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Abstract. In this paper we give a method to construct Heegaard splittings of

oriented graph manifolds with orientable bases. A graph manifold is a closed 3-

manifold admitting only Seifert-fibered pieces in its Jaco-Shalen decomposition;

for technical reasons, we restrict our attention to the fully oriented case, i.e.

both the pieces and the bases are oriented.

In this paper we deal with graph manifolds. A closed 3-manifold M is said

to be a graph manifolds if its Jaco-Shalen decomposition admits only Seifert-

fibered pieces. These manifolds were classified by F. Waldhausen [14, 15] and

they are completely determined by a normalized weighted graph (up to a controlled

family of exceptions). For technical reasons we restrict our attention to the fully

oriented case, i.e. we assume M oriented and we also assume that the bases of

the Seifert fibrations are oriented surfaces. This is only a mild restriction and

this family contains the class of 3-manifolds which appear naturally in complex

geometry: boundary of regular neighbourhoods of complex curves in complex

surfaces, and, in particular links of normal surface complex singularities. These

manifolds admit another classification in terms of plumbing graphs, see the work

of W. Neumann [8].

A Heegaard splitting of a closed orientable 3-manifold M is a decomposition

of M as a union of two handle bodies sharing a common boundary. This common

boundary is a closed orientable surface Σ. The genus of the splitting is defined as

the genus g of Σ. Note that, if we see Σ as the boundary of a handle body, there

are g distinguished curves in it, that correspond to the boundaries of g disks such

that, cutting along them, a closed ball is obtained. In a Heegaard splitting, the

same surface is seen as the boundary of two different handle bodies, so there are

two families of distinguished curves. These two families of curves are enough to

determine the two handle bodies, and hence they also determine the manifold M

and the splitting itself. An oriented closed surface of genus g, with two families of g

curves is called a Heegaard diagram, which represents a Heegaard splitting. Every

closed oriented 3-manifold admits a Heegaard splitting [4], and [11] for details.

The Heegaard genus of such a manifold is the minimal genus of the Heegaard

splittings of M .
1
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There are a lot of works about Heegaard splittings of Seifert fibered manifolds

(the bricks of graph manifolds), see e.g. [3, 2, 6]. In these works, vertical and hor-

izontal splittings are defined; our approach will make use of horizontal splittings.

These ideas were also transferred to the case of graph manifolds in [13], where the

structure of Heegaard splittings is studied.

The contribution of this work is to provide an explicit method to construct

Heegaard splittings of a graph manifold from its plumbing graph, namely, we give

a closed oriented surface with two systems of cutting curves. Recall from [8] that

some moves are allowed for plumbing graphs that provide the same manifold; we

can use these moves to decrease the genus of the provided Heegaard splitting even

though, in general, our method does not provide a minimal splitting.

Osváth and Szabó [9, 10] defined a Floer homology for 3-manifolds using Hee-

gaard diagrams (the so-called Heegaard-Floer homology). Since then, Heegaard

splittings have regained interest, specially when having combinatorial methods for

its computation from a Heegaard diagram, see Sarkar and Wang in [12]. An inter-

esting particular case is its application to the study of normal surface singularity

invariants, specially those whose links are rational homology spheres, as in the

series of works of Némethi et al. [5, 1, 7].

The paper is organized as follows. We start in §1 with an example on how

to associate to a graph manifold a Heegaard splitting. No proof is given at this

time, but the main steps of the construction are illustrated. In §2, we recall the

construction of a graph manifold from its plumbing graph for further use. In §3,
the main topological constructions which are needed for the Heegaard splittings

are given, specially the concept of float gluings. The case of S1-fiber bundles with

Euler number ±1 is the next goal: in §4 the splitting is constructed while in §5 the

Heegaard diagram is described. We follow the same structure for general S1-fiber

bundles in §6. In §7, we study the splittings of the simplest graph manifolds which

are not fibered bundles, i.e., corresponding to a simplicial graph with one edge.

The general case is studied in §8. This escalonated procedure allows us to split

the technical difficulties. Finally, in §9 we provide explicit examples, including a

genus 3 splitting of Poincaré sphere (link of the E8 singularity).

1. illustrative example

The goal of this paper is to describe an explicit Heegaard splitting of a graph

manifold. It is presented in the form of a method, that we will now summarize

by describing a surface with two systems of curves starting from of a decorated

graph. We illustrate this with a suitable example.
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Figure 1.1. Example graph

We start with a connected decorated graph. Each vertex v is decorated with

two numbers: a nonnegative integer [gv] and an integer ev. Each edge is decorated

with a sign.

From the graph, we will construct a surface, and two systems of curves inside of

it (refered to as the system of blue curves and the system of red curves), following

a process that mymics the construction of the graph from its elements. In this

process we fix a spanning tree that determines two types of edges: edges in the tree

and edges that close cycles. In our example we fix as spanning tree the straight

edges. The steps to follow are the following:

(G1) For each vertex v, we consider a pair of closed oriented surfaces of genus

gv (called top and bottom) as in Figure 1.2.2 for the example.

Figure 1.2

(G2) We join the surfaces of each pair by some cylinders, see Figure 1.3.3. To

each one of these cylinders it will be assigned a sign, satisfying the condition

that the sum of these signs in each pair of surfaces matches the number ev.

The number of these cylinders can be chosen freely, as long as the previous

condition holds, and there are enough of them to perform the rest of the

steps in the algorithm. Besides, one of the cylinders in each pair of surfaces

is chosen as a main cylinder (larger in Figure 1.3.3).
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Figure 1.3

(G3) For each handle in a surface, see Figure 1.4.4, we add a red curve that turns

around the handle meridian, passes to the other surface in the pair through

the main cylinder, follows the same path in the other surface (reversing

direction) and returns back to the starting point traversing again the main

cylinder (without self intersections). Another red curve is constructed in

the same way but following the handle longitudes instead of the meridians.

Figure 1.4. Handle red curves of step (G3) for the surfaces of the

genus 1 vertex.

(G4) For each cylinder C which is not a main cylinder, we add a red curve that

goes through the main cylinder and returns through C.

(G5) For each red curve, we add a blue curve. These blue curves are parallel to

the red curves, except for performing a Dehn twist around each cylinder

they cross. The direction of the Dehn twist is given by the sign of the

cylinder.

(G6) Now we add the edges of the graph one by one, starting from the edges in

the tree. To add an edge of sign s in the tree, we choose one cylinder with
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Figure 1.5. Red curves in step (G4).

Figure 1.6. All lines added after step (G5).

sign s in each of the corresponding pair of surfaces. These cylinders should

be crossed only by one blue line (i.e. distinct from the main one, when

the corresponding surface has either more than two cylinders or positive

genus). Then we substitute these two cylinders with one cylinder that

joins the upper surfaces, and another one that joins the lower ones. The

red lines are just directly glued. The blue lines are also glued to form a

new one. This new blue line goes parallel to the new red line in one of

the new cylinders, but performs a Dehn twist around the other one. The

direction of the Dehn twist will be given by the sign s of the edge.

(G7) If the edge creates a loop, we choose cylinders and substitute them by new

ones as before. The two red lines δr and γr are substituted by two new

ones. The first one is constructed as in (G6). In order to construct the

second one we choose (arbitrarily) one of the old ones, say γr; it can be

decomposed as γ1 ·γ2 where γ2 is the the path contained in the tube which

is going to disappear. We take two parallel copies of γ1 and we connect
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Figure 1.7. Curves after adding one edge in step (G6).

Figure 1.8. Curves after adding the second edge in step (G6)

them by turning around the new cylinders in such a way that the resulting

curve is disjoint with the first red curve. Let δb and γb be the two old blue

lines. As before, a new blue line is obtained by gluing δb and γb as in (G6),

going parallel to the corresponding red one in one of the new cylinders and

performing a Dehn twist along the other one. The second new blue line is

created from one of the preexisting ones (say δb in this example) as we did

for the red one. That is, we decompose δb as δ1 · δ2 where δ2 is the the path
contained in the tube which is going to disappear; we take two parallel

copies of δ1 and we connect them by turning around the new cylinders in

such a way that the resulting curve is disjoint with the first blue curve.

2. Plumbing graph of a graph manifold

We recall the needed facts of Neumann’s plumbing construction [8] of Wald-

hausen graph manifolds [14, 15]. Everything in this section is known but we recall

it in order to fix notations. The atoms of these constructions are S1-fiber bundles.
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Figure 1.9. Curves after step (G7). The Handle curves have been

omited for clarity.

Since the actual family we are interested in satisfies strong orientation properties

we will restrict our attention to oriented graph manifolds built up using oriented

fibrations.

Let π : M → S be an oriented S1-bundle over a closed oriented surface S

of genus g. The oriented S1-bundles over a manifold N are classified by its Euler

class in H2(N ;Z). If S is an oriented closed surface there is a natural identification

Z ≡ H2(S;Z) and the Euler class is interpreted as an Euler number e ∈ Z. Let

us recall for further use how to compute this number. Because of the Euler class

classification, any oriented S1-bundle over an oriented surface with boundary is

homeomorphic to a product.

Let us consider a small closed disk D ⊆ S and consider the surface with bound-

ary Š := S \D. The restrictions of π over D and Š are product bundles. Let µ1

be the boundary of a meridian disk of the solid torus π−1(D) (oriented accordingly

as ∂D) and let s1 be the boundary of a section defined over Š (oriented as ∂Š).

These two simple closed curves define elements in H1(π
−1(∂D);Z) as an oriented

fiber ϕ1 does. Let us use multiplicative notation for H1(π
−1(∂D);Z). The fact

that µ1 and s1 project onto opposite generators of H1(∂D;Z) implies that these

elements satisfy a relation

(2.1) s1 · µ1 · ϕe = 1
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for some e ∈ Z, which happens to be the Euler number of the fibration. There

are several variations of this construction. The first one is very simple, we can

replace D, Š by two surfaces S1, S2 with common connected boundary such that

S = S1∪S2 and the formula (2.1) is still true. Moreover, there is no need to assume

that the their boundaries are connected. Assume that ∂S1 = ∂S2 = S1 ∩ S2 has

r connected components C1, . . . , Cr; let us fix sections si : Si → M , i = 1, 2, and

let us denote by sji the boundary of such section in Cj (oriented as ∂Si). Then in

H1(Cj;Z) we have inequalities

(2.2) sj1 · s
j
2 · ϕej = 1, ej ∈ Z,

and e = e1 + · · ·+ er.

Moreover, any decomposition of e as above, can be realized in this way for a

given oriented S1-bundle with Euler number e.

A plumbing graph (Γ, g, e, o) is given by a (connected) graph Γ (without loops),

a genus function g : V (Γ) → Z≥0 (where V (Γ) is the set of vertices of Γ), an

Euler function e : V (Γ) → Z and an orientation class o ∈ H1(Γ;Z/2). We

usually represent this graph by decorating each vertex v with [g(v)] and e(v), and

by decorating each edge e with a sign σe = ± representing the coefficients of a

cocycle (cochain) representing o. If the decoration [g(v)] is not written it means

that g(v) = 0, and empty decoration of an edge e means +-decoration.

Remark 2.1. If we change a cocycle by reversing the signs of all the edges adjacent

to a fixed vertex, we obtain another representative of o; moreover, we can pass

from one representative to another by a sequence of these moves. Of course, if Γ

is a tree the o-decoration can be chosen as void.

The plumbing manifold associated to (Γ, g, e, o) is constructed as follows. First,

we collect for each v ∈ V (Γ) an oriented S1-bundle πv : Mv → Sv with Euler

number e(v) and such that Sv is a closed oriented surface of genus g(v). For each

edge η with end points v, w we collect two closed disks Dη
v ⊂ Sv and Dη

w ⊂ Sw.

We choose these disks such that they are pairwise disjoint for any fixed v. Let us

define M̌v to be the closure of Mv \
⋃
v∈η π

−1
v (Dη

v), which is an oriented manifold

whose boundary is composed by tori, as many as the valency of v in Γ. We define

then T ηv := π−1
v (∂Dη

v). In each one of these tori we have a pair of curves (ϕηv, µ
η
v),

where µηv is a meridian of the solid torus π−1
v (Dη

v) (oriented as ∂Dη
v) and ϕ

η
v is an

oriented fiber. Note that these curves induce a basis of H1(T
η
v ;Z) which represents

the orientation of T ηv as part of the boundary of M̌v.

Let us consider a homeomorphism Φη
v,w : T ηv → T ηw such that Φη

v,w(ϕ
η
v) = (µηw)

ση

and Φη
v,w(µ

η
v) = (ϕηw)

ση . Basically, we are exchanging sections and fibers (twisted
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by the sign). This map is determined up to isotopy by the matrix ση ( 0 1
1 0 ) of

determinant −1. These maps are well-defined only up to isotopy and we can

choose representatives such that Φη
w,v = (Φη

v,w)
−1. Then the plumbing manifold

associated to (Γ, g, e, o) is defined as: ∐
v∈V (Γ)

M̌v

/
{Φη

v,w}η

We will drop any reference to o if it is trivial.

Remark 2.2. Note that the above construction depends on a fixed choice of a

cocycle. Let us fix a vertex v and consider the cocycle σ̃ given by

σ̃η =

ση if v /∈ η

−ση if v ∈ η

For the construction associated to σ̃ we keep the fibrations for w ̸= v and we

consider the fibration π̃v : Mv → (−Sv) which is the opposite fibration to πv but

the orientation of Mv remains unchanged. As a consequence ϕ̃ηv = (ϕηv)
−1 and

µ̃ηv = (µηv)
−1, when v ∈ η. Note that Φ̃η

v,w = Φη
v,w and the resulting manifold is the

same as above. Hence, by Remark 2.1, the manifold depends only on o and not

on the particular choice of a representative cocycle.

Example 2.3. Let X be a complex surface and let D =
⋃r
j=1Dj be a normal

crossing compact divisor in X. Let Γ be the dual graph of D and define the

functions g, e as the genus and self-intersection. Then the boundary of a regular

neighbourhood of D is homeomorphic to the graph manifold of (Γ, g, e). If the

intersection matrix of D is negative definite then D can be obtained as the excep-

tional divisor of a resolution of an isolated surface singularity. That is, the link of

an isolated surface singularity is always a plumbing manifold, whose graph is the

dual graph of the resolution. This example is the main motivation for this work.

The rest of the paper is devoted to proof that the construction of §1 provides a

Heegaard splitting of the corresponding graph manifold described in this section.

3. Topological constructions

In this section we introduce different constructions which will be used in the

sequel.
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3.1. Drilled bodies.

Definition 3.1. A (g, n)-drilled body is a productHg,n := Σg,n×I, where I := [0, 1]

and Σg,n is an oriented compact surface of genus g and n boundary components,

with n > 0.

a a

a a

b

b

b

b

f f
f f

(a) (S1)2 × I = Σ1,0 × I

a a

a a

b

b

b

b

(b) H1,1

a a

a a

b

b

b

b

(c) H1,2

Figure 3.1. Products

Lemma 3.2. The boundary of a (g, n)-drilled body is an oriented surface of genus

2g + n− 1 which is decomposed as a union of two copies of Σg,n and n cylinders,

called the drill holes.

Proof. It is clear that ∂Hg,n is an oriented surface for being the boundary of an

oriented 3-manifold. It can be decomposed as follows:

∂Hg,n = Σg,n × {0, 1} ∪ (∂Σg,n × I).

Since n > 0, the surface is connected. Its Euler characteristic is:

χ(∂Hg,n) = 2χ(Σg,n) = 2(2− 2g − n) = 2− 2(2g + n− 1). □

Theorem 3.3. A (g, n)-drilled body is a (2g + n− 1)-handle body.

Proof. We consider Σg,n as the closure of the complement of n pairwise disjoint

disks in a closed surface Σg of genus g. This surface is represented as a 4g-polygon

P4g with the usual identifications; recall all the vertices are identified as a point P .

The first disk to be removed can be chosen with center at P . The other n − 1

disks are in the interior of P4g.
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Hence the surface Σg,n can be seen as an 8g-gone Qn−1
8g (with n − 1 removed

disks D2, . . . , Dn in its interior), with identifications in 4g of its edges. Recall that

∂D1 is obtained by gluing the non-identified edges of Qn−1
8g .

We can choose n − 1 disjoint (topological) segments αj joining ∂Dj and ∂D1,

j = 2, . . . , n. Note that if we cut along these segments and the identified edges,

we obtain a topological disk.

The 3-manifold Hg,n can be seen as a drilled prism with basis Qn−1
8g , where the

vertical faces are identified as the corresponding edges on Qn−1
8g .

Let us cut Qn−1
8g × I along the 2g identified faces and the n− 1 topological disks

αj × I. We obtain the product of a disk and an interval which is a topological

3-ball. □

3.2. Float gluings.

We are going to define another construction. Let M be an oriented 3-manifold

with boundary and let η be an oriented simple closed curve in ∂M ; then a regular

neighbourhood C in ∂M of η is an annulus. Consider an oriented solid torus V with

oriented core γ and let γ̃ be a longitude in ∂V . Let A be tubular neighbourhood

of γ̃ in ∂V ; note that A is an annulus. Let ψ : C → A be an orientation-reversing

homeomorphism.

Proposition 3.4. The manifold M ∪ψ V is homeomorphic to M .

Proof. The solid torus V can be retracted to A and this rectraction induces an

isotopy between M ∪ψ V and M . □

Remark 3.5. Note that in the previous construction there are two possible choices

for the gluing morphism ψ. One of them identifies γ with η and the other one,

γ with η−1. Moreover, the gluings of the boundary components of C and A are

interchanged.

Definition 3.6. The above operation is called a float gluing of M along C.

Definition 3.7. Given a handle-body M of genus g we say that a simple closed

curve γ ⊂ ∂M is a float curve if there is a cutting system of curves in ∂M such

that γ intersects this system in only one point, and this intersection is transverse.

Example 3.8. Let us consider a solid torus V1 and let γ be a simple closed curve

in ∂V1 isotopic to the core of V1. Let Vg−1 be a handle-body of genus g − 1. Let

Vg be the handle-body obtained by gluing two disks in the boundaries of V1 and

Vg−1; for further use, we will refer to this operation as the handle sum of V1 and

Vg−1; we can assume that γ is disjoint with the disk in ∂V1 used for the handle

sum. Then γ ⊂ Vg is a float curve of Vg since it cuts only the meridian of V1.
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Definition 3.9. The pair (Vg, γ) is called a standard float-curve system of genus g.

Lemma 3.10. Let M be a handle-body of genus g and let γ ⊂ M be a float

curve. Then, the pair (M,γ) is homeomorphic to a standard float-curve system of

genus g.

Proof. A handle-body can be seen as a closed ball B3 with 2g pairwise disjoint disks

in the boundary glued in pairs. In this model a curve γ is a segment joining a pair

of glued disks and avoiding the other ones. Two such models can be connected by

a homeomorphism. □

Proposition 3.11. Let M1,M2 be two handle-bodies of genus g1, g2 ≥ 1. Fix

float curves γ1, γ2 in each one and consider regular neighbourhoods A1, A2 of these

curves in ∂M1, ∂M2, respectively. Let ψ : A1 → A2 be an orientation-reversing

homeomorphism. Then, M1 ∪ψ M2 is a handle-body of genus g1 + g2 − 1.

Remark 3.12. If M2 is of genus 1 the above operation is a particular case of float

gluing since we only need the curve in the solid torus to be a float curve. In fact,

the above proposition remains true if we only ask γ2 to be a float curve, but we

do not use this more general fact.

Proof. Note that M2 can be constructed as a handle sum of a solid torus V1 and

a handle body of genus g2 − 1. This operation can be performed in order to have

A2 ⊂ V1 and γ2 homotopic to the core of V1.

Then, the gluing of M1 and M2 can be performed as a float gluing followed by

a handle sum. □

Remark 3.13. In fact, we can be more specific with the handlebody structure of

M := M1 ∪ψ M2. Consider a system of cutting curves α1, . . . , αg1 for M1 and

β1, . . . , βg2 for M2. We first assume that only α1 (resp. β1) intersects γ1 (resp.

γ2), at only one point and transversally (which is possible since γ1 and γ2 are

float curves). Let α̌1 be the piece of α1 outside the small neighbourhood of γ1
used for the gluing; define β̌1 accordingly. We can isotopically move β1 such that

δ := α̌1 · β̌1 is a cycle in the boundary of M . Then, δ, α2, . . . , αg1 , β2, . . . , βg2 is a

cutting system for M .

Remark 3.14. This process can be generalized when αi, 1 ≤ i ≤ h1, interesects γ1
transversally at one point and αi ∩ γ1 = ∅ if h1 < i ≤ g1 and a similar fact arises

for the other system for some h2. In this case we can choose suitable curves α′
i,

2 ≤ i ≤ h2 (resp. β′
i, 2 ≤ i ≤ h1) parallel to α1 (resp. β1) such that β̃i := α̌′

i · β̌i,
2 ≤ i ≤ h2 (resp. α̃i := α̌i · β̌′

i, 2 ≤ i ≤ h1) are cycles. Then

(3.1) δ, α̃2, . . . , α̃h1 , αh1+1, . . . , αg1 , β̃2, . . . , β̃h2 , βh2+1, . . . , βg2
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is a cutting system of M . We can prove it using handle-slide moves of αi (resp.

βi), 1 < i ≤ h1 (resp. h2), along α1 (resp. β1) in order to pass to the situation

of Remark 3.13; after the construction of the cutting system of M we perform

inverse handle-slide moves along δ and we recover the system (3.1).

The same idea can be used if we identify two different annuli in a single handle

body.

Proposition 3.15. Let M be a handle body of genus g ≥ 2. Fix a cutting system

of curves and two disjoint float curves γ1, γ2 such that they intersect different

curves of the cutting system α1, α2. Consider regular neighbourhoods A1, A2 of γ1
and γ2 respectively. Let ψ : A1 → A2 be an orientation-reversing homeomorphism.

Then the quotient Mψ of M by ψ is a handle body of genus g.

Proof. Up to homeomorphism, we may assume that the float systems are standard

ones. In that case, M is a handle sum of solid tori, being γ1 and γ2 the longitudes

of two of them. The identification then produces a float gluing bewteen these two

solid tori, so we obtain again a handle sum of solid tori, but introducing a loop in

the chain of handle sums. This loop introduces a new handle, that compensates

the one lost by the identification. □

α1

γ1

γ2

α2

β
α̃1

α̃2

Figure 3.2. Gluing disjoint float curves in a handle body

Remark 3.16. In Figure 3.2.2 it can be seen how a new cutting curve is obtained

by joining the two identified ones, and another one appears for the handle corre-

sponding to the cycle. We are going to check that the latter corresponds to the

commutator of α1 and γ1.

Let F = ∂M and consider regular neighbourhoods N(γ1) and N(γ2) of γ1 and

γ2 bounded by four curves γ±i . The surface Fψ := ∂Mψ is obtained as follows.
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Consider the quotient of F \ (N(γ1) ∪N(γ2)) obtained by gluing γ+1 with γ−2 and

γ−1 with γ+2 in order to obtain an oriented 3-manifold.

Note that F = ∂M and Fψ = ∂Mψ are equal outside regular neighbourhoods

of γ1 and γ2. A cutting system for Mψ can be constructed as follows. We keep

the curves α3, . . . , αg of the cutting system of M and we add two new curves α̃1

and ᾱ2. The curve ᾱ1 is the connected sum α1#α2 obtained as the union of two

pieces α̌1, α̌2 as δ in Remark 3.13. The curve ᾱ2 is the image by the gluing of the

curve β in M ,which is the commutator of α1 and γ1 (see Figure 3.2.2). Note that

the commutator of α2 and γ2 could also be chosen instead of β.

4. Heegaard splittings of S1-bundles over surfaces with

unimodular Euler number

Let π : M → S be an oriented S1-bundle over a closed oriented surface S of

genus g, with Euler number e ∈ Z ≡ H2(S;Z). Consider a small closed diskD ⊆ S

and consider the surface with boundary Š := S \D. SinceH2(Š;Z) is trivial, there
exists a section s1 : Š → M of π. We take another parallel section s2. These two

sections divide M̌ = π−1(Š) in two piecesM1 andM2; which are oriented compact

3-manifolds with boundary, and satisfy that M1 ∩M2 = ∂M1 ∩ ∂M2 = S
∐

N,

where S := s1(Š) and N := s2(Š). We will now show how to use these two pieces

to construct a Heegaard splitting of M when the Euler number of the fibration

is e = ±1 ( i.e., the plumbing manifold associated with a graph with only one

vertex v, gv = g, ev = ±1).

Convention 4.1. Once the two sections s1, s2 have been chosen, we choose M1

and M2 in such a way that the orientations on N induced by M1 and s2 coincide.

This means that a positive half-fiber inside M1 goes from S to N.

The boundary of M1 is obtained by gluing S and N with an annulus C which

fibers over ∂D = ∂Š (whose fibers are positive half-fibers insideM1 homeomorphic

to [0, 1]). In the same way ∂M2 = S ∪ C ′ ∪N, where C ′ is the other annulus in

M2. Note that C ∪C ′ is the torus π−1(∂(D)) = ∂π−1(D) (C and C ′ have common

boundaries).

Proposition 4.2. The 3-manifolds M1,M2 are 2g-handle bodies.

Proof. This manifold is, by construction, the drilled body Hg,1, see Theorem 3.3.

Since M2 is homeomorphic to M1, it is also a 2g-handle body. □

Theorem 4.3. Let M̃2 := M2 ∪ π−1(D). The manifold M̃2 is homeomorphic to

M2 and, hence, it is a 2g-handle body.
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Proof. Note that C ′ is the annulus along which M2 and π−1(D) are glued. Let K

be the core of this annulus. Since e = ±1, K is homologous to the core of π−1(D)

and the statement follows from Proposition 3.4. □

Corolary 4.4. The submanifolds M1 and M̃2 form a Heegaard splitting of M of

genus 2g.

5. Heegaard diagram of a unimodular S1-bundle.

Let us denote Σ1 := ∂M1 = ∂M̃2 (oriented as boundary of M1), which is the

gluing of S, N and the cylinder C ∼= ∂D× I. Note that N inherits the orientation

of S while S inherits the opposite one.

p11 p21

q11

q21

b1

ν1

λ11

ν ′1

λ21 a1 =
ν1 · λ21 · ν ′1 · λ11

γ′1 S

N

C

γ1

(a) Cutting curves for M1.

b′1

a′1

(b) Cutting curves for M̃2, e = 1.

Figure 5.1

In this situation, the system of cutting curves for M1 is formed by two families

of curves:

• Curves a1, . . . , ag coming from half of the identified faces in the prysm,

see Figure 3.1(b)alphsubfigure. They are decomposed into four pieces as

follows, see Figure 5.1(a)alphsubfigure. Consider points p1i , p
2
i in C ∩ N

and points q1i , q
2
i in C ∩S such that there are half-fibers λ1i (from q1i to p

1
i )

λ2i (from p2i to q
2
i ). Pick up a path νi in S from p1i to p

2
i which turns around
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the i’th handle like its meridian. We construct a path ν ′i in N in a similar

way with reversed orientation. Then, ai := νi · λ2i · ν ′i · λ1i . It is possible to

choose these cycles to be pairwise disjoint.

• Curves b1, . . . , bg coming from the other half of the identified faces. They

are constructed in the same way as the ai, but instead of taking νi and ν
′
i,

we take paths that turn around the handles like their longitudes. These

paths are chosen in such a way that they don’t intersect each other and

they are also disjoint to the paths ai’s.

The prysm of Figure 3.1(b)alphsubfigure shows how to prove that this is a

system of cutting curves.

In order to obtain a system of cutting curves for M̃2 we recall its construction.

We start with M2 (homeomorphic copy to M1) which is constructed in the same

way as M1 but using the other cylinder C ′. Recall that the union of the two

cylinders C and C ′ along their common boundary yields the torus T := π−1(∂D),

the boundary of the solid torus π−1(D). So the construction of the system of

cutting curves for M2 will mimic the one for M1 replacing the cylinder C by C ′.

Since M̃2 = M2 ∪ π−1(D), let us consider the situation at π−1(D). In order to

fix the orientations, we assume that e = 1, leaving the case e = −1 for later. The

solid torus π−1(D) is represented as a cylinder whose bottom and top are glued

by a vertical translation in Figure 5.2(a)alphsubfigure. Note that π−1(D) is the

solid torus used in the float gluing in order to obtain M̃2 from M2.

In the torus T, we fix the product structure with oriented section µ1 (the bound-

ary of a disk in the solid torus) and with oriented fibre ϕ1. Let us fix one cutting

curve (ai or bi) of M1; it intersects the cylinder C in two half-fibers. Let λ1 be

the one from S to N; let λ′1 be the other half of the fiber in C ′ (which is part of

a cutting curve in M2) but with opposite orientation, in order to go again from S

to N; i.e., λ1 · λ′1
−1 is homologous to ϕ1 in T.

The cylinders C and C ′ have as common boundaries two cycles γ1 ⊂ N and

γ′1 ⊂ S, oriented as boundaries of these surfaces; in Figure 5.2(a)alphsubfigure, the

front part of C is coloured. The homology class of γ1 in T is (with multiplicative

notation) µ−1
1 ·ϕ−e

1 (recall e = 1 in Figure 5.2(a)alphsubfigure), since the definition

of Euler number implies that γ1 · µ1 · ϕe1 is trivial.

The cycle (γ′1)
−1 ·(λ1 ·λ′1

−1)e ∼ γ1 ·ϕe1 ∼ µ−1
1 bounds a disk in π−1(D). The union

of this disk with the cutting disk ofM2 containing λ
′
1
−1 in its boundary provides a

new disk where λ′1
−1 is no more in its boundary. If we repeat this process with the

other half-fiber in the cutting curve, we obtain the corresponding cutting curve

in M̃2 where the half-fibers have been replaced by curves in C ⊂ ∂M̃2 = ∂M1. It
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can be checked that the retraction seen in Proposition 3.4 sends γ′−e1 λ1 to λ′1 and

hence this construction provides the cutting curve for M̃2.

Figure 5.1(b)alphsubfigure shows the cutting curves of M̃2 for g = 1, e = 1.

Note that the blue curves in C turn around as γ1 when going from S to N. The

closed curve γ′1 is oriented as boundary of N and γ1 is parallel to γ′1.

It is clear that in the case of e = −1, the same thing will happen but instead of

turning as γ1, the curves will turn as γ−1
1 , see Figure 5.2(b)alphsubfigure.

λ1

γ1
λ′1

ϕ1

γ′1

µ1

(a) From M2 to M̃2, e = 1. (b) Example for the case g = 1, e = −1.

Figure 5.2

6. Heegaard splittings of arbitrary S1-bundles over surfaces

In order to construct a Heegaard splitting for arbitrary Euler number e we

proceed as follows. Let now Š := S \
⋃n
j=1Di, where D1, . . . , Dn are pairwise

disjoint closed disks in S. As before, let s1, s2 : Š → M be arbitrary parallel

sections of π. For each j = 1, . . . , n, let γj := s1(∂Dj) (oriented as part of ∂Š)

and let µj be the boundary of a meridian disk of the solid torus π−1(Dj). By the

choice of orientations the cycle γj · µj · ϕej is trivial in H1(π
−1(∂Dj);Z), for some

ej ∈ Z, where ϕ is an oriented fiber of π. The following is a classical result.

Lemma 6.1. With the above notations, e =
∑n

j=1 ej. Moreover, for every choice

of the ej’s satisfying this equality, there exists a choice of sections that realizes it.

As we did in §4, we may decompose M̌ := π−1(Š) in two pieces M1 and M2; M1

and M2 are oriented compact 3-manifolds with boundary and M1 ∩M2 = ∂M1 ∩
∂M2 = s1(Š)

∐
s2(Š) with the same orientation convention. From Theorem 3.3,

the manifolds M1 and M2 are (2g + n− 1)-handle bodies.



18 E. ARTAL, S. ISAZA, AND M. MARCO

Let us assume that ej = ±1, j = 1, . . . , n. Note that M2 is homeomorphic to

M1 and hence, it is also a (2g+n−1)-handle body. Let M̃2 :=M2∪
⋃n
j=1 π

−1(Dj).

Following the arguments in the proof of Theorem 4.3, we can see that M2
∼= M̃2

and M1 and M̃2 have the same boundary. We have proven the following result.

Theorem 6.2. The submanifolds M1 and M̃2 form a Heegaard splitting of M . If

e = 0, a decomposition of this kind of genus 2g + 1 can be always obtained; and if

e ̸= 0, one of genus 2g + |e| − 1.

Remark 6.3. In this process, we have glued all the solid tori π−1(Dj) to M2. This

is not essential for the proof: we could have glued some of them to M1 and the

result would be equally valid.

Let us describe the cutting curves of M1. First, we consider the cutting curves

of §5. Second, we add curves cj, j = 2, . . . , n as follows. Consider the paths αj
(as in the proof of Theorem 3.3) joining pj ∈ ∂D1 and qj ∈ ∂Dj; recall that by

cutting along them Š becomes a disk. The boundaries

cj = s1(αj) · ({qj} × I) · s1(αj)−1 · ({pj} × I)−1.

of αj × I, together with the curves of §5, form a system of cutting curves for M1.

Following the arguments in §5, the curves of M2 mimic the ones of M1 except

for the modification in the cylinders ∂Di × I, 1 ≤ i ≤ n, due to the float gluing

of the solid tori π−1(Di). By the same reasoning as before, these modifications

consist on a Dehn twist along each cylinder. The orientation of each Dehn twist

depends on the sign of each ei. Note that the cylinder ∂D1 × I plays a special

role; it will be called main cylinder.

Example 6.4. Figure 6.1(a)alphsubfigure shows this construction for the case of

genus zero and Euler number equal to 3. We choose three solid tori and sections

with ei = 1. The resulting Heegaard decomposition has genus 2 and therefore is

not minimal, since the manifold in question is a lens space, and as such admits

a genus one decomposition. Figure 6.1(b)alphsubfigure shows an example of this

construction for the case of g = 1, e = 2.

7. Heegaard splitting of a plumbed graph manifold with an edge

Let M be a plumbed graph manifold with an edge and two vertices. This

manifold is obtained as follows. We start with two manifolds W1 and W2, which

are oriented S1-bundles πi over closed surfaces Si of genus gi and Euler numbers

ei, i = 1, 2. We take closed disks Di,0 ⊂ Si and choose a system of curves µi, ϕi on
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(a) Example for the case g = 0, e = 3.

a1

b1

c2

(b) Example for the case g = 1, e = 2.

Figure 6.1

π−1
i (∂Di,0) as follows: the curve ϕi is an oriented fiber of πi, and µi is the oriented

boundary of a meridian disk of π−1
i (∂Di,0).

Then, M is obtained by gluing π−1
1 (S1 \D1,0) and π−1

2 (S2 \D2,0) along their

boundaries. These boundaries are tori π−1
i (∂Di,0), i = 1, 2, and the gluing is de-

scribed by a matrix in GL(2;Z) once ordered integral bases in H1(π
−1
i (∂Ei);Z) are

chosen. For the choice of (µ1,0, ϕ1) and (µ2,0, ϕ2) the matrix is ± ( 0 1
1 0 ), depending

on the sign of the edge as described in §2. Since the edge is contractible, the

cohomology class o of §2 vanishes and can be represented by any sign, yielding to

homeomorphic constructions.

Let us consider pairwise disjoint closed disks Dj,1, . . . , Dj,nj
⊂ Sj \Dj,0, j = 1, 2.

Let Šj := S \
⋃nj

i=0Dj,i. We consider two parallel sections sj,1, sj,2 : Šj →Mj of πj
as in the previous section.

As in §6, we denote γj,i := s1(∂Dj,i) (oriented as part of ∂Šj); let µj,i be the

boundary of a meridian disk of π−1(Dj,i). As in that section, we collect the integers

ej,i appearing in the equalities (in homology of the boundary tori) γj,i·µj,i·ϕ
ej,i
j = 1,

where ϕj is a fiber of πj, and they must satisfy

nj∑
i=0

ej,i = ej.

We impose the following conditions:

• min{n1, n2} ≥ 2;

• |ej,i| = 1;
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• ε := e1,0 = e2,0, determining the sign of the edge.

• ∂Di,0 × I is not a main cylinder.

In this case, we can construct Heegaard splittings M i
1, M̄

i
2 of Wi as in Section 6

using the systems of disks {Dj,0, . . . , Dj,nj
}. To do the plumbing, we have to

remove π−1
i (D̊i,0) from M̄ i

2, but as we saw before, this operation doesn’t change

the topology (since it is the inverse of a float gluing). Let’s denote by M̄
′i
2 the

result of the removal of π−1
i (D̊i,0) from M̄ i

2.

Note that after the plumbing, µ1,0 is identified with ϕε2, and µε2,0 is identified

with ϕ1. This implies that γ1,0 and γ2,0 are homologous after the plumbing (because

of the choice of the edge sign). In particular, it means that we can choose the

sections sj,i in such a way that s1,i(∂D1,0) is identified with s2,i(∂D2,0). This

way, the two Heegaard splittings are compatible, and we can extend them to a

decomposition of M .

Sumarizing, we have now the following decomposition:

(7.1) M =
(
M1

1 ∪M2
1

)⋃(
M̄

′1
2 ∪ M̄ ′2

2

)
.

Proposition 7.1. The manifolds M1
1 ∪M2

1 and M̄
′1
2 ∪ M̄ ′2

2 are handle bodies, i.e.,

the decomposition 7.1 is a Heegaard splitting of M .

Proof. It is enough to prove it for M1
1 ∪ M2

1 . We have already seen that both

M1
1 and M2

1 are handle-bodies. We will show now that they are glued as in

Proposition 3.11. In order to do so, we have to see that they are glued along

annuli that are neighborhoods of a float curve.

Let us consider the torus π−1
i (∂D1,0) as the product of µ1,0 and ϕ1. The curves

s1,i(∂D1,0) are parallel curves that meet ϕ1 transversally at only one point. Let

A1
1 =M1

1 ∩ π−1
i (∂D1,0)

be the annulus along which the gluing is made. This annulus is a neighborhood

of a curve parallel to s1,i(∂D1,0).

From the construction in Section 6, we see that ϕ1 ∩M1
1 is part of a cutting

curve of M1
1 . And moreover, its the only intersection of a cutting curve with the

torus π−1
i (∂D1,0).

So the annulus A1
1 is a regular neighborhood of a float curve inM1

1 . Analogously,

A2
1 is also a float curve in M2

1 . By Proposition 3.11, we get the result. □

It is time now to describe a Heegaard diagram, i.e., to understand what happens

with the cutting curves during the plumbing. Let us consider the cylinders A1
1 ⊂

M1
1 and A2

1 ⊂M2
1 which are identified by the plumbing.
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Let us fix a cutting curve λ1 of M
1
1 which intersects once the core of A1

1 (a float

curve). In the neighborhood of A1
1, this curve is decomposed in three connected

components λb1, λ
c
1, λ

e
1 where λc1 is the part of λ1 that lies in A1

1. As in §5, the
path λc1 is a half of the fiber ϕ1. Analogously, the cutting curve λ2 in M2

1 in

a neighbourhood of A2
1 can be divided in three connected components λb2, λ

c
2, λ

e
2.

The path λc2 is equivalent to a half of the fiber ϕ2 and recall that ϕ2 is identified

with a section µ1.

γ2

ϕ1

γ1

µ1

λc2

λb2

λe2

λc1

λb1

λe1

(a) Gluing of M i
1, ei,0 = 1.

γ2

ϕ1

γ1

µ1

λc2

λb2

λe2

λc1

λb1

λe1

(b) Gluing of M
′i
2 , ei,0 = 1.

Figure 7.1

Let us decompose γ1 = λγ1 · λ
′γ
1 in two halves where λγ1 is the bottom part in

Figure 7.1(a)alphsubfigure. If ei,0 = 1, we can check that λc2 can be isotoped inside

A1
1 to (λc1)

−1 followed by (λγ1)
−1, see Figure 7.1(a)alphsubfigure. That means that

the new cutting curve λ̄1 has two connected components near A1
1 ≡ A2

1; one is

λb2 · λe1, and the other one is λb1 · (λ
γ
1)

−1 · λe2.
We perform a similar argument for the gluing of M

′2
1 and M

′2
2 . In this case

we consider the other annuli A1
2 ⊂ M

′2
1 and A2

2 ⊂ M
′2
2 which become identified;

they are the other parts of the plumbing tori. Let us choose cutting curves λ′1, λ
′
2

which go parallel near the annuli to λ1, λ2; in order to emphasize it, we keep

the above notation for their decomposition in the neighborhood of the annuli,

see Figure 7.1(b)alphsubfigure. Assuming again ei,0 = 1, we see that λc1 can be

isotoped inside A1
2 to λc2 followed by λ

′γ
1 ; note that the isotopy is done in the

back part of A1
2 if Figure 7.1(b)alphsubfigure. The new cutting curve λ̄2 has two

connected components near A1
2 ≡ A2

2; one is λb2 · λe1, as before, and the other one

is λb1 · λ
′γ
1 · λe2.
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As we see in Figures 7.1(a)alphsubfigure and 7.1(b)alphsubfigure, some of the

ends do not fit; in order for them to fit we have to do a half-turn around γ1 in

the suitable direction. Since we have freedom to choose the product structure in

the annulus, this is equivalent to keep the intersection of the red curves as fibers,

while the intersection of the blue curves perform a full loop. To be precise, since

the curve λ̄2 · (λ̄1)−1 equals γ1 near the plumbing (in homology), for ei,0 = 1 the

curve λ2 turns as γ1 (when going from the first vertex to the second one), see

Figure 7.2.2. It is easily seen that it turns as γ−1
1 for ei,0 = −1.

λ̄1

λ̄2

γ1

Figure 7.2. Cutting curves for ei,0 = 1.

Example 7.2. Figure 7.3.3 illustrates the case of two vertices with genus zero

and both with Euler number −2. Note that we take n1 = n2 = 1 and ei,j = −1.

Figure 7.3. Heegaard diagram of the plumbing of two manifolds with

g = 0, e = −2

8. Heegaard splittings of arbitrary plumbed graphs

In this section, we consider an arbitrary plumbing graph (Γ, g, e, o); for the

plumbing construction we fix an explicit cocycle representing o, consisting on

assigning a sign eη to each edge η.

Fix a vertex v with valency dv; this vertex is associated with a fibration πv :

Mv → Sv; we choose dv + nv pairwise disjoint closed disks in Sv, determining

solid tori in Mv. The first dv disks are assigned to a fixed edge η having v as

an endpoint. As in §7, the first dv disks will have associated numbers eη, and
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the remaining disks numbers ev,j, j = 1, . . . , nv, such that their absolute value

equals 1, and ∑
v∈∂η

eη +
nv∑
j=1

ev,j = ev.

In general one of the extra disks will correspond to the main cylinder, hence nv ≥ 1.

The only exception to this rule is the case gv = 0, dv = 2, since in this case the

main cylinder plays no special role.

If Γ is a tree it is enough to iterate the construction of §7. Note also that there

is no restriction for the choice of the cocyle.

Let us consider now the general case where the graph may have cycles. We start

by the choice of a cocycle and a spanning tree, for which we proceed as above. Let

us now explain the effect of plumbing along the remaining edges.

As we saw in Proposition 3.15, the process is different when the plumbing closes

a cycle in the graph, since in that case the gluing process is done between two

float curves of the same handlebody; specially, the way of constructing cutting

curve systems changes. Proposition 3.15 proves that this process produces also a

Heegaard splitting (where the genus remains unchanged).

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 8.1. Float gluing that closes a cycle

How to obtain the cutting curves is explained in Remark 3.16. Figure 8.1.1

describes this process in our case, showing how to obtain the new pair of cutting
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curves from the ones that existed before the plumbing. The first pair of cutting

(red and blue) curves is obtained as in the tree case: they are obtained as connected

sum of the preexistent ones. The second pair of cutting curves is constructed as

explained in Remark 3.16, as the union of two parallel copies of a preexistent curve

and the boundaries of the identified annuli.

9. Explicit examples

Let us consider some examples of graph manifolds for which we will give a Hee-

gaard splitting. These examples come from links of normal surface singularities.

Example 9.1. LetM be the link of the An singularity, which is a lens space L(n, n−
1). The graph of this manifold is a linear tree with n − 1 vertices with ([0],−2)

decorations.

[0],−2 [0],−2 [0],−2

Figure 9.1. An graph

. . .

. . .

. . .

Figure 9.2. Heegard diagram of the An graph.

With our method we obtain a genus 1 Heegaard splitting where the two curves

intersect n times.

From now we will drop the genus weight if it vanishes.
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Example 9.2. Let us consider the plumbing manifold associated with a graph

with one vertex and Euler number −n, link of a quotient singularity, i.e. the lens

space L(n, 1). With our method we obtain a Heegaard splitting of genus n − 1.

Using Neumann plumbing calculus (namely (n−1) +1-blow-ups and one −1-blow-

down), we can transform it in the graph of Figure 9.1.1, where the weights equal 2.

The Heegaard splitting coincides with the one from the previous example, with a

reversed orientation.

Example 9.3. The plumbing manifold of Figure 9.3.3 is also a lens space L(5, 2)

and it admits a Heegaard splitting of genus 1. However, our method provides a

genus-2 Heegaard splitting.

−2 −3

Figure 9.3. A quotient singularity.

Figure 9.4. Heegaard diagram of the quotient singularity.

Example 9.4. The link of the singularity defined by z2 + x3 + y5 = 0 (E8-

singularity) is the Poincaré sphere. Our method provides a Heegaard splitting of

genus 3, where the central vertex needs four drills (three negative ones).
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−2 −2 −2 −2 −2 −2 −2

−2

Figure 9.5. Heegaard diagram of the E8-singularity.

It is possible to make a simpler Heegaard splitting. Using +1-blow-ups of [8]

(and one −1-blow-down), we can modify the Euler numbers: 2 for the lower vertex

and −1 in the central vertex. In that case, using the procedure in Remark 3.14,

we can make a float gluing along the main cylinder, obtaining a Heegaard splitting

of genus 2.

Example 9.5. The graph manifold of Figure 9.6.6 is also the link of a normal

surface singularity (which cannot be quasihomogeneous) and admits a Heegaard

splitting of genus 5.

−2 −4 −2−4

−2 −2

Figure 9.6. Non-Seifert manifold.
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