000131447 001__ 131447
000131447 005__ 20240209155915.0
000131447 0247_ $$2doi$$a10.1016/j.ast.2014.09.017
000131447 0248_ $$2sideral$$a88909
000131447 037__ $$aART-2014-88909
000131447 041__ $$aeng
000131447 100__ $$0(orcid)0000-0002-7620-4523$$aCasanova, D.
000131447 245__ $$aSeeking GDOP-optimal flower constellations for global coverage problems through evolutionary algorithms
000131447 260__ $$c2014
000131447 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131447 5203_ $$aIn this paper, given a certain number of satellites, which is limited due to the sort of mission or economical reasons, the Flower Constellation with satellites which has the best geometrical configuration for a certain global coverage problem is sought by using evolutionary algorithms. In particular, genetic algorithm and particle swarm optimization algorithm are used. As a measure of optimality, the Geometric Dilution Of Precision (GDOP) value over points randomly and uniformly distributed over the Earth surface during the propagation time is used. The GDOP function, which depends on the geometry of the satellites with respect to the points over the Earth surface (as ground stations), corresponds to the fitness function of the evolutionary algorithms used throughout this work. Two different techniques are shown in this paper to reduce the computational cost of the search process: one that reduces the search space and the other that reduces the propagation time. The GDOP-optimal Flower Constellations are obtained when the number of satellites varies between 18 and 40. These configurations are analyzed and compared. Owing to the Flower Constellation theory we find explicit examples where eccentric orbits outperform circular ones for a global positioning system.
000131447 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ESP2013-44217-R
000131447 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000131447 590__ $$a0.94$$b2014
000131447 591__ $$aENGINEERING, AEROSPACE$$b8 / 29 = 0.276$$c2014$$dQ2$$eT1
000131447 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131447 700__ $$0(orcid)0000-0001-9744-5732$$aAvendaño, M.
000131447 700__ $$aMortari, D.
000131447 773__ $$g39 (2014), 331-337$$pAerosp. sci. technol.$$tAEROSPACE SCIENCE AND TECHNOLOGY$$x1270-9638
000131447 8564_ $$s631362$$uhttps://zaguan.unizar.es/record/131447/files/texto_completo.pdf$$yPostprint
000131447 8564_ $$s1508603$$uhttps://zaguan.unizar.es/record/131447/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131447 909CO $$ooai:zaguan.unizar.es:131447$$particulos$$pdriver
000131447 951__ $$a2024-02-09-14:29:08
000131447 980__ $$aARTICLE