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1. Introduction

In [12] Milnor introduced the Milnor fibration for any holomorphic germ

f : (Cn, O)→ C

and proved that the Milnor fibre is always a CW-complex of dimension at most
(n−1). In the case in which f has an isolated singularity at the origin he also proved
that the Milnor fibre is homotopy equivalent to a bouquet of (n− 1)-spheres. The
number of spheres is equal to the Milnor number µ, which can be easily computed
from the equation. If f has non-isolated singularities at the origin the situation is
much more complicated. Up to now, the only general result is Kato-Matsumoto
bound [9] which asserts that the Milnor fibre is (s − 2)-connected, where s is the
codimension of the singular locus in Cn. The homotopy type of the Milnor fibre
of a general function germ can be very complicated. In fact, by a recent result
of the first author [5], for any local analytic set in Cm there is a function whose
Milnor fibre is homotopy equivalent to the complement of the set in a sufficiently
small ball. The class of such spaces is very rich (contains for example the class
of complements of hyperplane and line arrangements) and there is a whole theory
dedicated to its study. Hence we may not expect to find a simple description of the
homotopy type of the Milnor fibre of a general function germ.

It is very interesting to find classes of non-isolated hypersurface singularities for
which the homotopy type of the Milnor fibre admits an understandable description
from the equation. This paper contributes to a program in this direction. Let
I ⊂ OCn,O be an ideal defining a 3-dimensional i.c.i.s. Σ0 and let f be a function of
finite extended codimension with respect to I (see Section 2 for a definition). Our
main results are the following:

(1) We prove that the Milnor fibre of f is homotopic to a bouquet of spheres
of different dimensions (see Theorem 11.2).

(2) We also compute the number of spheres appearing in terms of the equation
(see Theorem 10.1).

Simmilar results for the cases in which Σ0 is of dimension 1 and 2 were produced
by the work of Siersma (see [17] and [18]), Zaharia [22] and Nmethi [14]. If Σ is a
hypersurface the result was proved by Shubladze [16] and Nmethi [13].
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Actually we formulate the following:

Conjecture. The Milnor fibre of a function of finite extended codimension with
respect to an i.c.i.s. has the homotopy type of a bouquet of spheres.

Functions of finite extended codimension with respect to an i.c.i.s. are a par-
ticular case of I-isolated singularities as defined and studied in [3]. There it was
given a bouquet theorem decomposing homotopically the Milnor fibre in a bouquet
of several (n− 1)-spheres and an unknown space (Theorem 9.3 of [3]). The results
of this paper identify the homotopy type of that space. It would be interesting to
generalise this paper to other I-isolated singularities.

Other bouquet theorems in the context of singular ambient spaces were proved
by Siersma [20] and Tibar [21].

Let us end with a description of some aplications of this kind of results. The
class of singularities studied in this paper shows very surprising phenomena from
the equisingularity viewpoint. It has been used in [3] in order to disprove several
old equisingularity questions. At the moment of writing the paper [3] some of the
Betti number formula contained in this paper were known to the first author. It was
this knowledge which lead him to guess the counterexamples contained in [3] (see
Section 12 for more detais). We hope that a systematic solution to our conjecture
would lead to interesting examples showing other topological phenomena in non-
isolated singularities as yet unknown to us.

The structure of this paper is inspired in the classical Picard-Lefschetz theory of
isolated singularities and Sierma’s generalisation for non-isolated singularities. In
this theory, a function is perturbed to split a singular point into several Morse-type
singularities (this process is usually refered to as Morsification). Then it is shown
that the homology of the Milnor fibre of the original function can be recovered
from the Milnor fibres of each Morse-type singularity. Finally, these homologies
are computed by a local study of the Morse-type singularities. In Section 2 we
use the results of [2] to prove that in our case we can do a process analogous
to the Morsification, but instead of obtaining only Morse-type singularities, we
will also obtain a non-isolated singularity over the Milnor fibre of the i.c.i.s. Σ.
In Section 3 we show that, as in the isolated case, the homology of the original
Milnor fibre can be recovered from the pieces of the Milnor fibres contained in
small neighbourhoods of the singularities obtained after the deformation. Having
done that, the hardest part of the argument is to study the Milnor fibre around
the non-isolated singularity obtained after the deformation. This study is done by
taking a suitable decomposition of the Milnor fibre of Σ in such a way that the
space we want to study fibers naturally over each stratum of this decomposition.
Section 5 describes this decomposition, and the following ones study the parts that
fiber over the different strata. Sections 8 and 9 show how to glue these pieces to
obtain the homology of the Milnor fibre around the deformation of Σ. Finally,
we use all these data to recover the homotopy type of the whole Milnor fibre in
Sections 10 and 11. The last section describes a distinguished family of functions
belonging to the class studied in this paper which already had striking applications
in topological equisingularity.

1.1. Terminology. If X is a subspace of a topological space Y we denote by Ẋ
the interior points of X, and by ∂X the boundary points of X in Y . Given two
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topological spaces X any Y we denote that they have the same homotopy type by
X ' Y . We will denote by Dδ the closed disc of radius δ in the complex plane and
by Bε the closed ball of radius ε in a complex affine space. The centers of the discs
and balls will be clear from the context unless they are explicitly mentioned in the
text or in the notation (by B(x, ε)). Denote by Sk a sphere of dimension k.

2. Unfoldings

Let I := (g1, ..., gn−3) define a 3-dimensional i.c.i.s. Σ0 in Cn. Denote by ΘI,e

the germs of vector fields tangent to the i.c.i.s. A function f : Cn → C is singular
at Σ if and only if it belongs to I2. As in [15] we define the extended codimension
of f with respect to I as

cI,e := dimC(I2/ΘI,e(f)).

From the deformation viewpoint, functions with finite extended codimension play
the same role in the space of functions singular in Σ0 than isolated singularities
in the space of all funtion-germs. A geometric characterisation of germs of finite
extended codimension was given in [22] (see [3] for another proof and generalisa-
tions): these are germs in I2 which outside the origin only have either isolated A1

singularities or singularities of type D(3, p), with p ∈ {0, 1, 2}.
The singularity D(k, p) has the following normal form (see [15]):∑

1≤i≤j≤p

xi,jyiyj +
∑

p+1≤i≤n−k

y2
i = 0,

where {xi,j}1≤i≤j≤p ∪{yi}1≤i≤n−k is an independent system of linear forms in Cn.
Given a germ f ∈ I2 we can express it as a matrix product

f = (g1, ..., gn−3)(hi,j)(g1, ..., gn−3)t

with (hi,j) a symmetric matrix of holomorphic germs of size n − 3. An easy com-
putation shows that the restriction (hi,j)|Σ0

only depends on f .
Let

G1, ..., Gn−3 : Cn ×B → Cn−3

be the semiuniversal unfolding of the i.c.i.s. (g1, ..., gn−3). Its base B is a germ of
complex manifold [10]. Given any b ∈ B denote by

(G1,b, ..., Gn−3,b) : Cn → Cn−3

the mapping corresponding to the parameter value b. In the space SM(n − 3) of
symmetric matrices with complex entries we consider the stratification

SM(n− 3) =

n−3⋃
i=0

SM(n− 3, i),

where SM(n − 3, i) is the set of matrices of corank equal to i. Notice that

SM(n− 3, i) consists of the set of matrices defined by the vanishing of the mi-
nors of size n − 2 − i. It is easy to check that SM(n − 3, i) is of codimension
i(i+ 1)/2 in SM(n− 3). We consider the unfolding

F : Cn ×B × SM(n− 3)→ C

of the function f defined by:

(1) F (x1, ..., xn, b, (ci,j)) := (G1,b, ..., Gn−3,b)(hi,j + ci,j)(G1,b, ..., Gn−3,b)
t.
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Notation 2.1. Denote by S = B × SM(n− 3) the base of the unfolding. Consider
Σ := V (G1, ..., Gn−3) ⊂ Cn × S. Given any s = (b, (ci,j)) ∈ S we denote by
fs : Cn → C the function corresponding to the parameter value s, by Σs the locus
V (G1,b, ..., Gn−3,b) and by

H(F ) : Σ→ SM(n− 3)

the mapping defined by H(F )(x, b, (ci,j)) := (hi.j(x) + ci,j). Consider

H(fs) := H(F )|Σs .
Define Σ[i] := H(F )−1(SM(n− 3, i)) and Σ[i]s := H(fs)

−1(SM(n− 3, i)).
Figure 1 shows a schematic view of these sets.

ΣsΣ0

Σ[1]0
Σ[1]s

Figure 1. The deformation of the i.c.i.s. and the stratification

The function f0 coincides with f , where 0 ∈ S is the origin of the base of the
unfolding.

Let ε and δ be radii for a Milnor fibration of f , that is radii such that

(1) the central fibre f−1(0) meets ∂Bε′ transversely in the stratified sense for
any ε′ ≤ ε,

(2) for any t ∈ Dδ \ {0}, the fibre f−1(t) meets ∂Bε transversely,
(3) the only critical value of f |Bε is 0.

From [2] and [3] we obtain:

Theorem 2.2. There exists a proper closed analytic subset ∆ of S, and a ball Bη
centred at 0 ∈ S such that for any s ∈ Bη \∆ we have

(1) for any t ∈ Dδ the intersection of f−1
s (t) with ∂Bε is transversal (in the

stratified sense if t = 0).
(2) the critical set of the function fs|Bε is the union of Σs ∩ Bε with a finite

number of Morse type singularities, whose critical values are pairwise dif-
ferent and different from 0.

(3) the set Σs ∩ Bε is smooth (a Milnor fibre of the i.c.i.s. (Σ0, O)) and the
mapping

(2) H(fs)|Σs∩Bε : Σs ∩Bε → SM(n− 3)

is transversal to the stratification of SM(n − 3) by corank. In particular
Σ[i]s is a manifold of codimension i(i+ 1)/2 in the 3-dimensional manifold
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Σs∩Bε. Therefore the critical points of fs in Σs are of type D(3, 0), D(3, 1)
or D(3, 2).

Denote by C and D the critical set and the discriminant of the mapping

(3) (F, pr2) : Cn ×Bη :→ C×Bη,

where pr2 denotes the projection of Cn×Bη to the second factor. Then the restric-
tion

(F, pr2) : (Bε ×Bη) ∩ (F, pr2)−1((Dδ ×Bη) \ D)→ (Dδ ×Bη) \ D

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of f .

Lemma 2.3. The set Σ[1]0 = V (det(H(f)), g1, ..., gn−3) is a 2-dimensional i.c.i.s.

Proof. For any s ∈ S the set of points of Σs∩Bε where H(fs) has corank at least 1
coincides with V (det(H(fs)). Denote by cIx,e((fs)x) the extended codimension of
the germ fs at x with respect to the ideal Ix defining the germ (Σs, x). In [2] it is
shown that the set of points such that H(fs) is not transversal to the stratification of
SM(n−3) by corank coincides precisely with the set of points at which cIx,e((fs)x)
is non-zero. Therefore the only point at which H(f) is not transversal to the
corank stratification is the origin if we take ε small enough. Thus at any x ∈
Σ0 \ {0} the germ fx is of type D(3, 0) if det(H(f)(x) 6= 0 and of type D(3, 1) if
det(H(f)(x) = 0. Inspecting the normal form of the D(3, 1) singularity we find
that V (det(H(f)), g1, ..., gn−3) has an isolated singularity at the origin. �

Now we study the deformation Σ[1]s := V (det(H(fs)), G1,s, ..., Gn−3,s) ∩ Bε as
we move in S. Choose s ∈ S \∆. Since H(fs) is transversal to the stratification by
corank there is a finite set of points Σ[2]s in Σ[1]s of type D(3, 2) and the rest of the
points are of type D(3, 1). The normal form of the D(3, 2) singularity gives that

Σ[1]s has an A1-type singularity at any point in Σ[2]s. Let a denote the cardinality
of Σs[2]. In the next Lemma we show that a is independent on s.

Lemma 2.4. The restriction

pr2 : (Σ,Σ[1],Σ[2]) ∩ pr−1
2 (S \∆)→ S \∆

is a topological locally trivial fibration of triples such that Σs is the Milnor fibre
of the i.c.i.s. Σ0, the surface Σ[1]s is a deformation of Σ[1]0 having precisely a
singularities of A1-type in Σ[2]s. Moreover the restriction

(4) pr2 : Σ[2] ∩ pr−1
2 (S \∆)→ S \∆

is a covering and Σ[2] ∩ pr−1
2 (S \∆) is connected.

Proof. The topological triviality statements are easy after the normal forms of the
D(3, p) singularities.

The space Σ is smooth since it is the product of the total space V of the versal
deformation of the i.c.i.s. V (g1, ..., gn−3) (which is smooth) with the space SM(n−
3). For any matrix M ∈ SM(n − 3) the fibre H(F )−1(M) is diffeomorphic to V,
being the diffeomorphism φM : V → H(F )−1(M) defined by φM (x) := (x,M −
(hi,j(x)). This shows that H(F ) : Σ → SM(n − 3) is a trivial fibration. The set
Σ[2] is connected because it is a Zariski dense open subset in the analytic manifold
H(F )−1(SM(n − 3, 2)), which is diffeomorphic to the product V × SM(n − 3, 2),
being SM(n− 3, 2) irreducible. �
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We summarise for further reference the main invariants introduced for the func-
tion f .

Definition 2.5. Define µ0 and µ1 to be the Milnor numbers at the origin of the
i.c.i.s. Σ0 and Σ[1]0. For s ∈ S \ ∆ close to the origin we define a to be the
cardinality of Σ[2]s and #A1 to be the number of Morse points of fs.

2.1. The corank = 2 case. We will need an slightly larger unfolding of f in the
particular case in which corank(H(f)(O)) is precisely equal to 2. In that case, after
possibly changing the generators of the i.c.i.s we can assume that f is of the form

(5) f = (g1, g2)(hi,j)(g1, g2)t +

n−3∑
i=3

g2
i .

When cI,e(f) is finite the mapping

H(f) : Σ→ SM(2)

is transverse to the corank stratification outside the origin. Therefore the ori-
gin is an isolated point of the locus where corank(H(f)) is at least 2. Since
in this case the corank 2 locus is defined by the vanishing of the n functions
h1,1, h1,2, h2,2, g1, ..., gn−3, we have that Σ[2]0 is a 0-dimensional i.c.i.s. concen-
trated at the origin. Let a be its length as 0-dimensional scheme. Let

Σ[2] = V (H1,1, H1,2, H2,2, G1, ..., Gn−3) ⊂ Cn × S → S

be the versal deformation of the i.c.i.s. V (h1,1, h1,2, h2,2, g1, ..., gn−3). Any fibre
Σ[2]s is a 0-dimensional scheme of lenght a. The discriminant Λ ⊂ S is the set of
parameters where Σ[2]s is non-reduced. By versality the discriminant is irreducible

and reduced (Corollary 4.11 and Proposition 6.11 of [10]), and its smooth locus Λ̇
is the set of parameters such that Σ[2]s has exactly a fat point of length 2 and is
otherwise reduced (Lemma 4.9 of [10]).

Definition 2.6. Fix a base point s0 ∈ S \ Λ. Any path γ : [0, 1] → S such that
γ(0) = s0, γ([0, 1)) is included in S \ Λ and γ(1) is a smooth point of Λ induces a
deformation {Σ[2]t}t∈[0,1] along γ such that precisely two points {p0, p1} in Σ[2]0 =
Σ[2]s0 collapse to the same point in Σ[2]1. The vanishing cycle in Σ[2]s0 associated
to γ is, by definition, the pair {p0, p1}.

Lemma 2.7. All the points of Σ[2]s0 are at the same equivalence class by the
equivalence relation generated by the vanishing cycles.

Proof. The base S of the versal unfolding

ψ : Σ[2]→ S

of the 0-dimensional i.c.i.s. Σ[2]0 can be identified with a neighbourhood U of the
origin in CN . We choose a straight line l through s0 such that l meets Λ transversely
at smooth points. The neighbourhood and the line can be chosen so that ψ−1(l∩U)
is the Milnor fibre of a 1-dimensional i.c.i.s. Therefore ψ−1(l∩U) is connected ([10,
Chapter 5]). Choose a system of paths {γi}Mi=1 joining s0 with each of the points of
l∩Λ, without self intersections and not intersecting pairwise except at s0. Since the
space ψ−1(l∩U) is homotopy equivalent to the result of attaching a 1-cell at each of
the vanishing cycles associted to the paths {γi}Mi=1, the connectivity of ψ−1(l ∩ U)
proves the lemma. �
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Given any finite set K denote by Aut(K) its permutation group. Consider
Sym2(Σ[2]s0) the second symmetric product of Σ[2]s0 ; and denote by D its diag-
onal. Then Sym2(Σ[2]s0) \ D is the set of subsets of cardinality precisely 2. The
monodromy action

ρ : π1(S \ Λ, s0)→ Aut(Σ[2]s0)

induces a monodromy action

ρ2 : π1(S \ Λ, s0)→ Aut(Sym2(Σ[2]s0) \D.
The set of vanishing cycles is a subset of Sym2(Σ[2]s0) \D.

Lemma 2.8. The monodromy action ρ2 preserves the set of vanishing cycles and
acts transitively on it. In other words, the set of vanishing cycles is an orbit by the
monodromy action.

Proof. A vanishing cycle induced by a path γ is transformed by an element [α] ∈
π1(S \ Λ, s0) to the vanishing cycles induced by the concatenation path α � γ.
The transitivity is a classical consequence of the irreducibility of the discrimi-
nant ([1] Chapter 3). �

We enlarge the unfolding of f defined in (1) by considering the following one
instead of it:

F : Cn × S → C
given by

(6) F := (G1, G2)(Hi,j)(G1, G2)t +

n−3∑
i=3

G2
i .

The statements of Theorem 2.2 and Lemma 2.3 clearly remain true for this
unfolding.

3. Homology splitting

We will compute the homology of the Milnor fibre using a general method of
Siersma [17, 18, 19].

We have chosen radii ε and δ for a Milnor fibration of f . In that situation the
total space X0 := Bε ∩ f−1(Dδ) of the representative

f : X0 → C
is contractible.

Consider the versal unfolding F : Cn × S → C defined in the previous section.
Choose a direction in S such that the line l through the origin O of S in this
direction has O as an isolated point of ∆. Let Dξ be a disc in l around O only
meeting ∆ in O. Consider the associated 1-parameter unfolding

F : Cn ×Dξ → C.
Denote by fs the function fs(x) := F (x, s). By Ehresmann fibration theorem
Xs := Bε ∩ f−1

s (Dη) is diffeomorphic to X0 and hence it is contractible. If s 6= 0
the function

fs : Xs → Dδ

is a locally trivial fibration over Dδ \ {0, v1, ..., vr}, where {0, v1, ..., vr} are the
critical values of fs. Each vi 6= 0 is the image of precisely one singular point of
type A1 of fs. The fibre of fs over any point w not in {0, v1, ..., vr} is diffeomorphic
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to the Milnor fibre of f . Therefore we are interested in the reduced homology
Hk(f−1

s (w);Z), which is isomorphic to Hk+1(Xs, f
−1
s (w);Z) by the contractibility

of Xs.
Consider D0, D1, . . . , Dr a system of disjoint small disks inside Dδ centered in

0, v1, . . . vk respectively. Choose points ti ∈ ∂Di, and disjoint paths αi joining t0
with ti. We can take w = t0. Define

G :=

r⋃
i=1

αi ∪
r⋃
i=0

Di.

It is clear that G is a deformation retract of D∆, and since fs is a locally trivial
fibration outside G, we have that

Hk(Xs, f
−1
s (w)) = Hk(f−1

s (G), f−1
s (w)).

By excision:

Hk(f−1
t (G), f−1

s (w)) = ⊕ri=0Hk(f−1
s (Di), f

−1
s (ti)).

It is classical from Picard-Lefschetz theory that for any i > 0 we have

Hn(f−1
s (Di), f

−1
s (ti)) ∼= Z

and

Hk(f−1
s (Di), f

−1
s (ti)) = 0

if k 6= n.
Now let T be a tubular neighbourhood of Σs. We can take for example T :=

(G1,s, ..., Gn−3,s)
−1(B) for B a small ball around the origin in Cn−3. Taking T

small enough and D0 small in comparison with T we can assume that f−1
s (t) meets

the boundary ∂T transversely for any t ∈ D0. We define

(7) M := f−1
s (t0) ∩ T.

By this tranversality, and because of the fact that fs has no critical points in
f−1
s (D0) \ T , the part of the space f−1

s (D0) that lives outside T can be retracted
to f−1

s (t0). This means that the pair (f−1
s (D0), f−1

s (t0)) is homotopy equivalent to
the pair (f−1

s (t0) ∪ T, f−1
s (t0)). By excision we have

Hk(f−1
s (D0), f−1

s (t0)) ∼= Hk(T, f−1
s (t0) ∩ T ) = Hk(T,M).

We summarise what we have obtained:

Proposition 3.1. Denote the Milnor fibre of f by Ff . Let r be the number of A1

points that fs has in Bε for s ∈ S \∆ close to the origin of S. Then

Hn−1(Ff ;Z) ∼= Hn(T,M;Z)⊕ Zr,

Hk(Ff ;Z) ∼= Hk+1(T,M;Z)

for 1 ≤ k ≤ n− 2. By connectivity

H0(Ff ;Z) ∼= Z.

By construction, T is homotopic to Σs, which is the Milnor fibre of Σ0. We will
spend a large part of this paper computing the homology of M.
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4. The Milnor fibre of the D(k, p) singularity

We collect and reprove the following proposition, which follows from [4] and [6].

Proposition 4.1. The Milnor fibre of the D(k, p) singularity in Cn is homotopy-
equivalent to the sphere Sn+p−k−1.

Proof. Since the D(k, p) in Cn singularity is quasi-homogeneous its Milnor fibre is
diffeomophic to the global hypersurface X ⊂ Cn defined by∑

1≤i≤j≤p

xi,jyiyj +
∑

p+1≤i≤n−k

y2
i = 1,

where {xi,j}1≤i≤j≤p ∪{yi}1≤i≤n−k is an independent system of linear forms in Cn.

Hence X is homotopic to the (n−p−k)-suspension of the hypersurface Y ⊂ C
p2+3p

2

defined by ∑
1≤i≤j≤p

xi,jyiyj = 1.

The projection

σ : Y → Ck \ {O}
defined by σ(xi,j , yl) := yl is a locally trivial fibration with fibre an affine hyperplane

in C
p2+p

2 , and hence contractible. We conclude that Y is homotopy equivalent to the
unit sphere S2k−1 in Ck. Consequently X is homotopic to the sphere Sn+k−p−1. �

Lemma 4.2. Given the D(1, 1) singularity

f := x1y
2
2 + y2

3 ...+ y2
n : (Cn, O)→ C

in Cn its restriction

f |H1 : H1 → C
to the hyperplane H1 defined by x1 = 1 is a Morse singularity at the origin.
The pair of Milnor fibres (f−1(t), (f |H1

)−1(t)) is homotopy equivalent to the pair
(Sn−1,Sn−2) with Sn−2 embedded in Sn−1 as the equator.

Proof. By suspension it is enough to consider n = 2, and in this case it is obvious,
since the Milnor fibre of x1y

2
2 projects to the double cover of C \ {O} by the

projection pr(x, y) = x and the Milnor fibre of f |H1
is a fibre of this projection. �

Consider the D(3, 2) singularity

f := x1y
2
1 + 2x2y1y2 + x3y

2
2 + y2

3 + ...+ y2
n−3 : (Cn, O)→ C

in Cn.
Recall from Notation 2.1 the definition of Σ[i]. As here we are considering no

unfolding we have the equality Σ = Σ0. The restriction of f to any (n − 3)-
dimensional transversal to Σ[0] is a Morse type singularity in Cn−3. The restriction
of f to any (n− 2)-dimensional transversal to Σ[1] is a D(1, 1) singularity in Cn−2.

The stratum Σ[1] is equal to V (det(H(f)) \ {0} and hence is homotopic to its
link Lε := Σ[1]∩Sε at the origin. Since the singularity is homogeneous we can take
ε = 1 and denote Lε by L. This link is diffeomorphic to RP3, since the surface
Σ[1] is defined by det(H(f))(x1, x2, x3) = x1x3 − x2

2 = 0 in Σ ∼= C3. Hence its
fundamental group is isomorphic to Z2.
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Let

κ : N(Cn,Σ)→ Σ

κ1 : N(Cn,Σ[1])→ Σ[1]

be the holomorphic normal bundles of Σ and Σ[1] in Cn respectively. We have the
inclusion of restrictions

(8) ι : N(Cn,Σ)|Σ[1] ↪→ N(Cn,Σ[1]),

compatible with the bundle maps.
Observe that, since in this case Σ is a 3-dimensional coordinate subspace, the

first bundle is trivial with fibre Cn−3. Notice that, as L is compact, there is a
positive ρ such that the ρ-neighbourhood of the zero section of the restriction

κ1|L : N(Cn,Σ[1])L → L

embedds in Cn holomorphically on each fibre. We denote by Nρ(Cn,Σ[1])|L this
ρ-neighbourhood, and by

κρ1 : Nρ(Cn,Σ[1])|L → L

its embedding; its fibre is a complex (n− 2)-dimensional ball.
For any y ∈ L the restriction of f to the fibre of the embedded normal bundle

f |Nρ(Cn,Σ[1])y : (Nρ(Cn,Σ[1])y, y)→ C

is a D(1, 1) singularity with critical set the line Crit(y) := Nρ(Cn,Σ[1])y ∩ Σ.
Since the restriction of the function det(H(f)) to Crit(y) is non-singular at the

point y for any y ∈ L, for u small enough the intersection Crit(y)∩det(H(f))−1(u)
is a unique point for any y ∈ L, and hence

Ξu := det(H(f))−1(u) ∩ Σ ∩Nρ(Cn,Σ[1])|L
defines a cross-section of the embedded normal bundle, and the restriction

κρ1|Ξu : Ξu → L

is a diffeomorphism.
Let

κρ : Nρ(Cn,Σ)|Ξu → Ξu

be a holomorphic embedding of a ρ-neighbourhood of the zero section of the re-
striction to Ξu of the normal bundle of Σ in Cn. It is a trivial bundle with fibre
a complex n− 3 dimensional ball. For any x ∈ Ξu the restriction of f to the fibre
(Nρ(Cn,Σ)|Ξu)x is a Morse type singularity.

If ρ and u are chosen small enough we may assume that, for any x ∈ Ξu, we
have an inclusion of fibres

(Nρ(Cn,Σ)|Ξu)x ⊂ (N(Cn,Σ[1])L)κρ1 |Ξu (x).

Now we study the restrictions of the bundle maps κρ and κρ1 to a fibre of f−1(δ)
for small δ. Define

α := κρ1|f−1(δ)∩Nρ(Cn,Σ[1])|L : f−1(δ) ∩Nρ(Cn,Σ[1])|L → L,

β := κρ1|Ξu◦κρ|f−1(δ)∩Nρ(Cn,Σ)|Ξu : f−1(δ) ∩Nρ(Cn,Σ)|Ξu → L.

We have
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Lemma 4.3. For δ small enough the mapping

(α, β) : (f−1(δ) ∩Nρ(Cn,Σ[1])|L, f−1(δ) ∩Nρ(Cn,Σ)|Ξu → L

is a locally trivial fibration of pairs with fibre homotopic to (Sn−3,Sn−4), with Sn−4

embedded in Sn−3 as an equator and whose monodromy is isotopic to the identity
in Sn−4 and is the reflection over the equator in Sn−3.

Proof. The statement of the homotopy type of the fibre is just Lemma 4.2.
The circle γ(θ) := (0, 0, e2πiθ) parametrises a generator of the fundamental group

of L. The normal bundle Nρ(Cn,Σ[1])|L can be choosen so that for any θ the
line Crit(γ(θ)) is equal to V (x2, x3 − e2πiθ, y1, ..., yn−3) and the cross-section Ξu is
defined by Ξu(γ(θ)) = (ue−2πiθ, 0, e2πiθ, 0..., 0).

For any θ ∈ [0, 2π] the pair of fibres (α−1(γ(θ)), β−1(γ(θ)) is homotopic to the
pair of varieties (Xθ, Yθ) defined by

Xθ := V (x2, x1y
2
1 + e2πiθy2

2 + y2
3 + · · ·+ y2

n−3),

Yθ := V (x2, ue
−2πiθy2

1 + e2πiθy2
2 + y2

3 + · · ·+ y2
n−3, x1 − ue−2πiθ).

The family of diffeomorphism

ϕθ : Cn → Cn

defined by

ϕθ(x1, x2, x3, y1, . . . , yn−3) := (e−2πiθx1, x2, x3, e
πiθy1, e

−πiθy2, y3, . . . , yn−3)

induces a diffeomorphism from (X0, Y0) to Xθ, Yθ) for any θ ∈ [0, 2π]. Therefore a
geometric monodromy is given by

ϕ1 : (X0, Y0)→ (X1, Y1) = (X0, Y0).

The pair (X0, Y0) is homotopic to (Sn−3,Sn−4) and it is easy to chech that ϕ1

preserves the orientation in Sn−4 and reverses it in Sn−3. �

5. A decomposition of M

In Proposition 3.1 it has become clear that in order to understand the homology
of the Milnor fibre of f we need to compute the homology of the intersection
M = f−1

s (t0) ∩ T , with s ∈ S \ ∆ small enough and t0 6= 0 small enough. The
tubular neighbourhood T is the total space of a trivial fibration

(9) π : T → Σs

with fibre a (n− 3)-complex dimensional ball. If B is a subspace of Σs we denote
π−1(B) by TB .

By Theorem 2.2, for a generic parameter s close to the origin of the base S of
the unfolding of f , the maximal corank of H(fs)(x) is two for any x ∈ Σs. Recall

that the set of points where the corank is at least 1 is the surface Σ[1]s defined by

the vanishing of det(H(fs)). The singular points Σ[2]s = {p1, . . . , pa} of Σ[1]s are
of Morse type and coincide precisely with the points where the corank of H(fs)
equals 2.

For each point pi let Bi(ζ) be a ball of radius ζ around pi in Cn such that fs|Bi(ζ)
is biholomorphic to the restriction of the singularity D(3, 2) to the unit ball of Cn.
Taking ζ small enough we can assume that the balls are mutually disjoint and that
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the intersections Ai(ζ) := Bi(ζ) ∩ Σs are balls in Σs centered in each of the points
pi. Taking T , ζ, s, and t0 small enough the space

(10) Ai := f−1
s (t0) ∩ π−1(Ai(ζ)) =M∩ π−1(Ai(ζ))

is diffeomeorphic to the Milnor fibre of fs at pi for any i, and hence homotopy
equivalent to Sn−2.

Now we choose the following parameters:

• We take ζ small enough so that ∂Ai(ζ
′) is transverse to Σ[1]s for any

0 < ζ ′ < ζ.
• We choose ζ0 < ζ sufficiently close to ζ so that the inclusion

M∩ π−1(Ai(ζ
′)) ⊂ Ai

is a homotopy equivalence for any ζ0 ≤ ζ ′ ≤ ζ.
• Choose ξ > 0 small enough so that det(H(fs))

−1(u) meets ∂Ai(ζ
′) trans-

versely for any u ∈ Dξ and ζ0 ≤ ζ ′ ≤ ζ.

Consider Ȧi(ζ0) the interior of Ai(ζ0) and define

B := det(H(fs))
−1(Dξ) \ (

a⋃
i=1

Ȧi(ζ0)),

Bu := det(H(fs))
−1(u) \ (

a⋃
i=1

Ȧi(ζ0)).

A schematic picture of this decomposition can be seen in Figure 2.
The space B is a tubular neighbourhood of B0 in Σs \ (∪Ȧi(ζ0)). The mapping

det(H(fs)) : B → Dξ

is a trivial fibration. Therefore there is a product structure B ∼= B0 ×Dξ and the
projection

ρ : B → B0

to the first factor induces a diffeomorphism

σu : Bu → B0

for any u.
The restriction

ρ◦π|TB : TB → B0

is a locally trivial fibration with fibre a polycylinder of complex dimension n − 2.
Define

B :=M∩ TB ,
the piece of M falling over B. Taking T , ξ and t0 sufficiently small we have that
the restriction

(11) ρ◦π|B : B → B0

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of the D(1, 1)
in Cn−1, and hence homotopy equivalent to Sn−3.

For any ξ′ > 0 we define

Uξ′ := Σs \ det(H(fs))
−1(Ḋξ′),

Uξ′ := π−1(Uξ′) ∩M,
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B0

B Ai(ζ0)
Ai(ζ)

Figure 2. The decomposition of Σs

the complement of a tube around Σ[1]s in Σs, and the piece ofM lying over it. For
T and t0 small enough the restiction

π|Uξ′ : Uξ′ → Uξ′

is a locally trivial fibration with fibre diffeomorphic to the Milnor fibre of the Morse
singularity in Cn−3, and hence homotopic to Sn−4.

We fix a positive ξ0 smaller and close to ξ and define:

U := Uξ0 ,

U := Uξ0 .
The restriction

(12) π|U : U → U

is locally trivial with fibre homotopic to Sn−4.
Fix a point u in ∂Dξ0 . Define

Bu := π−1(Bu) ∩M.

The mapping
ρ|Bu : Bu → B0

is a diffeomorphism. Hence the mapping

(13) ((ρ|Bu)−1◦ρ◦π|B, π|Bu) : (B,Bu)→ Bu
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is a locally trivial fibration of pairs with fibre the pair (Sn−3,Sn−4), being Sn−4

embedded as an equator of Sn−3.

6. The topology of B0

6.1. The fundamental group of B0. The space SM(k) of symmetric matrices of
size k with complex coefficients is a complex vector space of dimension k(k+ 1)/2.
The smooth locally closed algebraic subset SM(k, l) has codimension l(l + 1)/2,

and we have seen that its Zariski closure SM(k, l) is defined by the vanishing of all

l × l minors. It is easy to check that SM(k, l) is far to be, in general, a complete
intersection.

Define MM(k× (k− 1)) to be the set of (k× (k− 1)) matrices of maximal rank.

Lemma 6.1. The fundamental group of MM(k × (k − 1)) is trivial.

Proof. The set of matrices k×(k−1) which are not of maximal rank is an algebraic
subvariety of codimension at least 2. �

The mapping
αk : MM(k × (k − 1))→ SM(k, 1)

given by
αk(M) := MM t

is a locally trivial fibration (by homogeneity of the action of the general linear
group). Denote by Fk the fibre over the matrix A = (ai,j), where ai,j = δij unless
i = j = k, in which case, ak,k = 0.

Lemma 6.2. The fiber Fk has two connected components.

Proof. We will work by induction over k ≥ 2. For k = 2, it is a direct computation.
Now let us compute the fibre Fk. Consider the following matricial equation:

(mi,j)(mj,i) = (ai,j).

Let vi be the vector in Ck−1 given by the i-th row of (mi,j). Denote by Re(vi) and
Im(vi) its real and imaginary parts respectively.

Now the previous matricial equation becomes the following system of vector
equations: if (i, j) 6= (k, k) then

Re(vi) ·Re(vj) = δij + Im(vi) · Im(vj)

Re(vi) · Im(vj) = 0

and
Re(vk) ·Re(vk) = Im(vk) · Im(vk)

Re(vk) · Im(vk) = 0,

where v · w denotes the standard scalar product in Rk−1.
Consider the projection MM(k × (k − 1)) ⊂ (Ck−1)k → Ck−1 to the first com-

ponent. Let Bk be the image of Fk under this projection. It is easy to check that
the restriction

τk : Fk → Bk

is a locally trivial fibration.
Obviously Bk is the set of vectors v1 satisfying the above system of equations for

i = j = 1. The vector v1 belongs to Bk if and only if ||Re(v1)||2 is one unit longer
than ||Im(v1)||2 and both vectors are orthogonal. That is, the vector Re(v1) can



BOUQUET THEOREM 15

be anywhere except in the interior of the unit sphere in Rk−1. If ||Re(v1)||2 equals
1 then the vector Im(v1) is zero. In any other case, the vector Im(v1) lies in the

(k − 2)-sphere of radius
√

1− ||Re(v1)||2 in the hyperplane orthogonal to Re(v1).

It is easy to show that Bk admits the unit sphere in Rk−1 embedded in the real
part of Ck−1 as a deformation retract.

The fiber τ−1
k ((1, 0, . . . , 0)) is equal to the fiber Fk−1 of αk−1 over A′ where A′

is the result of deleting the first row and the first column in A.
We have constructed a fibration of Fk over a space with the homotpy type of

Sk−2 whose fibre is Fk−1. If Fk−1 has two connected components and k ≥ 4, the
homotopy exact sequence of the fibrations gives the result. For k = 3 we have to
check that the monodromy of the fibration does not interchange the two connected
components of F2, but this is direct computation. �

Proposition 6.3. The fundamental group of SM(k, 1) is isomorphic to Z2.

Proof. This is just the homotopy exact sequence of the fibration αk, together with
Lemmas 6.1 and 6.2. �

Proposition 6.4. The fundamental group of B0 is isomorphic to Z2.

Proof. The unfolding

fs = (g1 − s1, . . . , gn−3 − sn−3)(mi,j + si,j)(g1 − s1, . . . , gn−3 − sn−3)t,

with s ∈ Cn−3×SM(n−3) can be obtained by pullback from the unfoldings of f that
we considered in Section 2 both in the corank(H(f)(O) = 2 and corank(H(f)(O) 6=
2 cases. In both cases a generic parameter s ∈ Cn−3 × SM(n − 3) maps to a
parameter outside the discriminant ∆. Thus we can use this unfolding in order to
compute the topology of B0.

The mapping

α : Cn × SM(n− 3)→ SM(n− 3)

defined by α(x, (si,j)) := (mi,j(x) + si,j) is obviously a submersion wherever it is
defined. Define

Zi := α−1(SM(n− 3, i))

Since SM(n− 3, i) is a cone for any i, and the fundamental group of SM(n−3, 1) is
isomorphic to Z2, we have that the local fundamental group of the germ SM(n−3, 1)
at the origin is Z2. Since the mapping α is a submersion, the local fundamental
group of (Z1 \ Z2) at the origin is Z2.

Fix a positive ε and a generic

s0 = (s0
1, . . . , s

0
n−3, (s

0
i,j)1≤i≤j≤n−3) ∈ Cn−3 × SM(n− 3)

sufficiently close to the origin. Consider set of functions {gi}n−3
i=1 ∪{si,j}1≤i≤j≤n−3 in

OCn×SM(n−3). Applying Hamm-Lê Theorem (Main Theorem [7, II.1.4]) repeatedly
for the above set of functions, and using the relative homotopy exact sequence we
get that the fundamental group of

Bε ∩ (Z1 \ Z2) ∩
n−3⋂
i=1

V (gi − s0
i ) ∩

⋂
1≤i≤j≤n−3

V (si,j − s0
i,j)

is isomorphic to Z2. But it is clear that the above space is homotopic to B0. �
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6.2. Homology of B0. We will now compute the homology of B0, which is the
same as B. Given the function

det(H(fs)) : Σs → C

we use the Mayer-Vietoris sequence of the decomposition of det(H(fs))
−1(Dξ) as

the union of ∪Ai(ζ) and B given in Section 5.
The space det(H(fs))

−1(Dξ) is homotopy equivalent to det(H(fs))
−1(0), which

is homotopic to a bouquet of (µ1−a) 2-spheres (see Definition 2.5). This is because
det(H(fs))

−1(0) is a deformation of det(H(f))−1(0), which is an i.c.i.s. with Milnor
number µ1, and det(H(fs))

−1(0) has only a Morse-points as singularities.
On the other hand, the intersection of each space Ai(ζ) with B is the link RP3

of a Morse type singularity, and the spaces Ai(ζ) are contractible.
Sumarizing, we have the following:

• H3(∪Ai(ζ) ∩B;Z) ∼= Za

• H1(∪Ai(ζ) ∩B;Z) ∼= Za
2

• Hi(∪Ai(ζ) ∩B;Z) ∼= 0 for i /∈ {0, 1, 3}
• H2(det(H(fs))

−1(Dξ);Z) ∼= Zµ1−a

• Hi(det(H(fs))
−1(Dξ);Z) ∼= 0 for i /∈ {0, 2}

• H1(B;Z) ∼= Z2

These data allows us to compute the following Mayer-Vietoris sequence:

(14)

0 // H3(∪Ai(ζ) ∩B;Z)

∼ =

Za

// H3(B;Z)

∼ =

Za

// H3(det(H(fs))
−1(Dξ);Z)

∼ =

0

//

// H2(∪Ai(ζ) ∩B;Z)

∼ =

0

// H2(B;Z)

∼ =

Zµ1−a

// H2(det(H(fs))
−1(Dξ);Z)

∼ =

Zµ1−a

δ2 //

δ2 // H1(∪Ai(ζ) ∩B;Z)

∼ =

Za
2

α1 // H1(B;Z)

∼ =

Z2

// H1(det(H(fs))
−1(Dξ);Z)

∼ =

0

// 0

Remark 6.5. The restriction of the mapping α1 to H1(Ai(ζ
′);Z) is an isomorphism

onto H1(B;Z) for any i.

Proof. Obvious from the proof of Proposition 6.4. �

The homology of B with coefficients in Z2 can be computed analogously, or by
using the universal coefficient theorem. We obtain

• H4(B;Z2) = 0
• H3(B;Z2) = Za

2

• H2(B;Z2) = Z2 ⊕ Zµ1−a
2

• H1(B;Z2) = Z2
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Remark 6.6. Note that the generators of H2(det(H(fs))
−1(Dξ);Z) can be inter-

preted as follows. The Milnor fibre of det(H(f0))−1(0) has µ1 2-spheres as gen-
erators of its homology. Out of these spheres there are a of them which corre-
spond to the vanishing cycles of the a Morse points of det(H(fs))

−1(0). The space
det(H(fs))

−1(Dξ) is homotopic to det(H(fs))
−1(0), which in turn is homotopic to

the result of collapsing these a spheres in the Milnor fibre of det(H(f0))−1(0). The
remaining spheres give rise to the µ1 − a generators of H2(det(H(fs))

−1(Dξ);Z).

7. Homology of (B,Bu)

There are several sphere fibrations involved in the computation of the homology
of the Milnor fibre, and we will need to deal with the corresponding Gysin sequences.
These are greatly simplified if we are in the case n ≥ 8. The homology of the Milnor
fibre can be always deduced (by suspension) from the homology of the Milnor fibre
of a function f : (Cn, O) → C with n ≥ 8. We will assume in n ≥ 8 whenever is
needed.

Consider the fibration Bu → Bu. As we have seen previously, it is a fibration,
with fiber homotopically equivalent to Sn−4. This fibration can be extended to
h−1
s (u), which is simply conected, and hence, the fibration is orientable. Its Gysin

exact sequence leads to the isomorphisms:

(15) Hi(Bu;Z) ∼= Hn−4+i(Bu;Z), Hi(Bu;Z) ∼= Hi(Bu;Z)

for i = 0, 1, 2, 3. The rest of the homology groups of Bu vanish.
Consider the projection B → Bu. As we have seen before, it is a fibration with

fibre homotopically equivalent to Sn−3, and the monodromy reverses the orienta-
tion. Since the fibration is not orientable, we can only consider its Gysin sequence
with coefficients in Z2, which gives the following isomorphisms:

(16) Hi(Bu;Z2) ∼= Hn−3+i(B;Z2), Hi(B;Z2) ∼= Hi(Bu;Z2)

for i = 0, 1, 2, 3. The rest of the homology groups of B with coefficients in Z2 vanish.
The fibration of pairs (B,Bu)→ Bu has as fibre the pair (Sn−3,Sn−4) with Sn−4

embedded as the equator of Sn−3. Its monodromy acts trivally on Sn−4 and reverses
the hemispheres of Sn−3 along the only non-trivial class of π1(Bu) ∼= Z2.

In order to compute the homology of the pair (B,Bu) we can simultaneously
thicken the equator Sn−4 of each fibre to a small collar Sn−4× [−η, η)] in Sn−3. By
excision we can remove fibrewise the interior of the collar. We obtain a fibration over
Bu with fibre two (n−3)-disks relative to their boundary, such that the monodromy
interchanges them.

Since π1(Bu) ∼= Z2, its universal cover

σ : B̃u → Bu

is the only connected double cover. The fibration of pairs is then homologically
equivalent to the composition of an orientable fibration

ϕ : Y → B̃u

of (n − 3)-spheres over B̃u with the covering map σ. The Gysin sequence of the
fibration ϕ gives

Hk(B,Bu;Z) ∼= Hk(Y;Z) ∼= Hk−(n−3)(B̃u;Z)

if k ≥ n− 3 and zero otherwise.
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The space B̃u is homotopically equivalent to the double cover B̃0 of B0 branched
over its a singular points, minus the preimage of these a points. The space B̃0 is
a 2-dimensional Stein space (for being a branched cover of the 2-dimensional Stein
space B0), and hence it has the homotopy type of a 2-dimensional CW-complex.

Therefore, H2(B̃0;Z) is free and H3(B̃0;Z) vanishes. Since the singularities of B0

are of Morse type, and the 2-dimensional Morse singularity is the quotient of C2 by
the action of the group of two elements, the space B̃0 is smooth. Hence B̃u is the
result of deleting from B̃0 small balls around the a preimages by the double cover
of the singular points of B0. Using the Mayer-Vietoris sequence we see that such
deletion leaves unchanged the homology except in dimension 3, where we obtain a
copy of Z for each deleted point. Sumarizing, we get that

• H3(B̃u;Z) = Za

• H2(B̃u;Z) = Zk for a certain k

• H1(B̃u;Z) = 0, since it is the universal cover of Bu
• H0(B̃u;Z) = Z, for it is connected.

Since the Euler characteristic of B̃u is twice the one of Bu, k must be equal to
2µ1 − 3a + 1.

Its is easy to check that the following diagram is commutative

Hi+n−3(B,Bu;Z)
δi+n−3 //

∼=
��

Hi+n−4(Bu;Z)

∼=
��

Hi(B̃u;Z)
σ∗ // Hi(Bu;Z)

,

for any i, where δi+n−3 is the connecting homomorphism of the long exact sequence

of the pair (B,Bu), the mapping σ : B̃u → Bu is the covering map and the vertical
arrows are the isomorphism coming from the Gysin sequences.

Notice that the generators of H3(B̃u;Z) are 3-spheres bounding balls in B̃0

around the inverse image of the singularities of B0. The generators of H3(Bu;Z)
are precisely the classes [Ai(η) ∩ Bu]. Each of them is diffemorphic to RP3 and
doubly covered by one of the 3-spheres. This shows that

π∗ : H3(B̃u;Z)→ H3(Bu;Z),

and hence also δn, is multiplication by 2.
For being σ a covering there is a well defined pull-back mapping in homology

σ∗ : Hi(Bu;Z)→ Hi(B̃u;Z).

It is clear that the map σ∗σ
∗ : Hi(Bu;Z) → Hi(Bu;Z) is multiplication by 2 (the

degree of the covering). This, together with the previous commutative diagram,
implies that 2Hi−1(Bu;Z) is always in the image of δi for any i. In view of this and
of the long exact sequence of the pair (B,Bu) we obtain that Hn−2(B,Z) can not
have p-torsion for p 6= 2.

By the above diagram and the connectedness of B̃u we have that δn−3 is an
isomorphism.

Using these facts, together with the previous computations ofH•(Bu;Z), H•(B;Z2)
and H•(B,Bu;Z), plus the universal coefficients theorem allows us to completely
determine the long integral homology exact sequence of the pair (B,Bu):
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0 // Hn(Bu;Z)

∼ =
0

// Hn(B;Z)

∼ =

0

// Hn(B,Bu;Z)

∼ =

Za

//

// Hn−1(Bu;Z)
∼ =

Za

// Hn−1(B;Z)

∼ =

Za
2 ⊕ Zµ1−2a+1

// Hn−1(B,Bu;Z)

∼ =

Z2µ1−3a+1

//

// Hn−2(Bu;Z)

∼ =

Zµ1−a

// Hn−2(B;Z)

∼ =

0

// Hn−2(B,Bu;Z)

∼ =

0

//

// Hn−3(Bu;Z)

∼ =

Z2

// Hn−3(B;Z)
∼ =

Z2

// Hn−3(B,Bu;Z)

∼ =

Z

//

// Hn−4(Bu;Z)

∼ =

Z

// Hn−4(B;Z)

∼ =

0

// Hn−4(B,Bu;Z)

∼ =

0

//

The non-zero lower homology groups are isomorphic to those of Bu, which coin-
cide with those of B.

8. Homology of X

Let X be the union of ∪ai=1Ai and B. We will now consider the Mayer-Vietoris
sequence of this union with coefficients in Z2. To do so, we need to compute the
groups H•(Ai;Z2) and H•(Ai∩B;Z2), since H•(B;Z2) has already been computed.

The space Ai is the Milnor fiber of the singularity D(3, 2), and hence, it has the
homotopy type of the sphere Sn−2.

To study the homology of Ai∩B, we can use the Gysin sequence of the fibration

π : Ai ∩ B → Ai ∩B ' ∂(Ai ∩ det(H(fs))
−1(0)) ∼= RP3,

with fibre Sn−3. The groups Hi(RP3;Z2) are Z2 for i = 0, 1, 2, 3, and zero otherwise.
We obtain that

Hi(Ai ∩ B,Z2) =

{
Z2 for i = 0, 1, 2, 3, n− 3, n− 2, n− 1, n

0 otherwise.

To study the maps ιk :
⊕

iHk(Ai ∩ B;Z2) → Hk(B;Z2) induced by inclusion,
we will see them as the Gysin lift of the maps

⊕
iHj(Ai ∩B;Z2)→ Hj(B;Z2) for

j = k or j = k− n+ 3. Using the version of the Mayer Vietoris sequence (14) with
coefficients in Z2, we get easily

• ιn and ι3 are isomorphisms.
• ιn−1 is a monomorphism.
• ιn−2 and ιn−3 are epimorphisms.
• ι1 is an epimorphism.



20 JAVIER FERNÁNDEZ DE BOBADILLA AND MIGUEL MARCO-BUZUNÁRIZ

• ι2 is a monomorphism.

We need also the following Lemma, whose proof we postpone:

Lemma 8.1. The map ι2 : Hn−2(Ai∩B;Z2)→ Hn−2(Ai;Z2) induced by inclusion
is an isomorphism.

With all these facts, we can compute the Mayer-Vietoris sequence:

(17)

⊕iHn(Ai ∩ B;Z2)

∼ =

Za
2

� � // ⊕iHn(Ai;Z2)
⊕
Hn(B;Z2)

∼ = ∼ =

0 Za
2

// Hn(X ;Z2)

∼ =

0

��

⊕iHn−1(Ai ∩ B;Z2)

∼ =

Za
2

// ⊕iHn−1(Ai;Z2)
⊕
Hn−1(B;Z2)

∼ = ∼ =

0 Z2 ⊕ Zµ1−a
2

// Hn−1(X ;Z2)

∼ =

Zµ1−2a+1
2

��

⊕iHn−2(Ai ∩ B;Z2)

∼ =

Za
2

// ⊕iHn−2(Ai;Z2)
⊕
Hn−2(B;Z2)

∼ = ∼ =

Za
2 Z2

// Hn−2(X ;Z2)

∼ =

Z2 ⊕ Za−1
2

��

⊕iHn−3(Ai ∩ B;Z2)

∼ =

Za
2

// ⊕iHn−3(Ai;Z2)
⊕
Hn−3(B;Z2)

∼ = ∼ =

0 Z2

// // Hn−3(X ;Z2)

∼ =

0

We omit the lower part of the sequence. The non-vanishing remaining homology
groups of X are

H2(X ;Z2) ∼= Zµ1−a
2 , H0(X ;Z2) ∼= Z2.

8.1. A basis of Hn−2(X ;Z2). Fix a base point x1 ∈ A1(ζ) ∩ Bu. Choose paths
γi : [0, 1]→ Bu such that γ1 is a generator of the fundamental group of A1(ζ)∩Bu,
and γi connects x1 with some point xi ∈ Ai(ζ) ∩ Bu. We choose chains Gi ⊂ B
such that the natural projection π|Gi is a locally trivial fibration over γi with fibre
diffeomorphic to a Sn−3 generating the homology of the corresponding fibre of
(ρ|Bu)−1◦ρ◦π|B. Since γ1 is closed, the chain G1 is closed with coefficients in Z2.
For each i, we choose an (n−2)-sphere generating Hn−2(Ai;Z). Take a hemisphere
Ki of such sphere; its boundary ∂Ki is an (n− 3)-sphere in Ai. The boundary ∂Gi
consists of two (n − 3)-spheres L1 and Li, being Li contained in Ai. Since Ai is
homotopic to Sn−2 there exists a chain

Wi : [0, 1]× Sn−3 → Ai
such that ∂Wi = ∂Ki + Li.
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The generators of Hn−2(X ;Z2) are represented by the Z2-closed chains Z1 := G1

and Zi := K1 +W1 +Gi +Wi +Ki. Notice that since the coefficients are in Z2 we
have K1 +W1 + C1 +W1 +K1 = G1, and so the way of defining the generators is
consistent. To check that these are really generators we observe that Z2, ..., Za are
sent by the connecting homomorphism of the Mayer-Vietoris sequence 17 to the
kernel of the first mapping of the (n − 3)-row, and that Z1 generates the cokernel
of the first mapping of the (n− 2)-row.

Lemma 8.2. Let γ′i : [0, 1] → Bu be any other path joining x′1 and x′i, being x′1
and x′i points in A1(ζ) ∩ B and Ai(ζ) ∩ B respectively. As above we can associate
with γ′i an element [Z ′i] ∈ Hn−2(X ;Z2). We have the equality

[Z ′i] = [Zi] +m[Z1]

for a certain m ∈ Z2.

Proof. Let αj be a path joining xj and x′j for j = 1, i. The product of paths

γi �αi �(γ′i)
−1 �(α1)−1 is a loop based in x1. Since the fundamental group π1(Bu, x1)

is isomorphic to Z2 and generated by γ1, the loop γi �αi �(γ′i)
−1 �(α1)−1 is homotopic

to mγ1 for a certain m. After this, the above equality follows easily from the
construction of the chains Zi. �

8.2. A system of generators of Hn−2(X ;Z). To lift the computation to coef-
ficients in Z, we need to compute the integer homology of Ai ∩ B. We can do so
by computing the long exact sequence of the pair (Ai ∩B,Ai ∩Bu) using the same
arguments used to compute the long exact sequence of the pair (B,Bu). We obtain:



Hn−1(Ai ∩ B;Z) ∼= Z2

Hn−3(Ai ∩ B;Z) ∼= Z2

H3(Ai ∩ B;Z) ∼= Z
H1(Ai ∩ B;Z) ∼= Z2

H0(Ai ∩ B;Z) ∼= Z

and zero otherwise.
With these data, and the universal coefficients theorem, we can compute the

Mayer-Vietoris sequence (17) with coefficients in Z



22 JAVIER FERNÁNDEZ DE BOBADILLA AND MIGUEL MARCO-BUZUNÁRIZ

(18)

⊕iHn(Ai ∩ B;Z)
∼ =

0

� � // ⊕iHn(Ai;Z)
⊕
Hn(B;Z)

∼ = ∼ =

0 0

// Hn(X ;Z)

∼ =

0

��

⊕iHn−1(Ai ∩ B;Z)

∼ =

Za
2

// ⊕iHn−1(Ai;Z)
⊕
Hn−1(B;Z)

∼ = ∼ =

0 Za
2⊕Zµ1−2a+1

// Hn−1(X ;Z)

∼ =

Zµ1−2a+1

��

⊕iHn−2(Ai ∩ B;Z)

∼ =

0

// ⊕iHn−2(Ai;Z)
⊕
Hn−2(B;Z)

∼ = ∼ =

Za 0

// Hn−2(X ;Z)

∼ =

Za

��

⊕iHn−3(Ai ∩ B;Z)

∼ =

Za
2

// ⊕iHn−3(Ai;Z)
⊕
Hn−3(B;Z)

∼ = ∼ =

0 Z2

// // Hn−3(X ;Z)

∼ =

0

The non-zero lower homology groups are isomorphic to those of Σ[1]s.
We give a system of generators of Hn−2(X ;Z). For any i choose an (n−2)-sphere

Si in Ai generating Hn−2(Ai;Z). Choosing the orientations of the summands of Zi
appropiately it turns out that we have a Z-closed chain. It is clear that [Z2], ..., [Za]
generate the kernel of the first homomorphism of the (n − 3)-row of the Mayer-
Vietoris sequence. The image of the second morphism of the (n−2)-row is obviously
generated by the (n− 2)-spheres Si.

9. Homology of M

9.1. Coefficients in Z2. Recall that Σs is the Milnor fibre of Σ, and has the
homotopy type of a bouquet of µ0 spheres. The functions g1, ..., gn−3,det(H(f))
define a 2-dimensional i.c.i.s. Σ[2]0 with Milnor number µ1 (see Definition 2.5).

The restriction

det(H(fs))|Σs : Σs → C
has isolated critical points. Therefore, taking η so small that the disk Dη only con-
tains 0 as critical value of the restriction, the set Σs is homotopy equivalent to the
result of attaching to (det(H(fs))|Σs)−1(Dη) the Lefschetz thimbles associated to
the critical points of det(H(fs))|Σs not contained in the zero level. There are exactly
µ0 + µ1 − a such Lefschetz thimbles (see [10]). Since the Lefschetz thimbles are 3-
disks they are attached along 2-spheres to the boundary of (det(H(fs))|Σs)−1(Dη),
which is 5-dimensional. Hence, a transversality argument ensures that all the at-
taching spheres are disjoint. Denote by C1, ..., Cµ0+µ1−a the Lefschetz thimbles.
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We have found a homotopy equivalence

(19) M ′ := (det(H(fs))|Σs)−1(Dη) ∪ (

µ0+µ1−a⋃
i=1

Ci) ↪→ Σs,

which in fact (since we are working with CW -complexes) is a deformation retract.
Since we have a locally trivial fibration

(20) π :M\ π−1(det(H(fs))
−1(0))→ Σs \ det(H(fs))

−1(0)

we can lift the deformation retract (19) to a deformation retract

(21) M′ := π−1(M ′) ↪→M.

We will compute the homology of M′ using a Mayer-Vietoris sequence. By the
previous deformation retract we identify the homology of M′ and M. Denote
π−1(Ci) by Ci. Since Ci is contractible the fibration over it is trivial, and, hence, Ci
and π−1(∂Ci) are homotopy equivalent to Ci×Sn−4, and ∂Ci×Sn−4 ∼= S2×Sn−4.
Decompose M′ as

(22) M′ = X ∪ (

µ0+µ1−a⋃
i=1

Ci).

The associated Mayer-Vietoris sequence (with coefficients in Z2) is:

(23)

⊕iHn−1(π−1(∂Ci);Z2)

∼ =

0

� � // ⊕iHn−1(Ci;Z2)
⊕
Hn−1(X ;Z2)

∼ = ∼ =

0 Zµ1−2a+1
2

// Hn−1(M;Z2)

∼ =

Zµ0+2µ1−4a+1+e
2

��

⊕iHn−2(π−1(∂Ci);Z2)

∼ =

Zµ0+µ1−a
2

ϕn−2// ⊕iHn−2(Ci;Z2)
⊕
Hn−2(X ;Z2)

∼ = ∼ =

0 Z2 ⊕ Za−1
2

// Hn−2(M;Z2)

∼ =

Ze2

��

⊕iHn−3(π−1(∂Ci);Z2)

∼ =

0

// ⊕iHn−3(Ci;Z2)
⊕
Hn−3(X ;Z2)

∼ = ∼ =

0 0

// Hn−3(M;Z2)

∼ =

0

��

⊕iHn−4(π−1(∂Ci);Z2)

∼ =

Zµ0+µ1−a
2

// ⊕iHn−4(Ci;Z2)
⊕
Hn−4(X ;Z2)

∼ = ∼ =

Zµ0+µ1−a
2 0

// // Hn−4(M;Z2)

∼ =

0

for some e ∈ N. Recall that only the last column was unknown. The fact that
⊕iHn−4(π−1(∂Ci);Z2)→ ⊕iHn−4(Ci;Z2) is an isomorphism determinesHn−3(M;Z2)
and Hn−4(M;Z2). Given e, Hn−4(M;Z2) is determined by Euler characteristic.
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We will find out what are the possible values for e. We have given a basis {Zi}ai=1

of Hn−2(X ;Z2) in 8.1.

Lemma 9.1. The composition

τ :
⊕
i

Hn−2(π−1(∂Ci);Z2)
ϕn−2→ Hn−2(X ;Z2)→ Hn−2(X ;Z2)/([Z1])

is surjective.

Proof. For each one of the a singular points pi of det(H(fs))
−1(0) there is a van-

ishing cycle Ei which is a embedded 2-sphere in det(H(fs))
−1(u). The parameters

s, u, ζ (see Section 5) can be choosen so that det(H(fs))
−1(u) ∩ Ai(ζ) is a tubular

neighbourhood of Ei in det(H(fs))
−1(u).

The sphere ∂Ck can be choosen to be embedded in det(H(fs))
−1(u) and, after

a perturbation, transverse to Ei for any i. Let

ιk : ∂Ck ↪→ det(H(fs))
−1(u)

denote the embedding. Let bk,i the number of intersection points of ∂Ck and Ei.

Choosing the tubular neighbourhoods of Ei small enough we find that ι−1
k (Ai(ζ))

is a disjoint union of disks Dk,i,j with j ∈ {1, ..., bk,i}, and the boundary of each
of them represents the generator of H1(Bu;Z). By Remark 6.5 the number bk :=∑
i bk,i is even: otherwise the image in H1(Bu;Z) of the boundary

∂(Ck \ (∪i,jDk,i,j))

would be a non-zero homology class. We claim the following equality

(24) τ([π−1(∂Ck)]) =

a∑
i=1

bk,i[Zi].

Let us finish the proof assuming this claim.
Any Lefschetz thimble Ck gives rise to a class [∂Ck] ∈ H2(det(H(fs))

−1(Dξ);Z).
It is easy to check that its image by the connecting homomorphism δ2 is equal to

(25) δ2([∂Ck]) =

a∑
i=1

bk,i[ψi] =

a∑
i=2

bk,i([ψi]− [ψ1])

where ψi is a generator of H1(∂Ai(ζ)∩B;Z) for any i. The first equality is by con-
struction of the connecting homomorphism and the second is true because

∑
i bk,i

is even and, hence we have the equality bk,1 =
∑a
i=2 bk,i in Z2.

Let α1 be the first mapping of the 1-row of the sequence (14). Define the iso-
morphism

θ : Hn−2(X ,Z2)/([Z1])→ ker(α1)

given by θ([Zi]) := [ψi] − [ψ1]. Any element [Z ′] ∈ Hn−2(X ;Z2)/([Z1]) cor-
responds to an element in ker(α1), which is the image by δ2 of a class [Y ] ∈
H2(det(H(fs))

−1(Dξ);Z). Such a class can be expressed as a sum

[Y ] =

µ0+µ1−a∑
k=1

mk[∂Ck].

The concidence of the coefficients in the last terms of equations (24) and (25) give
the equality τ([Y ]) = [Z ′].

Now we prove the claim. Choose a point x0 ∈ ∂Ck \ ∪i,jDk,i,j and choose a
disk D0 around it in ∂Ck disjoint to the disks Dk,i,j . Deform the immersion ιk|D0
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so that the embedding of its boundary remains fixed, it meets E1 transversely
precisely at bk points, all different from x0, and it is disjoint from Ej for any

j 6= 1. After this deformation the intersection ιk|−1
D0

(A1(ζ)) consists of bk disjoint
disks {D′k,i,j}i∈{1,..,a},j∈{1,...,bk,i} (we choose the indexing to make it easy to make

a bijection with the disks Dk,i,j).

Choose non-intersecting paths αk,i,j in D0 \ (∪i,jḊ′k,i,j) joining x0 with a point
yk,i,j ∈ ∂D′k,i,j . Choose non-intersecting paths

βk,i,j : [0, 1]→ ∂Ck \ (
⋃
k,i,j

(αk,i,j([0, 1]) ∪ Ḋ′k,i,j ∪ Ḋk,i,j)

joining ∂D′k,i,j with ∂Dk,i,j . For a schematic picture, see Figure 3.

D0

x0

βk,i,j

αk,i,j

D′k,i,j

Dk,i,j

Figure 3. The system of paths in ∂Ck

The complement of
⋃
k,i,j(βk,i,j([0, 1])∪ αk,i,j([0, 1])∪D′k,i,j ∪Dk,i,j) is a topo-

logical disk G. Since G is contained in Bu we can restrict the fibration (13) to G
and obtain a trivial fibration of pairs with fibre homotopic to (Sn−3,Sn−4), with
Sn−4 embedded as an equator. Consider a mapping

σ : G× Sn−3 → B
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such that σ({g} × Sn−3) generates the (n − 3)-homology of the fibre over ι(g) by
the fibration (13). Denote by H+ one hemisphere of Sn−3. The restriction

ψ : G×H+ → B ⊂ X
defines a singular chain in X .

Let Z ′k,i,j be the chain associated to βk,i,j by the procedure given in 8.1. Adding

and substracting Sn−2-hemispheres Kk,i,j and K ′k,i,j for any i, j (see the procedure

in 8.1), the chain ∂Ck + ∂ψ is shown to be equal to a sum∑
i,j

Z ′i,j +

a∑
i=1

Yi

where Yi is a closed chain contained in Ai.
The (n−2)-row of the sequence (17) shows that, for any i, any class inHn−2(X ;Z2)

supported by a chain contained in Ai is a multiple of [Z1]. On the other hand, by
Lemma 8.2 there exists ci,j ∈ Z2 such that [Z ′i.j ] = [Zi] + ci,j [Z1]. This proves the
claim. �

This means that the only possible values for e are 0 and 1. We will now charac-
terize the cases in which each value is obtained.

Lemma 9.2. If corank(H[f0](0)) ≥ 3, then e = 0.

Proof. Consider the unfolding

(26) F (x1, ..., xn, b, (ci,j)) := (G1,b, ..., Gn−3,b)(hi,j + ci,j)(G1,b, ..., Gn−3,b)
t.

given in (1). If corank(H[f0](0)) ≥ 3 there exists a parameter s0 ∈ S and a point
x ∈ Σs0 such that the germ fs0 at x is right-equivalent to a germ of the form:

(y1, y2, y3, . . .) ·


l1 l2 l3
l2 l4 l5
l3 l5 l6

0

0 Id

 ·


y1

y2

y3

...

 ,

where the li’s are generic linear forms and the yi’s are variables. The Milnor fibre
of such germ function is the suspension of the Milnor fibre M of

(y1, y2, y3) ·

 l1 l2 l3
l2 l4 l5
l3 l5 l6

 ·
 y1

y2

y3

 ,

and this one can be computed by projecting to the variables (y1, y2, y3). This
projection is a fibration over C3 \ {0} ≈ S5 whose fibre is contractible for being
given by the solutions of a system of linear equations. So M has the homotopy
type of S5 and H4(M) = 0. The general case is a suspension of this one. Hence the
Milnor fibre of the germ fs0 at x is homotopic to Sn−1 and its (n − 2)-homology
vanishes.

Since Σs0 is smooth at x its versal deformation is trivial. Hence the unfolding
given by (1) for the germ (fs0)x is of the form:

(27) F (x1, ..., xn, (ci,j)) := (G1,s0 , ..., Gn−3,s0)(hi,j + ci,j)(G1,s0 , ..., Gn−3,s0)t.

with (ci,j) ∈ SM(n− 3). Observe that this unfolding can be obtained by pullback
and localising near x from the unfolding (26). Let B(x, ε0) be a Milnor ball for
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(fs0)x contained in the Milnor ball Bε of f . If s is generic and very close to s0 and
t is small enough then

(28) ι : f−1
s (t) ∩B(x, ε0) ↪→ f−1

s (t) ∩Bε
is an inclusion of the Milnor fibre of (fs0)x into the Milnor fibre of f .

Since corank(H(fs0))(x) ≥ 2, if s is close to s0 there exists at least a point
pi of Σ[2]s contained in B(x, ε0). If e 6= 0, that is, if Hn−2(M;Z2) 6= 0 then,
by Proposition 3.1 with coefficients in Z2 there is a Sn−2 in Ai ⊂ f−1

s (t) ∩ Bε
representing a non-trivial homology class in the Milnor fibre of f . But this is
impossible because Ai is already contained in f−1

s (t) ∩ B(x, ε0) and in this space
there is no non-trivial (n− 2)-homology. �

Now we will see that, in the case where corank(H[f0](0)) = 2, the number e
turns out to be 1. Recall that Ai is homotopic to Sn−2, denote by Z the generator
of Hn−2(Ai;Z). Since we have an inclusion i : Ai ↪→ M, we need to check that
i∗(Z) 6= 0.

Lemma 9.3. If f is of the form

f = (g1, g2) ·
(
h1,1 h1,2

h1,2 h2,2

)
·
(
g1

g2

)
then i∗(Z) 6= 0

Proof. Let ω be a closed differential form defined in C2 \ {0} such that
∫
S3 ω 6= 0

for a sphere S3 around the origin in C2. Consider the map

φ : Cn → C2

defined by φ := (g1, g2).
Then Ω := φ?ω is a closed differential form defined over the Milnor fibre of f .

The change of variables formula gives the inequality
∫
i?(Z)

φ?ω 6= 0 �

Now let’s generalize this argument for the case where the corank is two, but the
dimension is higher:

Lemma 9.4. If corank(H[f0](0)) = 2, then e = 1.

Proof. We may assume (see 2.1) that f is of the form

f = (g1, g2) ·
(
h1,1 h1,2

h1,2 h2,2

)
·
(
g1

g2

)
+ g2

3 + · · ·+ g2
n−3.

We consider the unfolding F defined in (6). Clearly there are parameters s such
that the functions (h1,1,s, h1,2,s, h2,2,s, G1,s, . . . , Gn−3,s) vanish at the origin and
form a holomorphic coordinate system around it. In this case the local Milnor fibre
of the deformed function Fs at the origin has the homotopy type of a (n−2)-sphere.

Let ε and δ be radii for the Milnor fibration of f . Let ε′ and δ′ be radii for the
Milnor fibration of fs at the origin. By Theorem 2.2 we have that F−1

s (δ′) ∩Bε is
diffeomorphic to the Milnor fibre of f . Let Z be a cycle in the local Milnor fibre
F−1
s (δ′) ∩Bε′ generating the (n− 2)-homology group. In order to show that e = 1

it is enough to show that the homology class [Z] is nonzero considered in the bigger
space F−1

s (δ′) ∩Bε. For this it suffices to find a closed (n− 2)-differential form Ω,
defined in F−1

s (δ′) ∩Bε such that
∫
Z

Ω 6= 0.



28 JAVIER FERNÁNDEZ DE BOBADILLA AND MIGUEL MARCO-BUZUNÁRIZ

In order to define such a form, choose a positive function β : C 7→ R ⊆ C such
that β|D(0,η/2) ≡ 0 and β|C\D(0,η) ≡ 1 for a sufficiently small radius η. Now take ω

a closed 3-form in C2 \ {0} that generates the de Rham cohomology in degree 3.
We have the function

ψ : Cn \ V (G1,s, G2,s) −→ C2 \ {0}
x 7−→ (G1,s(x), G2,s(x))

.

Define

Ω := ψ∗ω ∧ β(G2
3,s + · · ·+G2

n−3,t − δ′)dG3,s ∧ · · · ∧ dGn−3,s.

Let us check that Ω is defined in all F−1
s (δ′) ∩Bε: the form ψ?ω is only defined

in Cn \ V (G1,s, G2,s), but the factor β(G2
3,s − · · · −G2

n−3,s − δ′) is identically zero

when G2
3,s − · · · −G2

n−3,s − δ′ is small enough.
In order to check that Ω is closed notice that since ω is closed, so is ψ∗ω. Hence

it is sufficient to show that

β(G2
3,s + · · ·+G2

n−3,t − δ′)dG3,s ∧ · · · ∧ dGn−3,s

is closed. A chain rule argument shows the equality:

dβ(G2
3,s + · · ·+G2

n−3,t − δ′) =
∂β

∂z
(G2

3,s − · · · −G2
n−3,s)

n−3∑
i=3

2Gi,sdGi,s

which means that

dΩ = ψ?w∧ ∂β
∂z

(G2
3,s+ · · ·+G2

n−3,t−δ′)(
n−3∑
i=3

2Gi,sdGi,s)∧dG3,s∧· · ·∧dGn−3,s = 0.

Finally we will check that the form Ω integrated against the cycle Z gives a
non-zero result. We start by giving an explicit description of Z. Let Z ′ be the cycle
that generates the 3-homology of

{(G1,s, G2,s)(hi,j,s)(G1,s, G2,s)
t = δ′} ∩Bε′ .

Define the function

αw : C5 −→ C5

(x1, x2, x3, x4, x5) 7−→ 3
√

w
3 (x1, x2, x3, x4, x5)

.

The cycle Z admits the following parametrisation: since the functions

(h1,1,s, h1,2,s, h2,2,s, G1,s, . . . , Gn−3,s)

form a holomorphic coordinate system at the origin the vanishing of the first 5 of
them defines a germ (M,O) of (n− 5)-dimensional complex manifold at the origin.

Let B(0,
√
δ′) denote the ball of radius

√
δ′ centered at the origin of Rn−5, being

Rn−5 the real locus of (M,O). The parametrisation is given by

Z ′ ×B(0,
√
δ′) −→ Z

(p, y3, . . . yn−3) 7−→ (αδ′−y2
3−···−y2

n−3
(p), y3, . . . yn−3)

.

Now we compute
∫
Z

Ω using Fubini’s theorem:∫
Z

Ω =

∫
Z′×B(0,

√
δ′)

ψ∗ω ∧ β(G2
3,s + · · ·+G2

n−3,s − δ′)dG3,s ∧ · · · ∧Gn−3,s =

=

∫
B(0,
√
δ′)

β(G2
3,s−· · ·+G2

n−3,s−δ′)·
∫
Z′
α∗G2

3,s+···+G2
n−3,s−δ′

ψ∗ωdG3,s∧· · ·∧dGn−3,s =
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=

∫
B(0,
√
δ′)

β(G2
3,s + · · ·+G2

n−3,δ′ − δ′)dG3,s ∧ · · · ∧ dGn−3,s

which is nonzero. �

Now we can prove easily Lemma 8.1 using an example:

Proof of Lemma 8.1. Since we are with coefficients in Z2, if the mapping is not an
isomorphism then it is identically zero.

The function f : C5 → C given by

f = (x1, x2) ·
(
x3 x4

x4 x3 − x2
5

)
·
(
g1

g2

)

has finite extended codimension with respect to (x1, x2). By a procedure similar
to the one we have used to compute the homotopy type of the Milnor fibre of the
D(3, 2) singularity, in [4] we have shown that the Milnor fibre of f at the origin is
homotopy equivalent to S3.

If we take a generic parameter s of the unfolding F associated to f in Section 2
we see that Fs has no Morse points outside Σs = Σ0, there are precisely 2 points of
type D(3, 2), and the Milnor number of the i.c.i.s. Σ0 ∩ {det(H(f)) = 0} is equal
to 3. Let us assume that the mapping in the statement of Lemma 8.1 is identically
zero. In this case the previous long exact sequences can be used to compute the
homology of the Milnor fibre of f , and they give that the 4-homology group is
non-zero. This gives a contradiction. �

9.2. Integral coefficients. From the integer homology of X , it is easy to see by
the Mayer-Vietoris sequence that Hk(M;Z) = Hk(X ;Z) for k 6= n− 1, n− 2.

On the other hand, the group Hn−1(M;Z) is torsion free since M is a (n− 1)-
dimensional Stein space. By the Universal Coefficients Theorem and our computa-
tion of homology with coeffficients in Z2, it is easily obtained that Hn−2(M;Z) has
no 2-torsion: as we have seen in the proof of Lemma 9.4, when e = 1, the Z2 com-
ponent of Hn−2(M;Z2) is represented by a torsion free class (its integral against a
closed form is non-zero), and hence it comes from a Z component in Hn−2(M;Z).



30 JAVIER FERNÁNDEZ DE BOBADILLA AND MIGUEL MARCO-BUZUNÁRIZ

Summarising, the Mayer-Vietoris sequence with coefficients in Z is as follows:
(29)

⊕iHn−1(π−1(∂Ci);Z)
∼ =

0

� � // ⊕iHn−1(Ci;Z)
⊕
Hn−1(X ;Z)

∼ = ∼ =

0 Zµ1−2a+1

// Hn−1(M;Z)

∼ =

Zµ0+2µ1−4a+1+e

��

⊕iHn−2(π−1(∂Ci);Z)

∼ =

Zµ0+µ1−a

ϕn−2// ⊕iHn−2(Ci;Z)
⊕
Hn−2(X ;Z)

∼ = ∼ =

0 Za

// Hn−2(M;Z)

∼ =

Ze2 ⊕ T

��

⊕iHn−3(π−1(∂Ci);Z)

∼ =

0

// ⊕iHn−3(Ci;Z)
⊕
Hn−3(X ;Z)

∼ = ∼ =

0 0

// Hn−3(M;Z)

∼ =

0

��

⊕iHn−4(π−1(∂Ci);Z)

∼ =

Zµ0+µ1−a

// ⊕iHn−4(Ci;Z)
⊕
Hn−4(X ;Z)

∼ = ∼ =

Zµ0+µ1−a 0

// // Hn−4(M;Z)

∼ =

0

where T is a torsion group without 2-torsion. We prove now that T = 0. We have
to deal separatedly with the cases corank(H(f)) ≥ 3 and corank(H(f)) = 2.

Lemma 9.5. If corank(H(f)(O)) ≥ 3, then T = 0.

Proof. Let F : Cn × S → C be the unfolding associated with f in Section 2. By
Theorem 2.2 there is a monodromy representation

ρ : π1(S \∆)→ Aut(Hn−2(F−1
s (δ) ∩Bε;Z)).

By Lemma 2.4, if one of the generators of the form Si of Hn−2(X ;Z) maps to zero
in Hn−2(F−1

s (δ) ∩ Bε;Z), then every other generator of the form Sj maps to zero
too. In the proof Lemma 9.2 we have seen that this is the case. By Homology
Splitting we conclude that any Si is zero in Hn−2(M;Z).

Now let z ∈ Hn−2(M;Z) be a p-torsion element with p 6= 2. Then pz = 0, which
means that, considered with coefficients in Z2 its class [z] ∈ Hn−2(M;Z2) must
be also zero. This means that z is homologous to z′ =

∑
i 2aiZi. But from the

exactness of the sequence

0→ ⊕iHn−2(Ai;Z)→ Hn−2(X ;Z)→ ⊕iHn−3(∂Ai;Z)→ Hn−3(B;Z)→ 0

we get that 2Zi can be expressed as a linear combination of the Si’s (recall that the
Si are the images of the generators of Hn−2(Ai;Z), and that the Zi corresponds
to the generators of the kernel of ⊕iHn−3(Ai ∩ B;Z) → Hn−3(B;Z), which is
isomorphic to Za−1

2 ). We can finally conclude that z′ can be expressed as a sum of
some Si’s, but as we have seen before, all of them are zero in Hn−2(M;Z). �
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Lemma 9.6. If corank(H(f)(O)) = 2, then T = 0.

Proof. Let z ∈ Hn−2(M;Z) be a p-torsion element with p 6= 2. Then we have the
following equality with coefficients in Z2:

0 = [z] ∈ Hn−2(M;Z2).

As before, this means that homologically, z can be expressed as z =
∑
i aiSi.

Assume that all Si are equal in Hn−2(M;Z). We would have that, integrating
against the form Ω of Lemma 9.3 and Lemma 9.4 (normalizing it if necessary) we
get ∫

z

Ω =
∑
i

ai

∫
Si

Ω =
∑
i

ai

which, by the hypothesis of z being of p-torsion, means that
∑
i ai = 0, and, hence,

that [z] = 0.
We only need to prove that Si and Sj represent the same class in Hn−2(M;Z)

for any i, j.
If the functions

(30) {h1,1, h1,2, h2,2, g1, ..., gn−3}

form an i.c.i.s at the origin of Milnor number 0 (that is they are smooth and
transverse) then there is only one sphere S1 and the result is proved. Let us assume
that they form an i.c.i.s at the origin of Milnor number at least 1.

Given a point s0 ∈ S \ Λ there is a 1 − 1 correspondence between points pi of
Σ[2]s0 and spheres Si as above. To a vanishing cycle {pi, pj} (recall Definition 2.6)
corresponds a pair of spheres {Si, Sj}. By Lemmas 2.7 and 2.8 in order to prove
that Si and Sj represent the same class in Hn−2(M;Z) for any i, j it is enough to
show that there exists a vanishing cycle {pi, pj} such that Si and Sj represent the
same class in Hn−2(M;Z). This reduces the proof to the case in which the Milnor
number of the i.c.i.s. defined by (30) at the origin is 1.

The fact that the functions (30) have Milnor number 1 at the origin implies
that at least n− 1 of them must be linearly independent variables (after a suitable
change of coordinates). After this it is easy to see that we can restrict ourselves to
one of the following cases that we will list and analyse below. In this analysis we
will use repeatedly the following fundamental fact, which is clear from Homology
Splitting and from Section 5:

Fact 1. The homology of the Milnor Fibre of a germ f only depends on the
number of Morse points appearing in a generic value of s of the base space of
the versal deformation S and on the topology of the triple (Σs,Σ[1]s,Σ[2]s). The
homology of M only depends on the topology of the triple. The homology of the
Milnor Fibre has torsion if and only if the homology of M has torsion.

The list of cases is the following:

Case 1. Suppose f = (g1, g2) ·
(
g3 g4

g4 g5

)
·
(
g1

g2

)
with g1, g2, g3, g4 inde-

pendent variables. In this case, we can take coordinates such that gi = xi for
i = 1, . . . , 4, and g5 = ax3 + bx2

5 + φ, being φ a sum of higher order terms.
Consider the following family of functions:

ft = (x1, x2) ·
(
x3 x4

x4 ax3 + bx2
5 + tφ

)
·
(
x1

x2

)
.
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It is clear that f1 = f . For any t the singular set Σ is smooth, the set Σ[1]
is the surface given by the suspension of two smooth branches with intersection
multiplicity equal to 2, and the set Σ[2] is just the origin. After a perturbation the
triple (Σ,Σ[1],Σ[2]) becomes a triple which has the topology of

(C3, V (z1(z1 + z2
2 − 1) + z2

3 , V (z1, z
2
2 − 1, z3))

independently of t. Moreover in the generic perturbation there are no A1 points
appearin outside Σ for any t. Therefore, by Fact 1 in order to compute the homology
of the Milnor fibre we may assume t = 0.

Write f0 = x2
1x3 + 2x1x2x4 +ax3x

2
2 + bx2

2x
2
5 = (x2

1 +ax2
2)x3 + (2x1x2)x4 + bx2

2x
2
5.

Since it is quasi-homogenous, we can take infinite Milnor radius and we are reduced
to compute the homology of:

(x2
1 + ax2

2)x3 + (2x1x2)x4 + bx2
2x

2
5 = 1.

Projecting to (x1, x2), we see that there exists a preimage if and only if (x2
1 +

ax2
2, x1x2, bx

2
2) 6= (0, 0, 0), that is, everywehere except in the point (x1, x2) = (0, 0).

It can be easily checked that the fibre over each point is contractible, and hence
the Milnor fibre Ff0

has the homotopy type of C2 \ {0} ≈ S3.

Case 2. Suppose f = (g1, g2) ·
(
g3 g4

g4 g5

)
·
(
g1

g2

)
with g1, g2, g3, g5 inde-

pendent variables. We can write f = (x1, x2) ·
(
x3 g4

g4 x5

)
·
(
x1

x2

)
, where

g4 = ax1 + bx2 + x2
4 + φ, being φ again a sum of higher order terms. After an

appropriate change of basis in x1 and x2 we get

f = (x1, x2) ·
(

x3 ax1 + bx2 + x2
4 + φ

ax1 + bx2 + x2
4 + φ x5

)
·
(
x1

x2

)
=

= (x1−x2, x2)·
(

x3 ax1 + bx2 + x3 + x2
4 + φ

ax1 + bx2 + x3 + x2
4 + φ 2ax1 + 2bx2 + x3 + x5

)
·
(
x1 − x2

x2

)
=

= (x2, x1−x2)·
(

2ax1 + 2bx2 + x3 + x5 ax1 + bx2 + x3 + x2
4 + φ

ax1 + bx2 + x3 + x2
4 + φ x3

)
·
(

x2

x1 − x2

)
which falls into the previous case.

Case 3. Suppose f = (g1, g2) ·
(
g3 g4

g4 g5

)
·
(
g1

g2

)
with g1 and g2 are not

linearly independent variables. After a change of base, we may assume that f is of
the form

f = (x1, q) ·
(
x3 x4

x4 x5

)
·
(
x1

q

)
where q has a Taylor development starting by a generic cuadric. Like in Case 1,
using Fact 1 and an apropiate family ft, we may reduce the to the case in which
q = x2

1 + x2
2 + x2

3 + x2
4 + x2

5.
The triple (Σ,Σ[1],Σ[2]) and its deformations (Σs,Σ[1]s,Σ[2]s) when we move s

in the base S of the unfolding are always contained in the hyperplane x1 = 0. We
restrict to this hyperplane and forget the variable x1 for the rest of the analysis of
this case.

In this hyperplane, the i.c.i.s. Σ is given the hypersurface q = 0, and the singular
locus of det = x3 ·x5−x2

4 is the x2-axis. When we consider the Milnor Fibre q−1(s),
it intersects the x2 axis in two points. This two points correspond to two vanishing
cyles S1, S2 in the Milnor Fibre F of Σ[1] = V (x1, q,det). Each vanishing cycle
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Si corresponds to a point pi ∈ Σ[2]s, which gives a class Si in H3(M;Z). We
need to prove that these two classes are equal. Running in this particular case
the general considerations made in Section 9 in order to compute the homology of
M, we observe that if we find a vanishing cycle S3 in F meeting each S1 and S2

transversely at a point, we can use it and the fibrations above it, in order to express
the chain S1 − S2 as a boundary.

The critical locus of the germ (q,det) : C4 → C2 consists of four linear compo-
nents, whose parametrizations are given by (t, 0, 0, 0) (0, t, 0, t), (0, t, 0,−t) and
(0, 0, t, 0) respectively. The corresponding components of the discriminant are
parametrized as follows: (t, 0), (2t2, t2), (2t2,−t2) and (t2,−t2). Since we are
working on the Milnor fibre of q, we are looking at the preimage of the set {(x, y) ∈
C2 | x = 1}. In that line, the point (1, 0) correspond to the values where we want
to look for the vanishing cycle touching the two critical points, which are (1, 0, 0, 0)
and (−1, 0, 0, 0). In order to track how this cycle vanishes, we will consider the
interval (1, ε), where ε ranges from 0 to 1

2 . We will consider the expansion of q and

det based at the point (0, 1√
2
, 0, 1√

2
):

q = x2
2 +
√

2x3 + x2
3 + x2

4 +
√

2x5 + x2
5 + 1

det =
1

2
+

1√
2

(x3 + x5) + x3x5 − x2
4.

For a fixed ε ∈ [0, 1
2 ], the fibre over the point (1, ε) is given by

1

2
w2 +

√
2w + x2

2 +
1

2
z2 + x2

4 = 0

x2
2 + 3x2

4 + z2 = 1− 2ε

where w = (x3 + x5), z = x3 − x5.
The real solutions of x2

2 + 3x2
4 + z2 = 1 − 2ε are a single point if ε = 1

2 and

a 2-sphere if ε ∈ [0, 1
2 ). Fixed x2, x4 and z, there are two posible choices for w,

except when the discriminant of 1
2w

2 +
√

2w+x2
2 + 1

2z
2 +x2

4 vanishes, that is, when

x2
2 + 1

2z
2 +x2

4 = 1. But this condition, togeteher with x2
2 +3x2

4 +z2 = 1−2ε implies

4x2
4 + z2 = −4ε, which does not have real solutions if ε > 0. Since S2 is simply

connected, the only possible double cover over it is two copies of S2. That is, we
have two copies of S2 over each point between (1, 0) and (1, 1

2 ); this two spheres

collapse when we go to (1, 1
2 ), and they intersect in two different points at (1, 0).

This two points of intersection are preciselly (1, 0, 0, 0) and (−1, 0, 0, 0), which are
the singular points of det at q = 1. Any of this two spheres is a vanishing cycle as
we are looking for.

Case 4. If f is of the form

f = (x1, x2, g6) ·

 x3 x4 0
x4 x5 0
0 0 1

 ·
 x1

x2

g6


with the linear part of g6 linearly dependent with x1, x2, x3, x4, x5, the configura-
tions (Σ,Σ[1],Σ[2]) and its deformations (Σs,Σ[1]s,Σ[2]s) are easily checked to be
suspensions of those in the previous case. Since all the method depends on this
configuration, this case can be treated in the same way as the previous one. �
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9.3. The case of corank(H(f)(O)) = 1. In this case X = B fibres over h−1
t (0) ≈

∨µ1
S2 with fibre Sn−3, and Bu fibres over h−1

t (0) with fibre Sn−4. Since h−1
t (0)

is simply connected, both fibrations are orientable. Using the Gysin sequence of
these fibrations we get that Hk(B;Z) ∼= Z for k = n − 3, 0, Hk(B;Z) ∼= Zµ1 for
k = n− 1, 2, and 0 otherwise. Adding the Lefschetz thimbles as in subsection 9.2,
we obtain that

Hn−1(M;Z) ∼= Z2µ1+µ0 ,

Hn−3(M;Z) ∼= Z,

H2(M;Z) ∼= Zµ0

H0(M;Z) ∼= Z,
and the rest of the homology groups are trivial.

10. The homology of the Milnor fibre

Once we have computed the homology of M we can use Proposition 3.1 to
compute the homology of the Milnor fibre of f .

Since the tubular neighbourhood T is homotopy equivalent to the Milnor fibre
of Σs of the 3-dimensional i.c.i.s. Σ0 we have

H0(T ;Z) ∼= Z

H3(T ;Z) ∼= Zµ0

Hi(T ;Z) = 0

for any other i.
The inclusion ofM in T gives clearly an isomorphism in the H3 when n ≥ 7, and

hence Hi(T,M;Z) = 0 for 1 ≤ i ≤ 3, and Hi+1(T,M;Z) ∼= Hi(M;Z) for i ≥ 4.
We have obtained:

Theorem 10.1. Let µ0 and µ1 be the Milnor numbers of the i.c.i.s. (g1, ..., gn−3)
and (det(H(f)), g1, ..., gn−3). The homology of the Milnor fibre is the following:

• If corank(H(f)(0) ≥ 3:

Hn−1(Ff ;Z) ∼= Zµ0+2µ1−4a+1+#A1 ,

Hk(Ff ;Z) = 0

if 1 ≤ k ≤ n− 2,

H0(Ff ;Z) ∼= Z.
• If corank(H(f)(0) = 2:

Hn−1(Ff ;Z) ∼= Zµ0+2µ1−4a+2+#A1 ,

Hn−2(Ff ;Z) ∼= Z,

Hk(Ff ;Z) = 0

if 1 ≤ k ≤ n− 3,

H0(Ff ;Z) ∼= Z.
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• If corank(H(f)(0) = 1:

Hn−1(Ff ;Z) ∼= Zµ0+2µ1 ,

Hn−3(Ff ;Z) ∼= Z,

Hk(Ff ;Z) = 0

if k = n− 2 and if 1 ≤ k ≤ n− 4,

H0(Ff ;Z) ∼= Z.

• If corank(H(f)(0) = 0:

Hn−1(Ff ;Z) ∼= Zµ0 ,

Hn−4(Ff ;Z) ∼= Z,

Hk(Ff ;Z) = 0

if k = n− 2, n− 3 and 1 ≤ k ≤ n− 4,

H0(Ff ;Z) ∼= Z.

Proof. Our computations work for the case corank(H(f)(0)) > 0, if n ≥ 8. In order
to remove this restrictions we notice that by Thom-Sebastiani the Milnor fibre of
f + z2 with z a new variable is the suspension of the original Milnor fibre, and that
the case corank(H(f)(0)) = 0 was proved by Nmethi in [14]. �

11. The homotopy type of the Milnor fibre

Proposition 11.1. The Milnor fibre Ff is simply connected if corank(hi,j(0)) 6= 0.

Proof. For n ≥ 6, the Kato-Matsumoto bound [9] tells us that Ff is simply con-
nected. For the case where n = 5, we will need the following reasoning.

Let Z1, ...,Z#A1 be representatives of the vanishing cycles of Ff corrsponding to
the A1 points that appear outside Σs in a generic deformation. Let C(Zi) denote
the cone over Zi. Let C(π) be the cylinder of the mapping

π :M→ Σs.

The space C(π) is simply connected because it admits the simply connected space
Σs as a deformation retract.

By construction we have that

Ff ∪ C(π) ∪#A1
C(S4)

is homotopy equivalent to the contractible space Xs (see Section 3). Since each Zi is
homeomorphic to S4, by Seifert-Van Kampen theorem, the gluing of the C(Zi) has
no efect over the fundamental group, since both π1(C(S4)) and π1(S4) are trivial.
The same reasoning tells us that, if π1(M) is trivial, so must be π1(Ff ).

The spaceM is obtained from X by gluing the preimage by π of several Lefschetz
thimbles. These pieces are topologically D3×S1 glued along S2×S1. By Seifert-Van
Kampen theorem, if π1(X ) is trivial, the adition of these pieces does not change
the fundamental group. So, to prove that π1(M) = 0 it is enough to prove that
π1(X ) = 0.

We may compute π1(X ) using Seifert-Van Kampen with the decomposition

X = B ∪ A1 ∪ · · · ∪ Aa.



36 JAVIER FERNÁNDEZ DE BOBADILLA AND MIGUEL MARCO-BUZUNÁRIZ

In Section 5 it is shown how the mapping π allows to express each of the pieces of
the decomposition as fibrations with fibres homotopy spheres of dimension at least
2 over the corresponding piece of the decomposition

Σs ∩ det(H(Fs))
−1(0) = B0 ∪A1(ζ) ∪ · · · ∪Aa(ζ).

Using this it is easy to see that the computation of π1(X ) by Seifert van Kampen
mimics the computation of π1(Σs ∩ det(H(Fs))

−1(0)), but this space is simply
connected (in fact a bouquet of 2-spheres). �

We now have all the necessary ingredients to prove our Bouquet Theorem.

Theorem 11.2. The Milnor fibre of a singularity over a 3-dimensional i.c.i.s.
with finite extended codimension has the homotopy type of a bouquet of spheres of
different dimensions.

Proof. From Proposition 11.1 we know that the Milnor fibre is simply connected.
In the case where corankH(f)(O) ≥ 2 (that is, a 6= 0) we have computed the

integer homology, getting that Hn−1(Ff ;Z)) and Hn−2(Ff ;Z) are free and finitely
generated and Hi(Ff ;Z) ∼= 0 otherwise. In this situation, since the Milnor Fibre
has the homotopy type of a (n−1)-complex, we can apply [14, 2.2] and [?, 2.3] and
we get the result.

If corank(H(f)(O) = 0 the result is covered by Theorem 4.1 of [14].
We are left with the case in which corank(H(f)(O) = 1. By Criterion 2.2 in

[14], we only need to represent each generator of the non-zero homology groups by
a chain modelled in a sphere. When corank(H(f)(O) = 1, in the decomposition of
M given in Section 5 we have that B coincides with X , that Bu is diffeomorphic
to B0, which are Milnor fibres of the 2-dimensional i.c.i.s. Σ0 ∩ V (det(H(f))) and
that the fibration (11) becomes a homotopy Sn−3-fibration

(31) ϕ : X → B0
∼= Bu.

The generator of Hn−3(Ff ;Z) is the Gysin lift of the generator of H0(B;Z),
and hence it is represented by a sphere. By Homology Splitting, the generators
of Hn−1(Ff ;Z) come from two different places: the ones coming from the A1-
singularities of fs outside Σs and those coming from Hn−1(M;Z). The first gener-
ators are clearly represented by spheres (the vanshing cycles of the A1-singularities).
The generators of Hn−1(M;Z) come in turn from two different places: the ones
comming from the image of Hn−1(X ;Z) in Hn−1(M;Z), and those coming from
the addition to X of the spaces Ci (see the decomposition formula (22)). Recall
that each Ci is the product of a Lefschetz thimble associated to a vanishing cycle
of Bu = {det(H(fs) = u} ∩ Σs with the homotopy-sphere Sn−4, which is the fibre
of the fibration (20). The ones coming from Hn−1(X ;Z) are Gysin-liftings over the
vanishing cycles of Bu of the fibration (31).

We claim that the fibration of (n − 3)-spheres over B0 is trivial. Since B0

is a bouquet of 2-spheres given by vanishing cycles it is enough to prove that
the fibration, restricted to each of the vanishing cycles of B0 is trivial. Choose a
vanising cycle Ci. Move the parameter s so that that s is very close to a parameter
s0 in which Σs ∩ V (det((fs))) adquires an A1 singularity to which the vanishing
cycle Ci collapses. In this situation a local change of coordinates shows that to
prove that the fibration is trivial over Ci is equivalent to prove that the fibration
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of (n− 3)-spheres associated to the function

f = (x2
1 + x2

2 + x2
3)x2

4 +

n∑
i=5

x2
i

is trivial over the vanishing cycle of the restriction of x2
1 + x2

2 + x2
3 to V (x4, ..., xn).

Proving this is an easy local computation.
Now we represent each of the two kinds of generators of Hn−1(M;Z) by spheres.

Let us start by the first kind. By the claim the group Hn−1(X ;Z) is generated by
chains of the form

τ : S2 × Sn−3 → X ⊂M ⊂ Ff ,

where τ(S2×Sn−3) is a Gysin lift of a vanishing cycle Ci of B0 by the fibration (31).
Choose a section s of this fibration such that s(Ci) is inside τ(S2 × Sn−3). For

n = 5, the sphere s(S2) is trivial in H2(X ;Z), since this group is generated by the
fibre. This implies that it is also zero in H2(Ff ;Z), and, by Hurewicz’s Theorem,
it is also trivial in π2(Ff ). For n > 5 the triviality of s(S2) in π2(Ft) holds by the
connectivity of the Milnor fibre. This means that s(S2 × {point}) can be killed
by a 3-disc inside Ff . By Lemma 4.5 in [14], we have that the homology class
[τ(S2 × Sn−3)] can be represented by a sphere of dimension (n− 1).

We study now the homology classes in Hn−1(F1;Z) coming from a the addition
of an space Ci. The space Ci is the product of a Lefschetz thimble Li associated to
a vanishing cycle Ci of Bu with the sphere Sn−4, which is the homotopy-fibre of the
fibration (20). Recall that over Bu we have in fact a fibration of pairs with fibre
homotopic to (Sn−3,Sn−4) being Sn−4 embedded as the equator of Sn−3. Consider
a collar K ∼= ∂Li × [0, 1] of ∂Li in the 3-cell Li. We deform continuously the chain
given by the embedding of L × Sn−4 in M so that fibrewise Sn−4 is the equator
of Sn−3 over any point of the internal boundary of the collar and so that Sn−4 is
collapsed to the north pole of Sn−3 at the external boundary ∂Li of the collar. The
resulting chain is called

ϕ : Li × Sn−4 → Ff .

The mapping

s : ∂Li → X ⊂ Ff

which assigns to a point of ∂Li the north pole of the fibre Sn−3 has been seen before
to be a trivial element in π2(Ff ). Therefore there exists a 3-disk L′ bounding ∂Li
and an extension

s′ : L′ → Ft

of s. The identification L ∪∂Li L′ along their common boundary is a 3-sphere. A
representative of our homology class is given by the chain

ψ : (Li ∪∂Li L′)× Sn−4 → Ft

defined by ψ|L×Sn−4 := ϕ and ψ|L′×Sn−4 := s′◦pr1, where pr1 is the projection of
L′ × Sn−4 to the first factor. Notice that the source of ψ is a product of spheres,
which we view as a trivial fibration of Sn−4 over L∪∂LiL′ ∼= S3, and that ψ fatorises
through the result of collapsing to a point the fibre over any point of L′. Again
Lemma 4.5 in [14] represents the homology class by a sphere. �
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12. Examples

Despite the apparent simplicity of the homotopy type of the Milnor fibre of
the class singularities considered in this paper, it is possible to find among them
unexpected topological behaviours which at the moment have not been observed
in singularities with smaller critical set. As an illustration of this we summarise
here the properties of a family of examples, which fall in the general class studied
in this paper, and which was used in [4] to produce counterexamples to several old
equisingularity questions.

Example 12.1. Let ϕ a possibly identical to 0 convergent power series in a variable
x1. Define

fϕ : (C5, O)→ C
by

fϕ(x1, x2, x3, y1, y2) := f = (y1, y2) ·
(
x3 x2

x2 ϕ(x1)− x3

)
·
(
y1

y2

)
.

If ϕ is not identical to 0 the function fϕ is of finite codimension with respect to
the ideal I = (y1, y2). The critical set Σ = V (y1, y2) is 3-dimensional and smooth.
It is easily checked that the I-unfolding

(32) Fϕ := fϕ +

ord(ϕ)−2∑
i=0

tix
i
1y

2
2 ,

where ord(ϕ) denotes the order of the series ϕ in x1, is the versal I-unfolding of
fϕ in the sense of [15] and [3]. Hence we can obtain all I-unfoldings of fϕ by
considering deformations of the form

ϕ+

ord(ϕ)−2∑
i=0

tix
i
1.

Notice that the determinant

detH(fϕ) = x3(ϕ(x1)− x3)− x2
2 : (Σ, O)→ C

has a singularity at the origin of type A2ord(ϕ)−1. An easy computation shows that
if (fϕ)s is a generic deformation of fϕ in its versal I-unfolding, the cardinality of
the set Σ[2]s of points where H(f2) has corank precisely 2 is equal to ord(ϕ).

It is also easy to check that for any s in the base of the versal I unfolding the
critical set of fs is equal to Σ = V (y1, y2). Hence there are no A1 points popping
out of Σ in a generic I-unfolding of fϕ.

Noticing that corank(H(fϕ))(O) = 2 we may apply Theorem 10.1 to show that
the Milnor fibre is 2-connected, with third Betti number equal to 1 and fourth Betti
number equal to:

b4 = µ0 + 2µ1 − 4a + 2 + #A1 = 0 + 2(2ord(ϕ)− 1)− 4ord(ϕ) + 2 + 0 = 0,

which, surprisingly, is independent of ϕ. By Theorem 11.2 we conclude that the
Milnor fibre of fϕ is homotopy equivalent to a 3-sphere. The remarkable fact is
that the homotopy type of the Milnor fibre is independent on ϕ and at the same
time the topology of the pair of germs

(33) ((Σ, O), (Σ[1]s, O))

depends heavily on the value s in the base of the versal unfolding.
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In [4] it is shown that in fact the diffeomerphism type of the Milnor fibration
of the germ fϕ and the generic Lê-numbers are independent of ϕ. Using that the
topology of the pair (33) depends on s it is also proven that the topology of the
abstract link of fϕ does depend on ϕ. This kind of examples and their stabilisations
are at the moment the only known families of examples with constant Lê numbers
and constant Milnor fibration and changing topological type. They answer nega-
tively a question of D. Massey in [11]. In [4] modifications of these examples are
also used to give the first known counterexample of Zariski’s Question B of [23].
Also in [4] these examples were used to construct a family of reduced projective hy-
persurfaces with constant homotopy type and changing topological type (therefore
most classical algebro-topological invariants cannot detect the change in topology).
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