

which, after substitution of the values of the derivatives of P (k, t) andtk(t) leads to:

(

dΘ

dt

)

Θ∼0

=

∑

k P (k)klk
〈k〉

+ pλΘ

∑

k P (k)k2uk

〈k〉
− (b + µtb) Θ + µtbΘ

2.

At this point we make two simplifications. The first and most easily justifiable is to neglect the termΘ2. The second is related to
the presence oflk in the above equation, that we have to transform in a dependency with respect totk. Specifically, we assume
to be sufficiently close to the stationary point(uk, lk, tk) = (1, 0, 0) as to be able to assume that the three derivatives vanish. In
other words, and focusing our attention on latent and sick classes, we assume that:

(

dlk
dt

)

Θ∼0

= (1 − p)λkΘuk − (b + r)lk + µtblktk ≃ 0,

(

dtk
dt

)

Θ∼0

= pλkΘuk + rlk − (b + µtb)tk + µtbt
2
k ≃ 0,

from which:

lk =
(1 − p)(b + µtb) tk − (1 − p)µtbt

2
k

r + pb − µtbptk
=

(1 − p)(b + µtb)

r + pb
tk + O(t2k),

which allows to express the derivative ofΘ as:
(

dΘ

dt

)

Θ∼0

= Θ

[

r (1 − p)(b + µtb)

r + pb
− (b + µtb)+

+pλ

∑

k P (k)k2uk

〈k〉

]

.

In the limit uk ≃ 1 ∀k the third term within brackets is the ratio〈k2〉/〈k〉, from which the epidemic threshold condition may be
derived as:

(

dΘ

dt

)

Θ∼0

= Θ

[

r (1 − p)(b + µtb)

r + pb
− (b + µtb) + pλc

〈k2〉

〈k〉

]

= 0,

finally leading to the expected expression for the threshold:

λc =
〈k〉

〈k2〉

(r + b)(µtb + b)

pb + r
. (23)

b. Analysis of the JacobianWhile for well-mixed populations the condition of singularity of the Jacobian allows to get
the epidemic threshold in a straightforward way, for heterogeneous populations the analysis of the Jacobian is a difficult task
becauseΘ is a function of each and every one of thetk ’s. This translates into the need of calculating a determinant whose order
is three times the number of connectivity classes. What we can reasonably do is to verify is the threshold condition is verified
for systems in which there are two or three different connectivity classes. In the first case in which only two different classes of
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FIG. 1: Set of allowed transitions in the epidemic model within each connectivity class.

connectivity exist, the Jacobian is just a quite distasteful 6x6 determinant that, after some cumbersome and lengthy algebra, can
be reduced to the expression:

J = b2(b + r)(b + µtb)

[

(b + r)(b + µtb) +
λ〈k2〉

〈k〉
(pb + r)

]

,

which equated to zero leads again to the previously obtainedexpression for the epidemic threshold. If we instead consider
a population with three degree classes, the algebraic complexity of the problem largely increases as we now have to solvea
determinant of size 9x9. However, we can proceed as before getting the following expression for the Jacobian:

J = b3(b + r)2(b + µtb)
2

[

(b + r)(b + µtb) +
λ〈k2〉

〈k〉
(pb + r)

]

.

This leads us to the sensible conjecture that increasing thenumber of connectivity classes does not add new roots to the Jacobian,
but it only would increase the degeneracy of the non-interesting solutionsb = 0, b = −r andb = −µtb.

E. Numerical simulations

When designing numerical simulations to inspect the dynamics of the system under study, we have two difficulties not previ-
ously addressed in the literature. These numerical issues with which we have to deal come from the fact that we have a system
that is simultaneously open and structured. As a result of dealing with an open system, new individuals are being added to
the population at a rate given by the birth rate. Additionally, these new individuals must enter the network of contacts with
a predefined connectivity. While deciding how many nodes ournew individuals connect to is not a problem, it certainly is to
decide what are those nodes the newcomers will be linked to, as this will impact the degree distribution in a nontrivial way. This
is an unavoidable numerical complication that we should face relentlessly if the analytical calculations are to be compared with
Monte Carlo simulations.

To this end, we have adapted a simulation method based on transition probabilities first proposed in [32] for SIR models
in complex networks. The numerical approach considers all transitions between states that take place during the dynamical
evolution of the subpopulations, defined by the system of differential equations (20). When dealing with structured populations,
these transition rates depend, in general, on the connectivity class within which they occur. Moreover, within eachk-class seven
transitions are possible (see Fig. 1):

- Birth of healthy individuals,

- Natural death of healthy individuals,

- Natural death of latently infected individuals,

- Natural or disease-related death of sick individuals,

- Transition from a healthy to the latent state,

- Transition from a healthy to the sick (infectious) state,

- Transition from a latent to the sick (infectious) state.
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FIG. 2: Stationary proportion of sick individuals as a function of λ (∈ [0.25, 0.5]) for p = 0.07, r = 0.002, µtb = 0.2, µ = 0.009 and
b = 0.01. The arrow marks the position of the epidemic threshold (λc = 0.305) as given by analytical calculations using the previous values
for the parameters and the degree distribution. Error bars are smaller than symbol size. The initial size of the network,characterized by a
degree distributionP (k, to) ∼ k−3, is N0 = 106. Each point is an average over at least 1000 values of〈t〉∗.

Each of these transitions is characterized by a characteristic transition rateωi,k that can be directly derived from the system of
equations that characterizes the rate at which they occur within the classk as:

ω1,k = bNP (k, to)
ω2,k = µNP (k, t)uk

ω3,k = µNP (k, t)lk
ω4,k = (µ + µtb)NP (k, t)tk

ω5,k = (1 − p)λkNP (k, t)ukΘ
ω6,k = pλkNP (k, t)ukΘ

ω7,k = rNP (k, t)lk

Similarly, we define the sum of all these transition rates as the average rate at whichonetransition (of any kind) occurs:

Ω =
∑

i,k

ωi,k. (24)

This average transition rate in its turn defines the characteristic or average timeτ elapsed between any two consecutive transi-
tions, the latter being defined as the inverse ofΩ:

τ =
1

Ω
. (25)

Given the previous definitions, the Monte Carlo algorithm isimplemented in such a way that at each MC step (of durationτ )
one single transition takes place. Finally, the probability Πi,k that a given transition actually happens, is calculated as:

Πi,k =
ωi,k

Ω
= τωi,k, (26)

that determines which of all possible transitions is realized at each time stepτ .
We have made extensive numerical simulations of the model starting from an initial population made up ofN ≃ 106 in-

dividuals, whose network of contacts follows an initial degree distributionP (k) ≃ k−3. Moreover, every newborn joins the
system with a degree that verifies the same connectivity distribution. As for the values of the parameters of the dynamics, and
thinking of typical values for persistent diseases, we haveset the following values:µ = 0.009 years−1, b = 0.010 years−1,
µTb = 0.200 years−1, r = 0.002 years−1, andp = 0.070. Demographical parametersb andµ are roughly those of a country
like Spain, while the parametersp andr are in the range of typical values for the case of tuberculosis. µtb has been chosen
attending to numerical convenience (tuberculosis reachesa disease-related mortality rate that can be as large as 0.8). On the
other hand, we note that a numerical criterion to define stationarity should also be adopted. In our simulations, we first let the
system evolve for4500 years and later take averages in a window of106 Monte Carlo steps (which corresponds, roughly, with a
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TABLE I: Dependency of the epidemic thresholds on the initial size of the network. Analytical values are obtained from Eq. (23) using the
moments of the distribution generated numerically.

No Analytical Numerical
λcA λcN

1000 0.52903 0.46968
10000 0.42559 0.37595
50000 0.37620 0.33088
100000 0.35854 0.31926

temporal lapse of 100 years), for the mean densities of healthy, latent and sick individuals defined in (21). This is a longenough
time and ensures that all of the outputs to the left of the threshold are stabilized to the state(1, 0, 0) (this is achieved almost
surely already fort ≤ 4000 years).

With the values for the parameters as specified above, the epidemic threshold isλc = 0.305. In Fig. 2), we have plotted
the stationary proportion of sick individuals for values ofthe probability of transmissionλ in the interval[0, 0.5]. As can be
seen from the figure, the numerical and analytical results are in a reasonable agreement, despite the numerical challenges of
simulating an open system in which the dynamics evolves on top of a complex topology. This indicates that the numerical
method is accurate enough as to be used in situations where analytical predictions are not at hand.

However, it is possible to carry out numerical simulations using a variation of the algorithm above in order to improve the
accuracy in the determination of the epidemic thresholdλc. In this variation, instead of using a criterion for stationarity, we
focus our attention in the vicinity of the critical value. More specifically, we first evaluate analytically the value forλc and start
the simulation there (obviously, if we don’t have an analytical hint, the simulation can be started at any value ofλ). At each
realization, we expect 6000 years for an eventual arrival ofthe system to the state(〈u〉, 〈l〉, 〈t〉) = (1, 0, 0). In the case that this
state is not reached in that time, we assume that we are to the right of the critical point and so, we move to the left inλ just a
little quantityδλ = 0.01. If, on the contrary, a minimum number of realizations (we used 10 in our simulations) stabilize at
state(〈u〉, 〈l〉, 〈t〉) = (1, 0, 0), we assume to be to the left of the critical point and, consequently, we perform aδλ switch to the
right. Each time that such kind of flip-flop algorithm (a sort of bisection method) changes direction, we divide by two the value
of δλ until the desired precision inλc is obtained. Using this numerical approach, we have numerically calculated the values of
λc for different system sizes. The results are reported in Table I. As expected from finite-size effects, the larger the sizeof the
population, the smaller the absolute error between numerical and analytical thresholds is. Moreover, the larger the system size
the smaller the epidemic threshold, which eventually should vanish in the thermodynamic limit.

IV. CONCLUSIONS.

We have discussed a model for the spreading of persistent infections in complex heterogeneous populations. The framework
extends the epidemiological picture proposed in previous works. Our approach is particularly suited for diseases likeTubercu-
losis, which shows large latency periods. The latent periodresults from the dynamical equilibrium that is establishedbetween
the bacterium and the host’s immune system, so that the host might not become infectious during its lifetime. These particular
features makes it compulsory to work with an open system where newborns are continuously introduced in the population and
individuals might die due to causes different from the disease itself. By assembling a model with all these ingredients,we have
shown analytically that the epidemic threshold is proportional to the ratio between the first and second moments of the degree
distribution. Therefore, our results point in the same direction that those obtained for the SIS and SIR model on top of the same
topologies -the virtually unbounded connectivity fluctuations play a key role in the infection dynamics enhancing the epidemic
incidence and lowering the epidemic threshold.

From another point of view, we have developed a method well suited to numerically explore the dynamics of the system under
study. In particular, we have been able to deal with the new challenge of having a system where the number of individuals in
the population is not constant and, moreover, are connectedfollowing a given degree distribution (the well-mixed caseis not
challenging). Although we have applied the numerical approach to our particular system, it is worth stressing that it isgeneral
and can be applied to any problem for which transition rates between different classes and states are known. The results obtained
agree well with the analytical estimates with the additional advantage that the whole phase diagram can be explored.

Finally, it is also worth mentioning that the model discussed here is probably the simplest one may devise for the spreading of
persistent infections in structured populations. However, despite the recent progresses in modeling disease contagion dynamics
and pandemic outbreaks, the kind of spreading phenomena analyzed here is one of the issues that have remained less explored.
Our aim is to take a first step towards more realistic modelingof persistent diseases. We have left for future investigation possible
extensions of the current model that take into account the influence on the dynamics of vaccination, prophylaxis and recovery
rates, as well as the effects of genetic heterogeneity in thepathogen but also in the host [24].
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