000131434 001__ 131434
000131434 005__ 20240209155915.0
000131434 0247_ $$2doi$$a10.1088/1751-8121/aacc8b
000131434 0248_ $$2sideral$$a107083
000131434 037__ $$aART-2018-107083
000131434 041__ $$aeng
000131434 100__ $$0(orcid)0000-0002-8173-1846$$aLaliena, V.
000131434 245__ $$aAn improved discretization of Schrödinger-like radial equations
000131434 260__ $$c2018
000131434 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131434 5203_ $$aA new discretization of the radial equations that appear in the solution of separable second order partial differential equations with some rotational symmetry (as the Schrödinger equation in a central potential) is presented. It cures a pathology, related to the singular behavior of the radial function at the origin, that suffers in some cases the discretization of the second derivative with respect to the radial coordinate. This pathology causes an enormous slowing down of the convergence to the continuum limit when the two point boundary value problem posed by the radial equation is solved as a discrete matrix eigenvalue problem. The proposed discretization is a simple solution to that problem. Some illustrative examples are discussed.
000131434 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-68200-C2-2-P
000131434 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000131434 590__ $$a2.11$$b2018
000131434 591__ $$aPHYSICS, MATHEMATICAL$$b10 / 55 = 0.182$$c2018$$dQ1$$eT1
000131434 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b32 / 81 = 0.395$$c2018$$dQ2$$eT2
000131434 592__ $$a0.783$$b2018
000131434 593__ $$aMathematical Physics$$c2018$$dQ1
000131434 593__ $$aModeling and Simulation$$c2018$$dQ1
000131434 593__ $$aStatistics and Probability$$c2018$$dQ1
000131434 593__ $$aStatistical and Nonlinear Physics$$c2018$$dQ1
000131434 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000131434 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131434 700__ $$0(orcid)0000-0002-3600-1721$$aCampo, J.$$uUniversidad de Zaragoza
000131434 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000131434 773__ $$g51, 32 (2018), 325203 [14 pp]$$pJournal of Physics A-Mathematical and Theoretical$$tJournal of Physics A-Mathematical and Theoretical$$x1751-8113
000131434 8564_ $$s663966$$uhttps://zaguan.unizar.es/record/131434/files/texto_completo.pdf$$yPostprint
000131434 8564_ $$s909016$$uhttps://zaguan.unizar.es/record/131434/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131434 909CO $$ooai:zaguan.unizar.es:131434$$particulos$$pdriver
000131434 951__ $$a2024-02-09-14:28:18
000131434 980__ $$aARTICLE