000131399 001__ 131399
000131399 005__ 20240208155436.0
000131399 0247_ $$2doi$$a10.3390/sym13091658
000131399 0248_ $$2sideral$$a125812
000131399 037__ $$aART-2021-125812
000131399 041__ $$aeng
000131399 100__ $$0(orcid)0000-0002-1386-5543$$aMurillo J.$$uUniversidad de Zaragoza
000131399 245__ $$aA solution of the junction riemann problem for 1d hyperbolic balance laws in networks including supersonic flow conditions on elastic collapsible tubes
000131399 260__ $$c2021
000131399 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131399 5203_ $$aThe numerical modeling of one-dimensional (1D) domains joined by symmetric or asymmetric bifurcations or arbitrary junctions is still a challenge in the context of hyperbolic balance laws with application to flow in pipes, open channels or blood vessels, among others. The formulation of the Junction Riemann Problem (JRP) under subsonic conditions in 1D flow is clearly defined and solved by current methods, but they fail when sonic or supersonic conditions appear. Formulations coupling the 1D model for the vessels or pipes with other container-like formulations for junctions have been presented, requiring extra information such as assumed bulk mechanical properties and geometrical properties or the extension to more dimensions. To the best of our knowledge, in this work, the JRP is solved for the first time allowing solutions for all types of transitions and for any number of vessels, without requiring the definition of any extra information. The resulting JRP solver is theoretically well-founded, robust and simple, and returns the evolving state for the conserved variables in all vessels, allowing the use of any numerical method in the resolution of the inner cells used for the space-discretization of the vessels. The methodology of the proposed solver is presented in detail. The JRP solver is directly applicable if energy losses at the junctions are defined. Straightforward extension to other 1D hyperbolic flows can be performed. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
000131399 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131399 590__ $$a2.94$$b2021
000131399 591__ $$aMULTIDISCIPLINARY SCIENCES$$b34 / 74 = 0.459$$c2021$$dQ2$$eT2
000131399 592__ $$a0.54$$b2021
000131399 593__ $$aChemistry (miscellaneous)$$c2021$$dQ2
000131399 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ2
000131399 593__ $$aComputer Science (miscellaneous)$$c2021$$dQ2
000131399 594__ $$a4.3$$b2021
000131399 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131399 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro P.$$uUniversidad de Zaragoza
000131399 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000131399 773__ $$g13, 9 (2021), 13091658[66 pp]$$pSymmetry (Basel)$$tSymmetry$$x2073-8994
000131399 8564_ $$s6340273$$uhttps://zaguan.unizar.es/record/131399/files/texto_completo.pdf$$yVersión publicada
000131399 8564_ $$s2779236$$uhttps://zaguan.unizar.es/record/131399/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131399 909CO $$ooai:zaguan.unizar.es:131399$$particulos$$pdriver
000131399 951__ $$a2024-02-08-14:38:44
000131399 980__ $$aARTICLE