
SIROCCO: A Library for Certified Polynomial

Root Continuation

Miguel Ángel Marco-Buzunariz1,3(B) and Marcos Rodŕıguez2,3

1 Universidad of Zaragoza, Zaragoza, Spain
mmarco@unizar.es

2 Centro Universitario de la Defensa de Zaragoza, Zaragoza, Spain
marcos@unizar.es

3 IUMA. Instituto Universitario de Matemáticas y Aplicaciones, Zaragoza, Spain
https://riemann.unizar.es/∼mmarco,

http://www.imark.es

Abstract. The classical problem of studying the topology of a plane
algebraic curve is typically handled by the computation of braid
monodromies. The existence of arithmetic Zariski pairs implies that
purely algebraic methods cannot provide those braids, so we need
numerical methods at some point. However, numerical methods usu-
ally have the problem that floating point arithmetic introduces round-
ing errors that must be controlled to ensure certified results. We
present SIROCCO (The source code and documentation is available
in: https://github.com/miguelmarco/sirocco), a library for certified
polynomial root continuation, specially suited for this task. It computes
piecewise linear approximations of the paths followed by the roots. The
library ensures that there exist disjoint tubular neighborhoods that con-
tain both the actual path and the computed approximation. This fact
proves that the braids corresponding to the approximation are equal to
the ones corresponding to the actual curve. The validation is based on
interval floating point arithmetic, the Interval Newton Criterion and aux-
iliary lemmas. We also provide a SageMath interface and auxiliary rou-
tines that perform all the needed pre and post-processing tasks. Together
this is an “out of the box” solution to compute, for instance, the funda-
mental group of the complement of an affine complex curve.

Keywords: Validated numerics · Interval arithmetic · Homotopy ·
Algebraic curves

1 Introduction

The problem of studying the topology of the embedding of a curve C in
the complex projective plane CP

2 is a classical one in algebraic geometry.
One of the most important tools in this theory is the braid monodromy. It
is defined as follows. Consider C be a degree d curve in CP

2. Fix a point
p ∈ CP

2 \C. The set of lines going through p forms a CP
1. So we have a fibration



192 M.Á. Marco-Buzunariz and M. Rodŕıguez

C CP
2 \ {p}

CP
1

π

Generically, the fibres intersect the curve C in d distinct points. However, there
is a finite set ∆ of points of CP

1 such that their preimages contains less than
d points. This set ∆ will be called the discriminant of π. Consider Symd(C)
the d’th symmetric product of C. This is the configuration space of d different
points in C. It is well known that its fundamental group π1(Symd(C)) is the
braid group in d strands Bd. As we have seen before, we have a well defined map

CP
1 \ ∆ → Symd(C)

which induces a map of fundamental groups

π1(CP
1 \ ∆) → Bd

This map is called the braid monodromy of the curve with respect to the projec-
tion π. It is usually presented as a list of braids, corresponding to the images of
a good system of generators of π1(CP

1 \∆). VanKampen gave in [6] a method to
compute the fundamental group of CP

2\C from the braid monodromy. Moreover,
Carmona [3] proved that the braid monodromy itself determines the topology
of the pair (CP

2, C). The previous paragraphs show the interest of computing
the braid monodromy. However, the existence of pairs of curves, defined by
polynomials whose coefficients are Galois conjugated in some number field, but
with nonhomeomorphic embeddings (the so-called Zariski pairs, see [1] for a sur-
vey on the subject), shows us that this braids cannot be computed by purely
algebraic methods. In the following sections we will present a numerical (yet
certified) method to compute them. Our approach will consist of computing a
piecewise linear approximation of the strands of each braid. This approxima-
tion must produce the same braid as the original strands. In order to ensure
this, we propose a method that certifies that the approximations live inside dis-
joint tubular neigbourhoods of the actual strands (See Fig. 2). The method is
based on a homotopic continuation of the roots via a predictor–corrector scheme,
plus a validation step using interval arithmetic and interval Newton Operator.
In fact the final scheme is “predictor–validator–corrector”. The predictor uses
implicit differentiation and linear extrapolation. The corrector is just the classical
Newton Method.

2 Validated Numerics

In the following we will need the concepts of complex interval, interval polyno-
mial and interval evaluation.



SIROCCO: A Library for Certified Polynomial Root Continuation 193

CP
2 \ {p}

π

CP
1

Fig. 1. Braid over a path

Definition 1. A complex interval is a set of the form {x + i · y | a ≤ x ≤ b, c ≤
y ≤ d} for some a, b, c, d ∈ R, a ≤ b, c ≤ d. The set of complex intervals will be
denoted as IC.

Given S ⊆ C, its interval closure (that is, the smallest element of IC that
contains S) will be denoted by [S]. Note that complex numbers are a particular
case of complex intervals. IC is not a ring, however, by abuse of notation, we will
talk about polynomials over this set. For example, if If = Ia0 +Ia1x+ ·Ianxn ∈
IC[x], it can be thought of as a way to represent the set S(If) = {a0 + a1x +
· · · anxn ∈ C[x] | ai ∈ Iai∀i}.

Definition 2. An evaluation scheme is a map

E : IC[x] × IC �→ IC

such that for every f ∈ S(If), and every z ∈ Iz, the evaluation f(z) is in
E(If, Iz).

Analogously, we can define interval polynomials of two variables and their cor-
responding evaluation schemes. For example, the usual interval arithmetic is an
evaluation scheme. From now on we will assume that we have fixed evaluation
schemes E1, E2 for univariate and bivariate interval polynomials respectively. By
abuse of notation, E1(If, Iz) will be denoted by If(Iz), and E2(If, Ix, Iy) will
be denoted by If(Ix, Iy).

2.1 Newton Method

A basic tool to prove statements with a computer which cannot be proved in
a symbolic way is the Interval Newton Method [7,9]. Among all its possible



194 M.Á. Marco-Buzunariz and M. Rodŕıguez

Fig. 2. Tubular neigbourhoods of the strands. The piecewise linear approximations live
inside them.

formulations, we present here the one for complex univariate polynomials, since
it is the one we need.

Theorem 1. Let f : Ω → C, Ω ⊆ C an open set, f ∈ C∞(Ω). Let Y ∈ IC,
y0 ∈ Y ⊂ Ω. Let us assume that 0 /∈ [f ′(Y )]. We call the Interval Newton
Operator:

N(y0, Y, f) = y0 + f(y0)/[f ′(Y )].

Then:

– If y1, y2 ∈ Y such that f(y1) = f(y2), then y1 = y2.
– If N(y0, Y, f) ⊆ Y , then ∃|y∗ ∈ Y such that f(y∗) = 0.
– If y1 ∈ Y such that f(y1) = 0, then y ∈ N(y0, Y, f).
– If N(y0, Y, f) ∩ Y = ∅, then f(y) �= 0, ∀y ∈ Y .

A detailed proof of this Theorem can be found in reference [10]. Further details on
validation methods can be found in [7]. Note that, in the same way we defined an
evaluation scheme for polynomials, we can also define an evaluation scheme for
the Newton operator. Again, let us assume that we have fixed such an evaluation
scheme.

Corollary 1 (Newton method for interval polynomials). Consider If ∈
IC[x, y] a complex intervalar polinomial. Let y0 ∈ C, Ix, Iy ∈ IC such that y0 ∈
Iy. Consider IfIx the univariate intervalar polynomial resulting from evaluating
If at x = Ix. If N(y0, Iy, IfIx) ⊆ Iy, then for every f ∈ If and every x ∈ Ix,
there exists a unique root (counted with multiplicity) of fx in Iy. Moreover, this
root lies in N(y0, Iy, IfIx).

3 The SIROCCO Library

In this section we present a C library developed for the purpose described in the
Introduction. The core function provided by the library is called homotopyPath.



SIROCCO: A Library for Certified Polynomial Root Continuation 195

It takes as input a polynomial f(x, y) (as a list of its coefficients) and an approx-
imation y0 of a root f(0, y). Its output is a list with the points that determine a
good (as explained in the Introduction) approximation of the path followed by
y0 as x moves from 0 to 1. A simple change of variable allows us to translate
any other linear path to this one. In the following of this section we will briefly
present the method implemented in SIROCCO. First we set a trivial Lemma to
ensure that the neighbourhoods we use will be disjoint. The description of the
method will follow the notation set in this lemma.

Lemma 1. Let C1, C2 be two concentric squares with horizontal and vertical
sides, being C2 three times bigger than C1. Let C ′

1, C
′

2 another pair of squares
with the same properties. If there exists points x ∈ C1 \C ′

2 and y ∈ C ′

1 \C2, then
C1 and C ′

1 are disjoint.

3.1 The Validated Continuation Algorithm

The basic outline of the method consists on the following: Start with a polyno-
mial f0(x, y) ∈ C[x, y], an interval polynomial If(x, y) ∈ IC[x, y] that contains
it (can be f0 itself), and yinp ∈ C an approximate root of f(0, y). Set x0 = 0,
y0 = yinp For each step we want to compute two boxes Ix × IY1 and Ix × IY2

such that ∀x ∈ Ix,∀f ∈ If , fx(y) has a unique root in IY1 and in IY2. IY1 and
IY2 are both centered in y0. IY2 will be three times wider than IY1 (and they
will play the roles of C1 and C2 in Lemma 1). Then:

1. Estimate1 an initial value δ > 0 to be the radius of IY1.
2. Apply Corollary 1 to If with Ix = [x0], Iy = Ci as in Lemma 1 (i = 1, 2).

Keep reducing δ until Corollary 1 is satisfied.
3. Estimate2 h > 0 to be the stepsize for the predictor.
4. Apply Corollary 1 to If with Ix = [x0, x0 + h], Iy = Ci. Keep reducing h

until the Corollary is satisfied.
5. Apply classical Newton method to correct y0 for polynomial fx0+h. Use cor-

rected value to update y0. Set x0 to x0 + h.

Stages 1 to 5 shall be repeated until x0 reaches 1. In order to obtain longer
steps in the validation, in stages 3 and 4 we use the following trick. We define
an auxiliar polynomial.

g(x, y) = f(x + x0, y + a(x + x0))

This change of variables sends the point (x0, y0) to (0, y0) and transform the
implicit curve given by f(x, y) = 0 into a curve whose implicit derivative at the
translated point vanishes (see Fig. 3). The validation of this new polynomial in a
rectangular interval box implies the validation of the original polynomial in the
box transformed by the change of variables. In practice, the longer stepsizes that
this trick allows compensates the computation effort of the change of variables.
Experimental evidence shows an important speedup.

1 This estimation is derived from the degree 2 Taylor expansion of the polynomial.
2 This estimation is derived from the degree 2 Taylor expansion of the implicit function

defined by f(x, y) = 0.



196 M.Á. Marco-Buzunariz and M. Rodŕıguez

f(x, y) = 0

(x0, y0)

(x0 + h, y0 + a · h)

g(x, y) = 0
(0, y0)

(h, y0)

Fig. 3. Neighborhoods related through the change of variables φ.

4 6 8 10 12 14

degree

10−2

10−1

100

101

102

c
p
u

ti
m

e

1 fail

1 fail

2 fail

5 fail

6 fail 5 fail 6 fail 5 fail
8 fail

9 fail

Macaulay2

Sirocco

Fig. 4. Timing comparison. CPU-time vs degree of validated polynomial using soft-
wares SIROCCO and Macaulay2

4 Comparison and Timimgs

Up to the authors’s knowledge, there are several software packages able to per-
form validated homotopy continuation, such as pss5 [8], Cadenza [5] or the
NumericalAlgebraicGeometry package [2] of Macaulay2 [4]. However, they have
different objectives. We will now compare the performance of our implementa-
tion with the one by Leykin in the NumericalAlgebraicGeometry package. We
remark again that the purpose of NumericalAlgebraicGeometry package is not
to compute braid monodromies, but to find solutions of polynomial systems. In
that sense this comparison is not fully fair. Our comparison consisted in timing
the computation of the strand starting at one root y0 of a polynomial f(x, y)
from x = 0 to x = 1 for several polynomials. The polynomials were chosen ran-
domly among the polynomials of degree 4 to 14 (10 polynomials of each degree).
All measurements were made by averaging 5 runs of the program on the same
input. The test platform has an Intel Core i5-4570 CPU running at 3.20 GHz,
with 8GB of RAM. Both softwares are configured to throw an error message
when they are not able to validate a step (those timings are not taken into
account in the average) All timings are expressed in seconds. In Fig. 4 we can



SIROCCO: A Library for Certified Polynomial Root Continuation 197

see that our implementation is consistently faster (as we could expect) than the
one in Macaulay2. Moreover, it is also more robust, since it gives the right answer
in cases where Macaulay2 could not guarantee the correctness. The difference in
timings varies greatly, but, on average, our implementation is about an order of
magnitude faster.

References

1. Bartolo, E.A., Cogolludo, J.I., Tokunaga, H.: A survey Zariski pairs. Adv. Stud.
Pure Math. 50, 1–100 (2008)

2. Beltrán, C., Leykin, A.: Robust certified numerical homotopy tracking. Found.
Comput. Math. 13(2), 253–295 (2013)

3. Ruber, J.C.: Monodroma de trenzas de curvas algebraicas planas. Ph.D. thesis,
Universidad de Zaragoza (2003)

4. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in alge-
braic geometry. http://www.math.uiuc.edu/Macaulay2/

5. Hauenstein, J.D., Haywood, I., Liddell Jr., A.C., Cadenza: certifying homotopy
paths for polynomial systems. http://www.nd.edu/aliddel1/research/cadenza

6. Van Kampen, E.R.: On the fundamental group of an algebraic curve. Am. J. Math.
55(1–4), 255–260 (1933)

7. Krawczyk, R., Neumaier, A.: An improved interval newton operator. J. Math. Anal.
Appl. 118(1), 194–207 (1986)

8. Malajovich, G.: Polynomial System Solver. https://sourceforge.net/projects/pss5/
9. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)

10. Zgliczyński, P.: Interval krawczyk and newton method, February 2007, Lecture
notes. http://ww2.ii.uj.edu.pl/∼zgliczyn/cap07/krawczyk.pdf


