
A Dynamic Data-thro!ling Approach to Minimize
Workflow Imbalance

RICARDO J. RODRÍGUEZ, Centro Universitario de la Defensa, General Military Academy, Spain
RAFAEL TOLOSANA-CALASANZ, Dept. of Comput. Sci. and Syst. Eng., University of Zaragoza, Spain
OMER F. RANA, School of Computer Science & Informatics, Cardi! University, UK

Scienti"c work#ows enable scientists to undertake analysis on large datasets and perform complex scienti"c
simulations. These work#ows are often mapped onto distributed and parallel computational infrastructures
to speed up their executions. Prior to its execution, a work#ow structure may su!er transformations to ac-
commodate the computing infrastructures, normally involving task clustering and partitioning. However,
these transformations may cause work#ow imbalance because of the di!erence between execution task times
(runtime imbalance) or because of unconsidered data dependencies that lead to data locality issues (data im-
balance). In this article, to mitigate these imbalances, we enhance the work#ow lifecycle process in use by
introducing a work#ow imbalance phase that quanti"es work#ow imbalance after the transformations. Our
technique is based on structural analysis of Petri nets, obtained by model transformation of a data-intensive
work#ow, and Linear Programming techniques. Our analysis can be used to assist work#ow practitioners in
"nding more e$cient ways of transforming and scheduling their work#ows. Moreover, based on our analysis,
we also propose a technique to mitigate work#ow imbalance by data throttling. Our approach is based on au-
tonomic computing principles that determine how data transmission must be throttled throughout work#ow
jobs. Our autonomic data-throttling approach mainly monitors the execution of the work#ow and recompute
data-throttling values when certain watchpoints are reached and time derivation is observed. We validate our
approach by a formal proof and by simulations along with the Montage work#ow. Our "ndings show that
a dynamic data-throttling approach is feasible, does not introduce a signi"cant overhead, and minimizes the
usage of input bu!ers and network bandwidth.

CCS Concepts: • Theory of computation → Network optimization; Linear programming; • Software
and its engineering → Petri nets;

Additional Key Words and Phrases: Scienti"c work#ows, optimization, Petri nets, linear programming

The research of Ricardo J. Rodríguez was supported in part by the EU H2020 research and innovation programme under
grant agreement no. 644869 (DICE), by the Spanish MINECO project CyCriSec (TIN2014-58457-R), and by the University,
Industry and Innovation Department of the Aragonese Government under Programa de Proyectos Estratégicos de Grupos de
Investigación (DisCo research group, ref. T21-17R). The research of Rafael Tolosana-Calasanz was supported in part by the
University, Industry and Innovation Department of the Aragonese Government under Programa de Proyectos Estratégicos
de Grupos de Investigación (COSMOS research group, ref. T35-17D).
Authors’ addresses: R. J. Rodríguez, Centro Universitario de la Defensa, General Military Academy, Carr. de Huesca s/n,
Zaragoza, 50090, Spain; email: rjrodriguez@unizar.es; R. Tolosana-Calasanz, Dept. of Comput. Sci. and Syst. Eng., Uni-
versity of Zaragoza, Calle María de Luna 1, Zaragoza, 50018, Spain; email: rafaelt@unizar.es; O. F. Rana, School of Com-
puter Science & Informatics, Cardi! University, Queen’s Buildings, 5 The Parade, Roath, Cardi!, CF24 3AA, UK; email:
o.f.rana@cs.cardi!.ac.uk.

2 R. J. Rodríguez et al.

1 INTRODUCTION
Over the past few years, work#ow technologies have assisted scientists in perfoming computa-
tional experiments and simulations on large datasets. A work#ow can be seen as a high-level spec-
i"cation of a scienti"c experiment, often represented as a Directed Acyclic Graph (DAG), consisting
of a set of tasks and their data- and control-#ow dependencies. Work#ow technologies typically
map work#ow speci"cations onto distributed and parallel computational infrastructures.

Prior to that mapping and scheduling process, however, a work#ow is subject to a number of
structural transformations to speed up the overall execution time, aiming at reducing the sig-
ni"cant overheads t hat exist a t t he c omputing i nfrastructures. T hese t ransformations typically
involve the aggregation of "ne-grained tasks, creating clusters (jobs) of tasks eventually mapped
onto computational resources. In the transformed graph, nodes represent jobs and edges represent
dependencies. In such a computational model, jobs can executed in parallel when no dependen-
cies exist. Otherwise, jobs with dependencies are blocked until their dependencies are solved: (i) in
the case of control dependencies, when the parent jobs "nish (for instance, in Taverna’s SCULF
work#ow language (Sroka and Hidders 2009), one can specify that a task t 1 needs to be executed
completely before another task t2 starts by means of a control-dependency); and (ii) in the case of
data dependencies, once all data inputs are transferred to the node location.

Nevertheless, many of the existing task clustering techniques generate work!ow imbal-
ance (Chen et al. 2015). In the transformed work#ow, imbalance arises in jobs with various input
data when these data arrive at di!erent times: In other words, some paths of the graph are faster
than others. As a result, data transfers are accomplished earlier than required, thus involving an
unnecessary use of bu!er space (storage), since these input data are bu!ered locally at the job node
waiting for others to complete. Even when this bu!er space is a shared, limited capacity resource,
it remains blocked by the job until the remaining input datasets arrive. Hence, the greater the
di!erence between arrival times of input data sets (in the same job), the greater the ine$ciency.
Furthermore, if the network links are shared, then the transmit as-fast-as possible policy also leads
to an unnecessary usage of network bandwidth.

Work#ow imbalance is mainly caused by runtime and data imbalance. Runtime work#ow im-
balance (Chen et al. 2015) can arise when a task clustering does not consider execution time di! er-
ences between tasks and, thus, these tasks are aggregated forming jobs whose eventual execution
generates imbalance. This type of imbalance can also arise at runtime due to unexpected failures
or deviations from estimated execution time. However, data imbalance can appear as a result of a
clustering that does not consider data dependencies, and, therefore, the resulting work#ow struc-
ture contains data dependencies among jobs that may lead to data locality issues. Hence, data are
poorly distributed, resulting into unsatisfactory data transfer times and increased data transfer-
related failures.

One of the earliest studies in investigating the work#ow imbalance problem was accomplished
by Park and Humphrey (2008). Rather than transforming the work#ow structure, they proposed
to correct the impact of work#ow imbalance on network resources using a data-throttling frame-
work that enforces data transfers at di!erent rates, correcting the imbalanced branches of DAGs.
However, a work#ow programmer/engineer needs to manually describe and specify the require-
ments on the delay of data transfers. However, the novel approach in Chen et al. (2015) proposed a

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 3

clustering technique that acts on runtime and data imbalance. The technique merges tasks consid-
ering two criteria: (i) the runtime dispersion of tasks (essentially based on the standard deviation),
which reduces the runtime dispersion of the resulting jobs by evenly distributing the task runtimes
among jobs, and (ii) task dependencies (work#ow structure), based on grouping together tasks with
a signi"cant number of dependencies. However, in such a work (Chen et al. 2015), work#ow im-
balance cannot be quanti"ed, and as a result, di!erent outputs obtained from alternative work#ow
transformations cannot be compared from an imbalance perspective.

In this article, we propose a formal model-based technique that (i) measures the degree of work-
#ow imbalance and (ii) from it we compute data-throttling rates to correct it. We extend our pre-
vious work (Rodríguez et al. 2012; Rodríguez et al. 2012) by (i) enriching the formal details and
proofs of our technique and by (ii) adding autonomic principles (Kephart and Chess 2003) to the
computation of the data-throttling rates, so that it can adapt itself to unexpected performance
variations at runtime. From a work#ow methodological perspective, we propose to introduce an
additional phase into the work#ow lifecycle process, thereby after work#ow transformation, work-
#ow imbalance can be quanti"ed and corrected when the e!ect may a!ect work#ow performance
signi"cantly.

In particular, to measure work#ow imbalance, we model the semantics of a work#ow DAG with
a subclass of Petri nets, namely, Marked Graph (MG). An MG is a Petri net in which every place
has exactly one incoming arc and exactly one outgoing arc. We make use of the analytical power
of Petri nets to exactly measure the degree of imbalance of DAG branches across all its nodes. In
our model, each pair input data–job (represented by an input place–transition in the MG) can be
seen as a queuing system, and then we assume that the whole work#ow is executed continuously
ad in"nitum. Hence, in such conditions, Little’s Law (Little 1961) (L = λ ·W) applies: The average
number of data elements bu!ered (L) is equal to the product of the "ring rate of a job (λ), and
W is equal to the waiting time before a job starts execution. When multiple input data arrive
to a node, the waiting time for the slowest one is equal to 0. While for the rest ones, a waiting
time > 0 exists, which we can be measured into a metric called slack. Hence, a perfectly balanced
work#ow has slack values equal to zero for any input data, meaning that all input data arrive
simultaneously when transmitted to a node (i.e., there is no waiting time for every job). We show
that the computation of slack values is solvable in polynomial time by using linear programming
techniques.

Our technique is therefore complementary to the existing clustering/scheduling techniques, since
it provides a formal way of analyzing and quantifying imbalance: Any scheduling technique that
transforms a work#ow could make use of our slack computation technique to measure the imbal-
ance of the resulting work#ow transformation.

Finally, in this article we propose to balance branches by throttling data transfers when clus-
tering techniques do not achieve a perfectly balanced work#ow. As recognized by Park and
Humphrey (2008), current practice of moving data as early as possible is either (i) unnecessary
when viewed in isolation or (ii) harmful when viewed in the large, due to "nite capacity and
competing transfers on the same link and bu!er. Our autonomic, slack-based data throttling strat-
egy monitors execution time of jobs, feeds the Petri net model, and subsequently optimizes data
transfers accordingly so that slack values tend to 0. Our strategy works as follows: After a com-
putational job is completed, the estimated time (from the model) is compared with the elapsed
time (from the real execution), and in case of deviation, our performance model is fed with this
information, recomputing slacks and the optimal throttling values. Our approach is validated with
synthetic Montage work#ows through simulation.

This article is organized as follows. Section 2 reviews the related work. Section 3 provides
background on Petri nets and work#ows. Section 4 introduces our work#ow modeling. Section 5

4 R. J. Rodríguez et al.

describes the theoretical foundations in which our approach relies. The autonomic data-throttling
algorithm of our approach is presented in Section 6. The validation is shown in Section 7. Finally,
Section 8 concludes the article and states future work.

2 RELATED WORK
Ordinary Petri nets and their extensions have been widely used for the speci"cation, analysis
and implementation of work#ows (van der Aalst and van Hee 2004). In the scienti"c work#ow
community, they were also utilized. For instance, GWork#owDL (Pellegrini et al. 2008; Vossberg
et al. 2008), Grid-Flow (Guan et al. 2006), and FlowManager (Aversano et al. 2002) are representative
examples, to name a few. Petri nets were also used for the speci"cation of hierarchical scienti"c
work#ows, incorporating of exception handling and check-pointing mechanisms (Hoheisel 2006;
Tolosana-Calasanz et al. 2010a, 2010b). In this article, we use Petri nets for deriving performance
models of pure graph-based work#ows.

An overview of the most signi"cant systems was carried out in Yu and Buyya (2005), where ex-
isting automated data transfer strategies utilized among tasks in work#ows were classi"ed (namely
centralized, mediated, and peer-to-peer). A centralized approach utilizes a central point for data
transmission. This solution is not scalable and occurs in systems where the data transfer times are
much smaller than computation times. Taverna (Oinn et al. 2006) typically utilizes a centralized
data transfer, due to the characteristics of the problems it tackles. In a mediated strategy, the lo-
cations of the intermediate data are managed by a distributed data management system. Finally, a
peer-to-peer approach transfers data directly between processing nodes. The direct transmissions
of peer-to-peer approaches reduce both transmission time and the bottleneck problem caused by
centralized and mediated approaches. Thus, they are suitable for large-scale intermediate data
transfer. The technique proposed in our article is focused on data-intensive work#ows using a
peer-to-peer–based data movement strategy.

Pegasus work#ow system (Deelman et al. 2007) also dealt with data-intensive work# ows and
incorporated both mediated and peer-to-peer transfers. In the mediated approach, Pegasus utilizes
a data replica catalog that stores the intermediate generated data, so that data can be subsequently
retrieved rather than recomputed again. Work#ow performance speedup was also a matter of study
in Pegasus, and work#ow s peci"cations go th rough a process of cl ustering (g rouping of small
tasks) and partitioning that helps the meta-scheduler to optimize the execution time. A similar
approach was followed in Duan et al. (2006) with further optimization at runtime by adapting to
the dynamically changing state of underlying resources. However, none of these approaches made
an e!ective usage of both network bandwidth and bu!er/storage of "les.

An analysis of the overhead for scienti"c work#ows in Grid environments was given in Nerieri
et al. (2006). The analysis included both load imbalance and data movement, which were identi-
"ed as main sources for overheard. In Park and Humphrey (2008), the problem of load imbalance
and data throttling for scienti"c work#ows was also analyzed. The authors proposed a process
envelope-based framework for throttling data transfers. Nonetheless, they do not provide any
analysis method to automatically obtain those data-throttling values. In this article, we describe a
method that can automatically derive (sub-optimal) values for data throttling.

Performance analysis of scienti"c work#ows was also studied in Duan et al. (2009) and Tolosana-
Calasanz et al. (2008). The performance method in Duan et al. (2009) was based on a hybrid
Bayesian-neural network to predict the execution time of work#ow tasks. Bayesian network was
used as a high-level representation of the probability distribution of activity performance a!ected
by di!erent factors. The important attributes were dynamically selected by the Bayesian network
and fed into a radial basis function neural network to make further predictions. The performance
analysis approach used in this article is similar to Tolosana-Calasanz et al. (2008), where a method

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 5

that provided a parameterized Petri net-based graphical model of the overall work#ow structure
was proposed.

Finally, a Petri net-based structural analysis for business work#ows was proposed in Aalst et al.
(2002). The authors utilized a speci"c class of Petri nets, WF-nets, tailored toward work#ow anal-
ysis. WF-nets are suitable to model work#ows with di!erent kind of control operations, such as
sequence, choice, synchronization, fork, or merge. The structural analysis that can be undertaken
on these nets includes correctness, deadlock analysis, and liveness.

3 BACKGROUND ON PETRI NETS
This section details basic de"nitions needed to understand the rest of this article. In particular, we
introduce concepts regarding Petri nets (PN). We assume the reader is familiar with the fundamen-
tals of Petri nets, such as its structure and "ring rules. An introduction to PN is given in Murata
(1989).

De"nition 3.1. A Petri net (Murata 1989) is a 4-tuple N = 〈P ,T , Pre, Post〉, where:

• P and T are disjoint non-empty sets of places and transitions (|P | = n, |T | =m) and
• Pre (Post) are the pre- (post-)incidence non-negative integer matrices of size |P | × |T |.

The pre- and post-set of a nodev ∈ P ∪T are respectively de"ned as •v = {u ∈ P ∪T |(u,v) ∈ F }
andv• = {u ∈ P ∪T |(v,u) ∈ F }, where F ⊆ (P ×T) ∪ (T × P) is the set of directed arcs. A Petri net
is said to be self-loop free if ∀p ∈ P , t ∈ T t ∈ •p implies t ! p•. Ordinary nets are Petri nets whose
arcs have weight 1. The incidence matrix of a Petri net is de"ned as C = Post − Pre.

A distribution of tokens over the places is called a markingm ∈ Z |P |≥0 , and it represents the state
of the Petri net. An initial marking of a Petri net P is denoted as m0. A marking of a place p ∈ P ,
denoted as m(p) ∈ Z≥0, is the number of tokens of a place p. Formally:

De"nition 3.2. A Petri net system, or a marked Petri netS = 〈N ,m0〉, is a Petri net N with an
initial markingm0.

A transition t ∈ T is enabled at marking m if m ≥ Pre(·, t), where Pre(·, t) is the column of Pre
corresponding to transition t . A transition t enabled at m can "re yielding a new marking m′ =
m + C(·, t) (reached marking). This is denoted by m t−→m′. A sequence of transitions σ = {ti }ni=1 is
a "ring sequence in S if there exists a sequence of markings such that m0

t1−→m1
t2−→m2 . . .

tn−→mn .
In this case, marking mn is said to be reachable from m0 by "ring σ , and it is denoted by m0

σ−→mn .
The "ring count vector σ ∈ Z |T |≥0 of the "reable sequence σ is a vector such that σ (t) represents the
number of occurrences of t ∈ T in σ . If m0

σ−→m, then we can write m = m0 + Cσ in vector form,
which is referred to as the linear (or fundamental) state equation of the net.

The set of markings reachable from m0 inN is denoted as RS (N ,m0) and it is called the reacha-
bility set. A Petri net system 〈N ,m0〉 is reversible if for each marking m ∈ RS (N ,m0), m0 is reach-
able from m.

A transition t is live if it can be "red from every reachable marking. A system is live when every
transition is live. A net is structurally live if there exists an initial marking making it live. A system
is bounded if and only if its reachability set is "nite. A net is structurally bounded if and only if it
is bounded, regardless of the initial marking.

Ordinary nets are Petri nets whose arcs have weight 1, i.e., ∀p ∈ P , t ∈ T , Pre(p, t), Post(p, t) ∈
[0, 1]. Marked graphs (MGs) are a subclass of ordinary Petri nets that are characterized by the fact
that each place has exactly one input and exactly one output arc. More formally:

6 R. J. Rodríguez et al.

De"nition 3.3 (Murata 1989). A marked graph (MG) is an ordinary Petri net such that ∀p ∈
P , |•p | = |p• | = 1.

A P-semi!ow (T-semi!ow) is a non-negative integer vector y ∈ Z |P |>0 (x ∈ Z |T |>0) such that it is a
left (right) anuller of the net’s incidence matrix, i.e., yᵀC = 0 (Cx = 0). A P-semi#ow implies a
token conservation law independent of any "ring of transitions. A P- (or T-)semi#ow v is minimal
when its support, ‖v‖ = {i, v(i) " 0}, is not a proper superset of the support of any other P- (or
T-)semi#ow, and the greatest common divisor of its elements is one.

Petri nets are used for system performance modeling and evaluation by considering the in-
clusion of time. There exist two main approaches: to introduce the notion of time in places or
to introduce it in transitions. In this article, we assume that transitions represent actions that
have associated a duration. Therefore, we associate a duration to the "ring delay of transitions
(Ramchandani 1974). Furthermore, we consider that the "ring delay of transitions follow an expo-
nential distribution function.

A Petri net model in which each transition has an exponential rate is called a Stochastic Petri
net (SPN) (Ajmone Marsan et al. 1995a; Florin and Natkin 1985). These rates are considered to be
marking-independent, i.e., its values remain constant. In this article, we make use of SPNs, whose
underlying Petri net model is a Marked Graph. More formally:

De"nition 3.4 (Florin and Natkin 1985). A Stochastic Marked Graph (SMG) system is a pair
〈N ,m0,δ〉 where N is a Marked Graph, and δ ∈ R |T |≥0 is a positive real function, such that δ (t)
is the mean of the exponential "ring time distribution associated to a transition t ∈ T .

Let us also note that every SMG net is structurally live and structurally bounded. Furthermore,
if an SMG net is live for an acceptable initial marking, then the system is reversible. As stated
in Ajmone Marsan et al. (1995b), the underlying Continuous Time Markov Chain associated to the
SMG is ergodic. Therefore, the steady-state distribution serves as a basis for the quantitative eval-
uation of an SMG in terms of performance indices, particularly the expected value of the number
of tokens in a given place (average marking) is denoted as m, and the mean number of "rings of a
transition per unit time (throughput) is denoted as χ .

4 MODEL TRANSFORMATION: FROM DATA-INTENSIVE WORKFLOWS
TO PETRI NETS

In this section, we "rst introduce the formal de"nition of a data-intensive work#ow and its life-
cycle. The reader can refer to van der Aalst and van Hee (2004) and Taylor et al. (2007) as an
introduction to data-intensive work#ows. Then, we describe the transformation rules to obtain a
Petri net model from a given work#ow speci"cation, as described by the previous formal de"nition.

4.1 Data-intensive Workflow Definition and Lifecycle
A data-intensive work#ow is typically modeled as a DAG, where nodes represent work#ow tasks
(actions) and edges represent task dependencies (data#ow). Each task is de"ned by a program and
a set of input parameters.

To speed up the overa ll work#ow e xecution t ime (also k nown a s m akespan), data-intensive
work#ows a re m apped o nto d istributed a nd p arallel c omputational i nfrastructures. I n general
terms, a work#ow’s lifecycle undergoes a number of stages. First, at the work!ow mapping stage,
a work#ow s peci"cation is of ten tr ansformed fr om a hi gh-level sp eci"cation int o a structure
that is more suitable for the target computing infrastructure: When work#ow tasks are relatively
short running (from a few seconds to a few minutes), work#ow t asks c an b e m erged forming
job clusters to minimize the usage overheads of these resources. In the transformed DAG, nodes

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 7

Fig. 1. Lifecycle of a data-intensive workflow, including workflow imbalance analysis (highlighted).

represent jobs, whereas edges typically represent dependencies that involve data transfers; that is,
output "les produced by one task are input "les of other task. Second, at the work!ow scheduling
stage, the work#ow engine can schedule work#ow jobs onto computational resources. It should
be noted that only jobs that have all their input dependencies solved can be executed in parallel.
This model of computation is followed by several work#ow systems, as Pegasus (Deelman et al.
2007), Askalon (Duan et al. 2005), or Taverna (Oinn et al. 2006), among others.

This general work#ow lifecycle can be enhanced with a new stage, proposed in this article, as
depicted in Figure 1. After the work#ow mapping stage, a work!ow imbalance analysis stage can
be added, where the transformed work#ow speci"cation is analysed and its imbalance quanti"ed.
At that point, in case of having obtained an imbalanced transformation, the process could go back
to the mapping stage to improve the output, i.e., by trying an alternative mapping technique. In
case the work#ow imbalance analysis is satisfactory, the work#ow imbalance analysis stage can
end. Moreover, if required, marginal work#ow imbalance can be corrected, for instance, by data
throttling (as it will be also shown in the rest of this article).

It should be noted that the input speci"cation of our technique is a transformed DAG, whose
size can be measured in terms of both the number of nodes and arcs that it contains, which can be
considerably smaller than in the original work#ow speci"cation. We formally de"ne a transformed
data-intensive work#ow as follows.

De"nition 4.1. A transformed data-intensive work#ow is a DAG represented by a 4-tupleW =
〈J ,D, ξ ,ψ 〉, where:
• J , |J | ≥ 1 is a nonempty set of execution jobs;
• D ⊆ J × J is a subset of the Cartesian product J × J that indicates the execution jobs

ji , jk ∈ J , that are dependent, i.e., it indicates whether a job jk needs data generated by the
job ji to execute.

• ξ : J → R+ is a function that assigns for each j ∈ J a value c ∈ R+ that indicates the
involved overhead induced by the parallel or distributed infrastructure in which the job is
being executed plus the computational time required to execute the job.

• ψ : D → Z≥0 is a function that indicates, for each (ji , jk) ∈ D, the size s ∈ Z≥0 of transmit-
ted data (in bytes) between the job ji and the job jk .

Note that the set of execution jobs J can be divided into three nonempty disjoint sets JI ,JO ,
and JIO , i.e., J = JI

⋃JO
⋃JIO ,JI

⋂JO = ∅,JI
⋂JIO = ∅, and JO

⋂JIO = ∅, where JI is
the set of jobs that only have input data dependencies, i.e., ∀j ∈ JI , j ′ " j ∈ J , (j, j ′) ! D; JO is
the set of jobs that only have output data dependencies, i.e., ∀j ∈ JO , j ′ " j ∈ J , (j ′, j) ! D; and
JIO is the set of jobs that have input and output data dependencies, i.e., ∀j ∈ JIO , j ′ " j, j ′′ " j ′ ∈
J , (j, j ′), (j ′′, j) ∈ D.

4.2 Workflow Modeling Using Petri Nets
Our imbalance analysis approach is based on Petri net theory. Thus, "rst, we need to derive a Petri
net model from a DAG-based work#ow speci"cation, before any imbalance analysis is performed.
In this section, we introduce the transformation rules to transform a data-intensive work#ow

8 R. J. Rodríguez et al.

W = 〈J ,D, ξ ,ψ 〉 into an SMG system 〈N ,m0,δ〉, whereN is indeed an MG. The set of places P of
the obtained PN is divided into two nonempty disjoint sets PD and PA, i.e., P = PD

⋃
PA, where PD

contains the places that hold tokens representing data being transmitted between work#ow jobs
and PA contains auxiliary places added in the model during the transformation process. Similarly,
the set of transitions is divided into three nonempty disjoint sets, i.e., T = TJ

⋃
TD

⋃{taux}, where
TJ contains the transitions representing work#ow jobs, TD contains the transitions representing
a transmission between jobs in the work#ow, and transition tend is a special transition added to
make the obtained net model cyclic, which is a requirement for analytical purposes. In particular,
the model transformation steps are as follows.

(1) First, each job j ∈ J is transformed into a transition tj ∈ TJ . The transition tj represents
the execution of job j. The delay of transition tj is set to ξ (j), i.e., δ (tj) = ξ (j).

(2) Then, for each d = (ji , jk) ∈ D,we create two auxiliary places pd ,p ′d ∈ PD ⊂ P and a tran-
sition td ∈ TD . Such a transition td is connected to both pd ,p ′d (as an input place and an
output place, respectively), that is, •td = pd and t•d = p

′
d . Last, place pd is connected to tji

as an output place, i.e., t•ji
= pd , and place p ′d is connected to tjk as an input place, i.e.,

t•jk
= p ′d . Note that places pd ,p ′d , represent the output bu!er and input bu!er of jobs ji

and jk , respectively. The initial markings of both places are set to zero. The transition td
represents the time needed to transmit data from ji to jk . Hence, δ (td) is set to a value
that indicates how long it takes to transfer data of size ψ (ji , jk). For the sake of simplic-
ity, we assume that the transmission time ofψ (ji , jk) depends only on the bandwidth BW
of the data link between ji and jk and a latency ε , and we consider a transmit-as-fast-
as-possible data transfer policy, which is common practice in scienti"c work#ows. Thus,
δ (td) = ψ (ji , jk)

BW + ε .
(3) As the last step, we close the net. This step is needed to have a model that can be analysed

with our theoretical framework. In this regard, we create an auxiliary place pj ∈ PA for
every j ∈ JI and we connect it, as an output place, to each tj ∈ TJ , i.e., •pj = tj . Then, we
create a transition taux and connect it, as an output transition, to each of the those places
pj , i.e., p•j = t . We set the delay of t to zero, i.e., δ (t) = 0 (it is said to be an immediate
transition, since its "ring consumes no time). Finally, we create an auxiliary place pj′ ∈ PA
for every j ′ ∈ JO to connect the transition t to each tj′ ∈ TJ , i.e., •pj′ = t ,p•j′ = tj′ . We set
the initial marking of those places pj′ to one, i.e., m0 (pj′) = 1.

Note that the transformation steps do not create any place p ∈ P with more than an output tran-
sition, i.e., ∀p ∈ P , |p• | = |•p | = 1. Hence, the Petri net obtained after transformation is a Marked
Graph. Furthermore, since we consider transitions are timed, the obtained model is an SMG (see
De"nition 3.4).

Let us illustrate the model transformation by means of an example. Figure 2(a) shows a work#ow
W composed of three computational jobs (tasks) J = {job1, job2, job3} and their data-link depen-
dencies D = {(job1, job2), (job1, job3), (job2, job3)}, while Figure 2(b) shows the Petri net obtained
after transformation. Let us perform the "rst transformation step. For each job j i ∈ J , 1 ≤ i ≤ 3,
we create a transition Tjobi and set its delay δ (Tjobi) = ξi . Then, let us perform the second step.
Now, we iterate in each (jobi , jobj) ∈ D creating places pi, j , pi

′
, j , and a transition Ti, j (we high-

lighted these transitions in grey color to distinguish them). We set the delay of these transitions
to δ (Ti, j) = ψ (i, j) , assuming a bandwidth of 1 and a latency of 0. We connect pi, j and pi

′
, j to Ti, j as

input and output places, respectively (i.e., pi
•
, j = •pi

′
, j = Ti, j). Finally, the last step closes the net. In

this case, job1 ∈ JO and job3 ∈ JI . Thus, we " rst create a place pend and connect it as the output
place of Tjob3 . Then, we create a transition tend and we connect it as the output transition of pend.

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 9

Fig. 2. (a) A workflow DAG specification and (b) its transformation to a PN.

We end the transformation process by creating a place pinit1 that it connects as an input place to
Tjob1 and as an output place to tend. Furthermore, the initial marking of pinit1 is set to 1.

5 WORKFLOW IMBALANCE ANALYSIS
As discussed previously, work#ow imbalance typically appears when a work#ow speci"cation is
transformed prior to its execution to improve its performance. In this section, we propose the
application of formal models to analyze and quantify work#ow imbalance. Our approach relies
on the concept of slack. We consider slack as a non-negative real number associated with each
input link of a synchronization point. Roughly speaking, slack values measure how probable is the
imbalance degree for each input in such a synchronization point. That is, the higher the slack, the
greater the probability of having imbalance in such an input. These slack values can be computed
directly from the SMG model, obtained after transformation of a given work#ow DAG. Let us "rst
explain how these values are computed.

The rationale is based on Little’s Law, given that SMG can be seen as a queuing system (Campos
and Silva 1992). Let us consider a work#ow task wt that requires an input i to execute. Let the
place pi and the transition t = p• be the pair of elements in the SMG that represent i and wt ,
respectively. Then, the pair (p, t) can be seen as a simple queueing system to which, if the limits
of average marking and steady-state throughput exist, Little’s formula (Little 1961) can be directly
applied (Campos and Silva 1992) as

m(p) = Pre(p, t)χ (t)r(p), (1)
where Pre(p, t)χ (t) is the output rate of tokens from place p (which is indeed equal to the input
rate in steady state) and r(p) is the average residence time at place p, i.e., the average time spent
by a token in place p.

In fact, r(p) is the sum of the average waiting time due to a possible synchronization in transition
t plus the average service time of t , denoted by δ (t). Therefore, δ (t) becomes a lower bound for
the average residence time:

m(p) = Pre(p, t)χ (t)r(p) ≥ Pre(p, t)χ (t)δ (t). (2)
Since we connect the output transitions to the input places in the Petri net obtained as a trans-

formation of a work#ow, it becomes a strongly connected SMG. Therefore, it has a single minimal
t-semi#ow that is equal to 1, which implies that the steady-state throughput is the same for every
transition. Therefore, a single scalar variable Θ su$ces to express the throughput bound to be

10 R. J. Rodríguez et al.

computed for all transitions. This steady-state throughput Θ for every transition of a SMG can be
computed by solving the following Linear Programming Problem (LPP) (Chiola et al. 1993):

max Θ subject to
m(p) ≥ δ (p•)Θ,∀p ∈ P
m = m0 + C σ

m, σ ≥ 0.

(3)

Let us remark that the dual problem of LPP 3 enables us to compute a lower bound for the
average inter"ring time of transitions Γ, which is equal to the inverse of Θ, i.e., Γ = 1

Θ . Besides,
this dual problem of LPP 3 (as stated in Campos and Silva (1992)) also provides the bottleneck of
the net, that is, the slowest P-semi#ow in the net. In fact, the computed value of Γ is the cycle time
of such a P-semi#ow.

Note that for the case of an SMG obtained after the transformations of a work!ow mapping
stage, this value of Γ matches with the makespan of the work!ow: Since we close the obtained
net, every place in the net will be contained in some P-semi#ow. Furthermore, by the PN model
transformation, Step 3 ensures that every minimal P-semi#ow of the net will contain two places
p,p " p ′ ∈ PA : p ∈ •taux ,p ′ ∈ t•aux . Recall that every P-semi#ow determines a cycle in the net.
Hence, the slowest P-semi#ow of the net model will represent the slowest path from the begin-
ning of the work#ow to the end.

The inequality in Equation (3) becomes an equality for those places that belong to the critical
cycle (Rodríguez and Júlvez 2010). Note that this inequality can be rewritten as

m(p) ≥ δ (p•)Θ→ m(p) = δ (p•)Θ + µ (p), (4)

where µ (p) is the slack of place p. As commented on previously, for every place p in the critical
cycle, it necessarily holds that µ (p) = 0.

This degree of freedom of slacks enables us to compute a reachable marking, named tight mark-
ing (Carmona et al. 2009) and denoted as m̃ ∈ R |P | , where each transition with various input
places has at least one of them with null slack, i.e., ∀t ∈ T , |•t | > 1→ ∃p ∈ •t , m̃(p) = Θδ (t), and
∀p ′ ∈ •t \ {p}, m̃(p ′) = Θδ (t) + µ (p ′), µ (p ′) ≥ 0. Therefore, the tight marking can be computed by
solving the following LPP (Carmona et al. 2009):

max
∑

σ subject to
m̃(p) ≥ δ (p•)Θ for every p ∈ P
m̃ = m0 + C σ

σ (tp) = k,

(5)

where tp is a transition that belongs to the critical path, C is the Petri net incidence matrix, σ is
the vector of "ring counts of transitions, δ (p•) is the average service time of output transition p•,
and k ∈ R is a constant number.

The tight marking m̃ as a result of Equation (5) provides both the tight places of the net, i.e., the
set of places P ′ ⊂ P that ful"ll m̃(p) = δ (p•)Θ,∀p ∈ P ′, and the set of places P µ = P \ P ′, P µ ⋂

P ′ =
∅, P µ ⋃

P ′ = P , that have some slack, i.e., m̃(p) = δ (p•)Θ + µ (p), µ (p) > 0,∀p ∈ P µ .
Since Θ and δ (p•) are known, the slack of every placep ∈ P µ can be straightforwardly computed

as
(6)µ (p) = m̃(p) − δ (p•)Θ.

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 11

Once the slack values for every place are known, for each slack, we are able to compute a delay
value α that minimizes it as much as possible (Rodríguez et al. 2012). For every place p with non-
zero slack, the maximum value of α is equal to µ (p)

Θ .

Theorem 5.1. Let NW be the Petri net obtained after transformation of a work!ow W =
〈J ,D, ξ ,ψ 〉. Let p ∈ P be a place such that µ (p) > 0 and let p• = t ∈ T be the transition that repre-
sents a data transmission d ∈ D that motivates such a slack in p. Let δ (t) be the transmission time
consumed by d and let Θ be the steady-state throughput ofN . Then, the addition of a delay α ≤ µ (p)

Θ
to δ (t) minimizes the slack in place p as much as possible.

Proof. From Equation (5), the tight marking of p is computed as m̃(p) = δ (p•)Θ + µ (p). Re-
call that p ∈ P µ , i.e., µ (p) > 0. Assume that we increment in α > 0 units of time the average
service time of t , that is, δ ′(t) = δ (t) + α . Now, if we recompute the tight marking, then we
shall obtain m̃′(p) = δ ′(p•)Θ + µ ′(p), µ (p) > µ ′(p) ≥ 0. Consider that Θ remains constant; oth-
erwise, we changed the steady-state throughput of the net. The new vector σ ′ is also equal
to the previous σ , since the change in the delay of the transition does not a!ect to the count
of transition "rings. Hence, m̃′(p) = m̃(p). Let β ∈ R>0 be the value in which µ (p) is reduced,
i.e., µ ′(p) = µ (p) − β . Hence, m̃′(p) = m̃(p) ⇒ (δ (p•) + α)Θ + µ (p) − β = δ (p•)Θ + µ (p) ⇒ α = β

Θ .
Since µ ′(p) ≥ 0, 0 < β ≤ µ (p). Therefore, α ≤ µ (p)

Θ . !

6 Toward an Autonomic Data Thro!ling to Minimize Workflow Imbalance
In this section, we "rst recall the automated data-throttling algorithm previously introduced in
Rodríguez et al. (2012). Then, we show the problems that may arise when this algorithm was
used, for instance, upon the occurrence of unexpected failures. To solve those problems, we "nally
propose an improved algorithm that uses autonomic principles to detect unexpected failures and
correct and adapt data-throttling rates, if needed.

6.1 An Automated Data-thro!ling Analysis Approach
Algorithm 1 shows the pseudo-code to conduct an automated work#ow imbalance analysis. This
algorithm was previously introduced in Rodríguez et al. (2012). Here, it has been adapted to the
terminology that we use in this article. As an input, it receives a transformed (e.g. clusterized) DAG
work#ow modelW = 〈J ,D, ξ ,ψ 〉. As an output, it generates throttling values for (sub-)optimal
network and bu!er usage.

ALGORITHM 1: Automated data-throttling analysis (adapted from Rodríguez et al. (2012)).
Input: Clusterized DAG work#owW = 〈J ,D, ξ ,ψ 〉
Output: Sub-optimal throttling values for intermediate data transfers

1 TransformW into an SMG system SW = 〈N ,m0,δ〉
2 Compute the slack-based performance analysis of SW
3 Build the set of slack clustering C
4 foreach cluster c ∈ C do
5 Compute data-throttling values
6 Recompute slacks using current computed data-throttling values
7 end

Step 1 transformsW into an SMG system SW = 〈N ,m0,δ〉, as explained in Section 4.2. Then,
Step 2 performs the slack-based performance analysis as described in Section 5. In this step, the

12 R. J. Rodríguez et al.

Fig. 3. (a) A workflow with six task and multiple inter-tasks dependencies and (b) its PN-based
representation.

critical path (i.e., the path with longest delay) is obtained and slack values are computed for every
execution job in the work#ow.

Step 3 deals with slack clustering. Note that the data-throttling values computed for a given
data transmission may impact other data-throttling computations. Let us illustrate this issue
with an example. Consider the DAG work#ow depicted in Figure 3, used as running example
in the sequel. The slack computation in this example is µ (p ′1,4) = 0.088063, µ (p ′3,6 = 0.352254, and
µ (p ′5,6) = 0.176127). That is, data coming in paths from job1 to job4, from job3 to job6, and from
job5 to job6, respectively, arrive sooner than data coming from the other paths. Computing data-
throttling values for inputs at job6 in "rst place and then at job4 implies that when inputs at job4
are delayed, then job4 → job6 are also implicitly delayed, and, hence, the previous adjustment done
at job6 to minimize the slack may be invalid. Thus, to minimize the complexity of this process, we
classify data transfers into groups of elements that are mutually independent.

Recall that slacks provide a measure of the expected delay in synchronization points. We de"ne
a synchronization point as a job with multiple inputs, i.e., a job j is a synchronization point if
j ∈ JIO

⋃JI , and (j ′, j) ∈ D ′ ⊂ D, j ′ " j ∈ J , |D ′ | > 1.
In steps 4–7, the computation of data throttling to minimize delays is performed. This compu-

tation is as follows. As proved by Theorem 5.1, for each place p with a slack µ (p) > 0, we com-
pute an addition delay as α = µ (p)

Θ . Let us consider the transmission d = (ji , jk) ∈ D that produces
µ (p) > 0. As we commented previously, for the sake of simplicity, we assume that the transmission
time of ψ (ji , jk) depends only on the bandwidth BW of the data link between ji and jk and a la-
tency ε . Thus, δ (td) = ψ (ji , jk)

BW + ε . To throttle a data transmission between ji and jk , and assuming
a constant latency, we compute the throttled bandwidth BW ′ as

BW ′ =

(
1

BW
+

α

ψ (ji , jk)

)−1
. (7)

Furthermore, when ji belongs to the slowest work#ow path and assuming only one link for each
job, the same quantity of reduction of bandwidth in one data transmission can be increased in the
slowest path, hence accelerating the work#ow makespan. Then, for each slack cluster, we compute
the throttling values for the slack values as indicated above. Finally, these data-throttling values

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 13

are considered as an output, while slacks are recomputed considering these throttling values to
have the correct values needed for the next cluster.

Let us illustrate how Algorithm 1 works by means of an example. Consider the work#owW
depicted in Figure 3(a) as an input, which is composed of six jobs taking each jobi a total of ξi to
complete its execution. We assume that each jobi is executed at a di!erent host machine and that
the infrastructure has a dedicated network topology, i.e., every host interconnects to the others.
The available bandwidth is 100Mbps with a latency of ε = 1e−4s. For the sake of simplicity, we
assume thatψi,k = 10MB,∀(jobi , jobk) ∈ D (and, therefore, δ (Ti, j) = 0.8001 for every Ti, j).

The Petri net obtained after the transformation ofW is shown in Figure 3(b) (step 1). The slowest
path of the work#ow is, in this case, job2 → job5 → job6. Note thatW has two synchronization
points, where a slack may appear in their inputs, i.e. in the input data paths of job4 and input the
data of job6. The slack computations in this example are µ (p ′1,4) = 0.088063, µ (p ′3,6) = 0.352254,
and µ (p ′4,6) = 0.176127 (step2). That is, data coming from paths (i) from job1 to job4, (ii) from job3
to job6, and (iii) from job5 to job6, respectively, arrive sooner than the data coming from the other
paths.

Step 3 clusters inputs with slack whose data-throttling does not a!ect others. We use the concept
of slack levels introduced in Rodríguez et al. (2012) to cluster slacks. In this case, the paths job3 →
job6 and job4 → job6 are at slack level 1, while job1 → job4 is at slack level 2 (since its throttling
may a!ect to the path job4 → job6, which has some slack). Hence, p ′3,6 and p ′4,6 are grouped in slack
level 1, while p ′1,4 is grouped in slack level 2. Note that slack clustering determines the number of
places with some slack in each work#ow path.

Steps 4–7 compute data-throttling values and recompute slack values after each cluster adjust-
ment. The adjustment is performed in increasing order of slack level, starting from level 1. Thus,
in the example, we "rst decrease the bandwidth for transmission job2 → job4. Note that under a
di!erent network topology such a single link per job, the reduction of bandwidth in those tran-
sitions can be used to increase the one for the transmission job2 → job5. Data-throttling values
obtained after computation are as follows: transmission job1 → job3 is throttled to a 29.55% of the
total bandwidth, transmission job1 → job4 to 35.86%, and transmission job2 → job4 to 45.62%. A
computation of the makespan of the running example under di!erent scenarios is given in Figure 4.

6.2 Toward an Autonomic Data-thro!ling Analysis Approach
The automated data-throttling analysis of Algorithm 1 relies on performance information from his-
torical executions, and it assumes that execution environmental conditions do not change, while
the work#ow is being executed. However, in real distributed environments this assumption does
not hold, since execution conditions may change at runtime due to several issues, such as spu-
rious errors, intermittent network failures, performance interference, or even hardware failures
that makes computational resources unusable. In those cases, data-throttling rates computed by
Algorithm 1 become invalid, since the conditions assumed for its computation are di!erent.

Let us show the e!ect of these unexpected situations by means of the running example. Fig-
ure 4(a) plots the makespan of the work#ow assuming no errors and after applying data-throttling
values computed by Algorithm 1. Suppose that at time t = 0.1, a hardware error occurs in the node
there job1 is being executed, and its network card becomes irresponsive for 0.9s. Hence, although
job1 "nishes its execution successfully, it cannot send any data to other jobs until the network card
recovers its full functionality. Hence, this unexpected failure implicitly delays the arrival of input
data to job3 and job4. This e!ect is illustrated in red, dashed lines in Figure 4(b). Thus, the overall
work#ow execution su!ers a penalty, since the computed data-throttling rates, which were com-
puted before starting the work#ow execution, were unaware of the unexpected failure that occurs
upon the real execution.

14 R. J. Rodríguez et al.

Fig. 4. Makespan of the running example considering the use of Algorithm 1 in a scenario of (a) ideal con-
ditions (no errors) and (b) in a scenario where a network hardware error occurs at t = 0.1. The scenario of
(c) considers the use of Algorithm 2 and the same occurrence of the error.

To overcome the static nature of execution conditions implicitly assumed in Algorithm 1, we
propose an autonomic approach that controls and monitors the execution of jobs in real time to
update the data-throttling rates, when unexpected performance issues occur.

Our autonomic approach is presented in Algorithm 2. Basically, it improves the previous Al-
gorithm 1 by recomputing data-throttling rates when some deviation from expected timing is
detected. As an input, it receives a clusterized DAG work#ow model W = 〈J ,D, ξ ,ψ 〉. As an
output, it ensures that the work#owW was executed and the usage of input bu!ers and network
bandwidth were optimized as much as possible.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 32. Publication date: May 2019.

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 15

ALGORITHM 2: Automatic data-throttling analysis.
Input: Clusterized DAG work#owW = 〈J ,D, ξ ,ψ 〉
Output: Work#owW execution with an optimal usage of input bu!ers andnetwork bandwidth

1 Compute Algorithm 1 to obtain data-throttling rates under ideal conditions
2 Set watchpoints after the execution of jobs j ∈ J whose transmissions are throttled
3 Start work#owW enactment
4 repeat
5 if a watchpoint in job j is reached then
6 if execution time of j exceeds expected execution time then
7 Update data-throttling rates by computing Algorithm 1
8 Reset watchpoints after the execution of jobs j ∈ J whose transmissions are throttled
9 end

10 end
11 untilW has been executed

Step 1 computes data-throttling rates using Algorithm 1. Then, step 2 sets a watchpoint for each
job j ∈ J whose transmissions must be throttled. In step 3, the work#ow enactment is launched.
Steps 4–10 ensure thatW is executed in an optimized way. To this aim, the expected execution
time of j is compared to current elapsed time when a watchpoint is reached. When a time deviation
is observed, Algorithm 1 is executed again considering the new conditions; that is, we update the
W with the real execution time of ended job and of completed transmissions (step 7). Then, new
watchpoints are set (if any) in step 8. The iteration loop ends whenW is totally executed.

Recall the running example and the aforementioned unexpected situation. The work#ow
makespan under this unexpected condition is depicted in Figure 4(b). Consider now that we apply
Algorithm 2 rather than Algorithm 1. As commented on, we obtain initial data-throttling rates
of 29.55% for transmission job1 → job3, 35.86% for job1 → job4, and 45.62% for job2 → job4. These
values are computed in step 1 of Algorithm 2. Then, watchpoints are set to job1 and job2, and work-
#ow enactment (steps 2 and 3) starts. The watchpoint of job1 is "rst reached, as job1 ends before
job2. Since the expected end of time of task1 (0.5 units of time) di!ers from current end of time
(0.9 u.t.), an update of data-throttling rates is required. The new data-throttling rates are 34.39% for
job1 → job3, 43.27% to job1 → job4, while job2 → job4 su!ers no alteration. When the next watch-
point in job2 is reached, no update is required, since there is no mismatch between timestamps.
Finally, work#ow ends its execution.

The makespan of the work#owW when executed under the control of Algorithm 2 is illustrated
in Figure 4(c). Note that the error e!ect was overriden by the dynamic data throttling by means of
increasing transmission rates. In this case, the work#ow makespan is equal to 5.6987, i.e., the same
as in the scenario of Figure 4(a). A question may arise regarding the computational overhead caused
by execution of Algorithm 2. In the next section, we show the empirical results that verify that
such overhead is insigni"cant. Furthermore, we use the Montage (Berriman et al. 2007) work#ow
to compute how much the usage of input bu!ers improves when Algorithm 1 and Algorithm 2 are
applied.

7 EXPERIMENTS AND VALIDATION
In this section, we "rst analyse the in#uence of data throttling on work#ow makespan: We pro-
vide a formal proof, so that we can guarantee, for any case, that the work#ow makespan with data
throttling is always lower than or equal to the makespan of the same work#ow when no data throt-
tling is performed. The validation of Algorithm 1 was already given in Rodríguez et al. (2012). The

16 R. J. Rodríguez et al.

experiments were conducted by simulation using the SimGrid tool (Casanova et al. 2008), which
enables us to simulate a scienti"c work#ow in a given execution platform, both de"ned following
a well-de"ned XML syntax. SimGrid allows us to specify the network bandwidth rates to be used
between di!erent hosts. However, it is unsuitable for the validation of Algorithm 2, since it does
not support the modi"cation of a data transmission rate of a transmission task, once the simulation
of the task was started. To overcome that problem, we developed our own work#ow simulator so
that we can better show evidence of our autonomic approach. We describe the experiments per-
formed and provide a discussion of results. Last, we (brie#y) comment the main limitations of our
approach.

7.1 Data-thro!ling Influence on Workflow Makespan
As discussed in the previous section, considering a negligible computational cost of Algorithm 2,
the makespan of a work#ow where Algorithm 2 is being applied can never be greater than the
makespan of the same work#ow without the e!ect of Algorithm 2.

Theorem 7.1. The makespan of a work!ow in which data are throttled is always lower than or
equal to the makespan of the same work!ow when no data throttling is performed, being the conditions
of both work!ow executions equal.

Proof. Let W = 〈J ,D, ξ ,ψ 〉 be a work#ow and N its corresponding SMG, obtained after
model transformation as indicated in Section 4. Let Θ the makespan of the work#owW and let y
be the slowest P-semi#ow of N , whose cycle time is equal to Γ = 1/Θ as computed by LPP 3 (or
its dual). Assume that there exists some place p with a positive slack value, i.e., ∃p ∈ P : µ (p) > 0.
By de"nition of slack values, we know that p does not belong to the support of y, i.e., p ! ‖y‖.

Now, we perform data throttling in the work#ow; in the following, we use the symbol ′
as a super-index to indicate the values after having performed data throttling. Hence, we ap-
ply Theorem 5.1, and we increase the delay of transition •p by 0 < α ≤ µ (p)

Θ units of time, i.e.,
δ ′(p) = δ (p) + α .

Let yp be the P-semi#ow that contains the place p in its support. Let Γ′ be the cycle time associ-
ated to yp , which is a!ected by the addition of α . Suppose that the makespan of the work#ow has
increased, i.e., Γ′ > Γ (that is, Θ′ < Θ). Since the steady-state throughput has changed, we do not
know how m̃′(p) and m̃(p) are related.

First, let us suppose that m̃′(p) > m̃(p). Hence, δ ′(p)Θ′ > δ (p)Θ + µ (p). Since 0 < α ≤ µ (p)
Θ ,

then:

(δ (p) + α)Θ′ > δ (p)Θ + µ (p) ⇒
(
δ (p) +

µ (p)

Θ

)
Θ′ > δ (p)Θ + µ (p).

Rearranging terms: δ (p) (Θ′ − Θ) > µ (p) (1 − Θ′
Θ). Since Θ′ < Θ, then 0 > δ (p) (Θ′ − Θ). There-

fore, 0 > µ (p) (1 − Θ′
Θ). By de"nition of slack, µ (p) > 0, and, thus, 0 > 1 − Θ′

Θ ⇒ Θ′ > Θ, which is a
contradiction.

Let us suppose now that m̃′(p) ≤ m̃(p). Hence, δ ′(p)Θ′ ≤ δ (p)Θ + µ (p). As before,

(δ (p) + α)Θ′ ≤ δ (p)Θ + µ (p) ⇒
(
δ (p) +

µ (p)

Θ

)
Θ′ ≤ δ (p)Θ + µ (p).

Rearranging terms: δ (p) (Θ′ − Θ) ≤ µ (p) (1 − Θ′
Θ). Note that Θ′ < Θ, then 0 > δ (p) (Θ′ − Θ). Sim-

ilarly, Θ′
Θ < 1 and thus, µ (p) (1 − Θ′

Θ) > 0, since µ (p) > 0 by de"nition of slack. Therefore, δ (p) (Θ′ −
Θ) ≤ µ (p) (1 − Θ′

Θ) is again a contradiction.
Hence, Γ′ ≤ Γ. !

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 17

7.2 Experimental Test-bed for Algorithm 2
SimGrid simulator was used for the validation of Algorithm 1 in Rodríguez et al. (2012). However, as
SimGrid only supports setting up data transfer rates in transmission tasks prior to their execution,
our dynamic data-throttling strategy would have no e!ect if the transmission task to be throttled
had already started its execution. To overcome this issue, we developed our own Java-based tool
for experimentation, termed as DT4SW. Our tool simulates the network model in a way closer to real
networks. Furthermore, the source code has been freely released under GPLv3 (see https://gitlab.
unizar.es/rrodrigu/data-throttling-work#ows) to enable the reproducibility of the experiments and
to foster research in the area of data throttling. Currently, DT4SW allows us to simulate the execution
of a scienti"c work#ow (speci"ed as a DAX "le). Our tool assumes that the execution platform has
enough nodes to execute each work#ow task independently. Although the current version of the
tool does not allow to specify heterogeneous nodes, it accepts di!erent execution parameters, as
the network topology (two topologies were considered, each node has either a single network
link or either as many network links as nodes in the platform), the network bandwidth, and the
network latency.

Furthermore, our tool also incorporates a failure model. In particular, the user can simulate a
scienti"c work#ow assuming an upper bound to the network bandwidth for every transmission
task of the work#ow. Hence, when a transmission task begins its execution, its network bandwidth
is upper bounded by such a rate. DT4SW also provides a rich API allowing the user to simulate a
work#ow under di!erent data-throttling strategies (none, static, or dynamic).

As a work#ow for the experimentation, we chose the Montage work#ow. The Montage work-
#ow (Berriman et al. 2007) is a scienti"c work#ow used to create image mosaics in the astrophysics
domain. The abstract work#ow description and performance information were collected from
DAX "les generated with the Pegasus work#ow system (available at https://con#uence.pegasus.isi.
edu/display/pegasus/Work#owGenerator). In particular, in this article, we consider three variants
of Montage work#ow, each one containing a di!erent number of tasks (25, 50, and 100 tasks). We
initially considered the Montage variant of 1,000 tasks, but our tool ran out of memory. We discuss
these issues more in detail in Section 7.4. Let us remark that these work#ows are synthetic work-
#ows generated using the information gathered from actual executions of scienti"c work#ows on
the Grid and that the number of tasks were used as bounds to estimate performance. As observed
in a Montage work#ow in practice, our approach is applicable also for a di!erent number of tasks.

Experiments were performed in a virtualized environment running a GNU/Linux Debian 8.10
AMD64, with 768MB of RAM memory and an Intel Core i7-5650U CPU at 2.20GHz. Regarding
software, we have used the Java Virtual Machine version 8.0.151 and GLPK version 3.6 as ILP solver.

To validate Algorithm 2, we have simulated the synthetic Montage work#ows under static and
dynamic data-throttling strategies, while upper bounding the transmission rates from 1% to 10%.
Under these scenarios, we expect to see the e!ect of having a dynamic approach that observes
deviations from the expected behavior. The work#ow makespan for each strategy and experiment
is always the same, and, thus, we deliberately omit it from comparison. In this case, data throttling
does not in#uence work#ow makespan. This is mainly motivated, because the key metric being
considered by our approach is resource usage and thus a more e!ective use can be made of existing
storage/compute resources rather than just decreasing the overall makespan.

7.3 Experimental Validation of Algorithm 2 and Discussion
Figure 5(a), (b), and (c) depicts the sum of waiting time (in seconds) of idle data in input bu!ers of
tasks with multiple input dependencies for Montage with 25, 50, and 100 tasks, respectively. For
every upper bounded rate (from 1% to 10%), we computed the sum of waiting time simulating the

https://gitlab.unizar.es/rrodrigu/data-throttling-workflows
https://gitlab.unizar.es/rrodrigu/data-throttling-workflows
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

18 R. J. Rodríguez et al.

Fig. 5. Sum of waiting times of idle data in static and dynamic data-thro!ling strategies.

work#ow under static and dynamic data throttling. In all cases, a dynamic data-throttling strategy
provides a lower waiting time. It is observed that from a certain point (10% for Montage with 50
tasks and 7% for Montage with 100 tasks) both strategies obtain the same results. This happens
because the dynamic data-throttling strategy is not taking place, since the upper bounded rate is
not producing any observable delays from expected execution.

The execution time of both data-throttling strategies are shown in Figure 6. As shown, the
number of tasks clearly has an impact in the execution time of both strategies. The execution time
of the dynamic data-throttling strategy is always greater than the static one, since it is executed
every time that some deviation is observed while the static data-throttling strategy is executed only
once. These graphs also con"rm what we claimed before: From a certain point (10% for Montage
with 50 tasks and 7% for Montage with 100 tasks), the dynamic data-throttling strategy does not
update the data-throttling rates.

In summary, these experiments allow us to conclude the following. First, a dynamic data-
throttling strategy minimizes the waiting time of idle data in tasks with multiple input depen-
dencies. Second, the execution time of the dynamic data-throttling strategy is negligible, since it
took less than 1s for the larger work#ow used in the experiments (100 tasks). Of course, larger
work#ow would need longer execution time. However, the usage of input bu!ers would be min-
imized as well, and the overhead induced by computation could be overlapped with the actual
execution of the workf l ow. We aim at studying this tradeof f in more detail in the future. How-
ever, implementing a data-throttling mechanism will add further technological complexity to the
work#ow management system. First, network bandwidth can be monitored by any of the available
tools. Second, the proposed algorithm for imbalance analysis and data-throttling rates also adds
some computations. Finally, data throttling can be accomplished by a tra$c-shaping mechanism
such as token bucket as discussed by Park and Humphrey (2008).

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 19

Fig. 6. Execution times of static and dynamic data-thro!ling strategies.

7.4 Limitations
Here, "rst we brie#y discuss the main limitations of our tool, and then we discuss the compu-
tational complexity of Algorithm 2. The failure model assumed by DT4SW is simplistic. As future
work, we aim at extending DT4SW to "rst support input "les describing executional platform (as
SimGrid does) and to improve how failures are simulated.

The main limitation of our approach is the computational complexity of the Algorithm 2. Let us
recall that the transformation from a work#owW with n tasks and m transmissions would gen-
erate a Petri net having 2m places and nm transmissions. Therefore, the LPPs used by Algorithm 2
have 4m + 1 constraints (at most) and work with matrices of 2m × n dimensions. Hence, although
the number of constraints are tractable, the consumption of memory is considerable. Furthermore,
to dispose of a tool developed in Java is not helping for this issue. The optimization of Algorithm 2
to save execution time and memory space deserves further study.

8 CONCLUSIONS AND FUTURE WORK
Large datasets analysis and complex scienti"c simulations are normally represented as work#ows.
These work#ows are deployed into distributed and parallel computing infrastructures to speed
up their execution. However, work#ow imbalance in runtime and data dependencies may appear
when accommodating the work#ow to the computing infrastructure, and the subsequent sched-
uling process might incur in poor network bandwidth and storage usage. Both imbalances can
be corrected by enforcing data transfer rates throughout work#ow paths, that is, imposing data-
throttling transfer mechanisms.

In this article, we have proposed a technique to analyse and quantify work#ow imbalance,
based on linear programming techniques and Petri nets, and a dynamic data-throttling approach

20 R. J. Rodríguez et al.

to overcome the imbalance at runtime. We have also introduced a set of rules to transform
a data-intensive work#ow into a Petri net model. Furthermore, we have explained in detail
the theoretical foundations of our approach and provided theorems to prove our claims. In
particular, our approach is based on the structural analysis of the Petri net model obtained after
transformation and is able to accommodate ratios in presence of unexpected conditions, such
as network or host failures. We have validated our approach by applying it to real work#ows of
di!erent nature. Our technique is therefore complementary to the existing clustering/scheduling
techniques and can be used to improve the overall work#ow performance. Our "ndings show
that data throttling is not only feasible but also does not introduce a signi"cant overhead. Besides,
it minimizes the usage of input bu!ers and network bandwidth. Our "ndings also show that
dynamic data-throttling approach outperforms much better than other approaches when applied
to work#ows with large structure imbalance.

As future work, we plan to integrate our dynamic data-throttling approach in a real work#ow
enactment to experimentally validate our approach. Furthermore, we aim at investigating self-
adaptive strategies that continually monitor and adapt to improve work#ow computation and data
transmissions under unexpected conditions.

REFERENCES
Wil M. P. van der Aalst, Alexander Hirnschall, and H. M. W. (Eric) Verbeek. 2002. An alternative way to analyze work#ow

graphs. In Proceedings of the 14th International Conference on Advanced Information Systems Engineering (CAiSE’02).
Springer-Verlag, London, 535–552.

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. 1995a. Modelling with Generalized Stochastic
Petri Nets. John Wiley & Sons.

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. 1995b. Modelling with Generalized Stochastic
Petri Nets. John Wiley & Sons.

L. Aversano, A. Cimitile, P. Gallucci, and M. L. Villani. 2002. FlowManager: A work#ow management system based on Petri
nets. In Proceedings of the 26th Annual International Computer Software and Applications Conference (COMPSAC’02).
1054–1059. DOI:https://doi.org/10.1109/CMPSAC.2002.1045148

G. Bruce Berriman, Ewa Deelman, John Good, Joseph C. Jacob, Daniel S. Katz, Anastasia C. Laity, Thomas A. Prince,
Gurmeet Singh, and Mei-Hui Su. 2007. Generating complex astronomy work#ows. In Work!ows for e-Science, Ian J.
Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields (Eds.). Springer, London, 19–38. DOI:https://doi.org/10.
1007/978-1-84628-757-2_3

J. Campos and M. Silva. 1992. Structural techniques and performance bounds of stochastic Petri net models. In Proceedings
of the Advances in Petri Nets 1992, G. Rozenberg (Ed.). Lecture Notes in Computer Science, vol 609. Springer, Berlin,
Heidelberg. 352–391.

J. Carmona, J. Júlvez, J. Cortadella, and M. Kishinevsky. 2009. Scheduling synchronous elastic designs. In Proceedings of the
2009 Application of Concurrency to System Design Conference (ACSD’09).

Henri Casanova, Arnaud Legrand, and Martin Quinson. 2008. SimGrid: A generic framework for large-scale distributed
experiments. In Proceedings of the 10th IEEE International Conference on Computer Modeling and Simulation.

Weiwei Chen, Rafael Ferreira da Silva, Ewa Deelman, and Rizos Sakellariou. 2015. Using imbalance metrics to optimize task
clustering in scienti"c work#ow executions. Fut. Gener. Comput. Syst. 46, C (May 2015), 69–84. DOI:https://doi.org/10.
1016/j.future.2014.09.014

G. Chiola, C. Anglano, J. Campos, J. M. Colom, and M. Silva. 1993. Operational analysis of timed Petri nets and application to
the computation of performance bounds. In Proceedings of the 5th International Workshop on Petri Nets and Performance
Models (PNPM’93). IEEE Computer Society Press, Los Alamitos, CA, 128–137.

E. Deelman, G. Mehta, G. Singh, M. Su, and K. Vahi. 2007. Pegasus: Mapping large-scale work#ows to distributed resources.
In Work!ows for eScience. Springer, 376–394.

Rubing Duan, Thomas Fahringer, Radu Prodan, Jun Qin, Alex Villazón, and Marek Wieczorek. 2005. Real world work-
#ow applications in the Askalon grid environment. In Proceedings of the Advances in Grid Computing European Grid
Conference (EGC’05). Springer, Berlin, 454–463. DOI:https://doi.org/10.1007/11508380_47

Rubing Duan, Farrukh Nadeem, Jie Wang, Yun Zhang, Radu Prodan, and Thomas Fahringer. 2009. A hybrid intelligent
method for performance modeling and prediction of work#ow activities in Grids. In Proceedings of the 9th IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGrid’09). IEEE Computer Society, Los Alamitos, CA, 339–347.
DOI:https://doi.org/10.1109/CCGRID.2009.58

https://doi.org/10.1109/CMPSAC.2002.1045148
https://doi.org/10.1007/978-1-84628-757-2_3
https://doi.org/10.1007/978-1-84628-757-2_3
https://doi.org/10.1016/j.future.2014.09.014
https://doi.org/10.1016/j.future.2014.09.014
https://doi.org/10.1007/11508380_47
https://doi.org/10.1109/CCGRID.2009.58

A Dynamic Data-thro!ling Approach to Minimize Workflow Imbalance 21

Rubing Duan, Radu Prodan, and Thomas Fahringer. 2006. Run-time optimisation of grid work#ow applications. In Proceed-
ings of the 7th IEEE/ACM International Conference on Grid Computing (GRID’06). IEEE Computer Society, Los Alamitos,
CA, 33–40. DOI:https://doi.org/10.1109/ICGRID.2006.310995

G. Florin and S. Natkin. 1985. Les réseaux de Petri stochastiques. Techn. Sci. Inf. 4 (1985), 143–160.
Zhijie Guan, Francisco Hernandez, Purushotham Bangalore, Je! Gray, Anthony Skjellum, Vijay Velusamy, and Yin Liu.

2006. Grid-#ow: A Grid-enabled scienti"c work#ow system with a Petri-net-based interface: Research articles. Concurr.
Comput. Pract. Exper. 18 (Aug. 2006), 1115–1140. Issue 10. DOI:https://doi.org/10.1002/cpe.v18:10

Andreas Hoheisel. 2006. User tools and languages for graph-based Grid work#ows: Research articles. Concurr. Comput.
Pract. Exper. 18, 10 (2006), 1101–1113. DOI:https://doi.org/10.1002/cpe.v18:10

Je!rey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50.
John D. C. Little. 1961. A proof for the queuing formula: L= λ W. Oper. Res. 9, 3 (1961), 383–387. DOI:https://doi.org/10.

2307/167570
Tadao Murata. 1989. Petri nets: Properties, analysis and applications. In Proceedings of the IEEE, Vol. 77. 541–580.
F. Nerieri, R. Prodan, T. Fahringer, and Hong-Linh Truong. 2006. Overhead analysis of Grid work#ow applications. In

Proceedings of the 7th IEEE/ACM International Conference on Grid Computing (GRID’06). IEEE Computer Society, Los
Alamitos, CA, 17–24. DOI:https://doi.org/10.1109/ICGRID.2006.310993

Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris, Kevin Glover, Carole Goble, Antoon
Goderis, Duncan Hull, Darren Marvin, Peter Li, Phillip Lord, Matthew R. Pocock, Martin Senger, Robert Stevens, Anil
Wipat, and Chris Wroe. 2006. Taverna: Lessons in creating a work#ow environment for the life sciences: Research
articles. Concurr. Comput. Pract. Exper. 18, 10 (2006), 1067–1100. DOI:https://doi.org/10.1002/cpe.v18:10

Sang-Min Park and M. Humphrey. 2008. Data throttling for data-intensive work#ows. In Proceedings of the IEEE Interna-
tional Symposium on Parallel and Distributed Processing. 1–11. DOI:https://doi.org/10.1109/IPDPS.2008.4536306

Simone Pellegrini, Andreas Hoheisel, Francesco Giacomini, and Antonia Ghiselli. 2008. Using GWork#owDL for
middleware-independent modeling and enactment of work#ows. In Proceedings of the CoreGRID Integration Workshop
2008.

C. Ramchandani. 1974. Analysis of Asynchronous Concurrent Systems by Petri Nets. Ph.D. Dissertation. Department of Elec-
trical Engineering, Massachusetts Institute of Technology, Cambridge, MA.

Ricardo J. Rodríguez and Jorge Júlvez. 2010. Accurate performance estimation for stochastic marked graphs by bottleneck
regrowing. In Proceedings of the 7th European Performance Engineering Workshop (EPEW’10), Lecture Notes in Computer
Science, Vol. 6342. Springer, 175–190. DOI:https://doi.org/10.1007/978-3-642-15784-4_12

Ricardo J. Rodríguez, Rafael Tolosana-Calasanz, and Omer F. Rana. 2012. Automating data-throttling analysis for data-
intensive work#ows. In Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid’12). IEEE, 310–317. DOI:https://doi.org/10.1109/CCGrid.2012.27

Ricardo J. Rodríguez, Rafael Tolosana-Calasanz, and Omer F. Rana. 2012. Measuring the e!ectiveness of throttled data
transfers on data-intensive work#ows. In Proceedings of the 6th KES International Conference on Agent and Multi-Agent
Systems, Technologies, and Applications (KES-AMSTA’12). 144–153. DOI:https://doi.org/10.1007/978-3-642-30947-2_18

Jacek Sroka and Jan Hidders. 2009. Towards a formal semantics for the process model of the Taverna workbench. Part ii.
Fundam. Inf. 92, 4 (2009), 373–396.

I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields (Eds.). 2007. Work!ows for eScience: Scienti"c Work!ows for Grids.
Springer.

Rafael Tolosana-Calasanz, José A. Bañares, Pedro Álvarez, Joaquín Ezpeleta, and Omer F. Rana. 2010a. An uncoordinated
asynchronous checkpointing model for hierarchical scienti"c work#ows. J. Comput. Syst. Sci. 76, 6 (Sep. 2010), 403–415.

Rafael Tolosana-Calasanz, José A. Bañares, Omer F. Rana, Pedro Álvarez, Joaquín Ezpeleta, and Andreas Hoheisel. 2010b.
Adaptive exception handling for scienti"c work#ows. Concurr. Comput. Pract. Exper. 22, 5 (Apr. 2010), 617–642.

Rafael Tolosana-Calasanz, Omer Rana, and José Bañares. 2008. Automating performance analysis from Taverna work#ows.
In Component-Based Software Engineering, Michel Chaudron, Clemens Szyperski, and Ralf Reussner (Eds.). Lecture Notes
in Computer Science, Vol. 5282. Springer, Berlin, 1–15. DOI:https://doi.org/10.1007/978-3-540-87891-9_1

Wil van der Aalst and Kees van Hee. 2004. Work!ow Management: Models, Methods, and Systems. The MIT Press.
Michal Vossberg, Andreas Hoheisel, Thomas Tolxdor!, and Dagmar Krefting. 2008. A reliable DICOM transfer grid service

based on Petri net work#ows. In Proceedings of the 2008 8th IEEE International Symposium on Cluster Computing and the
Grid. IEEE Computer Society, Los Alamitos, CA, 441–448. DOI:https://doi.org/10.1109/CCGRID.2008.122

Jia Yu and Rajkumar Buyya. 2005. A taxonomy of work#ow management systems for Grid computing. CoRR 34, 3 (Sep.
2005), 44–49.

https://doi.org/10.1109/ICGRID.2006.310995
https://doi.org/10.1002/cpe.v18:10
https://doi.org/10.1002/cpe.v18:10
https://doi.org/10.2307/167570
https://doi.org/10.2307/167570
https://doi.org/10.1109/ICGRID.2006.310993
https://doi.org/10.1002/cpe.v18:10
https://doi.org/10.1109/IPDPS.2008.4536306
https://doi.org/10.1007/978-3-642-15784-4_12
https://doi.org/10.1109/CCGrid.2012.27
https://doi.org/10.1007/978-3-642-30947-2_18
https://doi.org/10.1007/978-3-540-87891-9_1
https://doi.org/10.1109/CCGRID.2008.122
https://www.researchgate.net/publication/332952155

