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ABSTRACT: The mononuclear square-planar Rh{κ2-X,N-(Xpy)}(η2-coe)(IPr) (X = O, NH,
NMe, S) complexes have been synthesized from the dinuclear precursor [Rh(μ-Cl)(IPr)(η2-coe)]2
and the corresponding 2-heteroatom-pyridinate salts. The Rh-NHC-pyridinato derivatives are
highly efficient catalysts for gem-specific alkyne dimerization. Particularly, the chelating N,O-
pyridonato complex displays turnover frequency levels of up 17 000 h−1 at room temperature.
Mechanistic investigations and density functional theory calculations suggest a pyridonato-based
metal−ligand cooperative proton transfer as responsible for the enhancement of catalytic activity.
The initial deprotonation of a Rh-π-alkyne complex by the oxo-functionality of a κ1-N-pyridonato
moiety has been established to be the rate-limiting step, whereas the preferential protonation of
the terminal position of a π-coordinated alkyne accounts for the exclusive observation of head-to-
tail enynes. The catalytic cycle is closed by a very fast alkenyl−alkynyl reductive elimination.

KEYWORDS: metal−ligand cooperation, ligand assisted proton shuttle, alkyne dimerization, N-heterocyclic carbene, DFT calculations,
hemilability

■ INTRODUCTION

Organometallic catalysis is nowadays at the central core of the
preparation of elaborated organic structures owing to a
continuous design of new metal−ligand architectures.1

Undoubtedly, the high levels of catalytic efficiency have been
achieved due to a precise control of reactivity through detailed
determination of mechanistic issues. In this context, the
concept of metal−ligand cooperation (MLC) has emerged as
an essential piece in organometallic-mediated bond cleavage
and formation, particularly for dihydrogen activation and
related reactions.2 The synergic effect arising from MLC
generally triggers an enhancement of catalytic activity and
provides better control of selectivity. A particular case of MLC
arises when a ligand acts as a carrier for a proton from one
substrate to the other for which the term ligand assisted proton
shuttle (LAPS) has been coined (Scheme 1).3 Besides its
competence in the originally proposed alkyne−vinylidene
tautomerization,4 LAPS pathways have been proposed in
catalytic intramolecular cyclizations5 and stoichiometric
intermolecular reactions,6 but scarcely applied to catalytic
intermolecular transformations.7

Alkyne dimerization is a practical and atom economical
access to 1,3-enynes as key structural elements in a variety of
biologically active molecules and functional organic materials.8

Efficient catalysts spread across the periodic table, from f-
block,9 early10 or late transition metals,11 to main group
elements.12 Moreover, earth-abundant transition metals of the

first row13 or organocatalysts14 have recently emerged. Due to
the inherent rich chemistry of alkynes, the formation of head-
to-tail (gem) or head-to-head (E/Z) enynes is commonly in
competition with the formation of a myriad of oligomeric,
polymeric, or cyclic organic structures. Therefore, despite the
fact that remarkable advances in the selective preparation of
E,11b,g,13b Z,9c,10b,13c,e or gem-enynes,13d,f,i,14a further research
effort is still desirable, particularly in mechanism elucidation.
Four general pathways have been proposed for transition-

metal mediated alkyne dimerizations:11i (i) external attack on
the coordinated π-alkyne; (ii) oxidative addition of a terminal
alkyne; (iii) nonoxidative base-mediated formation of metal-
alkynyl species; and (iv) dimerization via a vinylidene
intermediate. It has been rationalized that the nonoxidative
route iii would be the preferred approach for the selective
preparation of gem-enynes (Scheme 2).11i Initial deprotonation
of the alkyne leads to metal-alkynyl species. Noteworthy, an
MLC effect has been claimed in the case of an internal
base.11f,13d,f,g,i Then, the pathway continues by an insertion of
another alkyne into metal-alkynyl bond and subsequent
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protonolysis by the conjugated acid of the initial base (MLC or
not) or an alkyne itself. Although this pathway takes advantage
of the benefits of MLC in deprotonation or protonolysis, the
key insertion step, which determines the selectivity and is
usually rate-limiting, remains excluded from the metal−ligand
cooperative influence. An alternative approach can be
envisaged in which metal and ligand would act in cooperation
throughout the whole catalytic cycle. After the initial
deprotonation of an alkyne molecule, the resulting protonated
ligand could transfer the hydrogen atom to a second molecule
of the alkyne in an oxidatively manner that yields a RhIII-
alkenyl-alkynyl species. Subsequent reductive elimination will
close the catalytic cycle. An MLC effect is expected to result in
lowering the key energetic barriers. Indeed, the selectivity
determining step changes from a mainly sterically ligand-
controlled carbometalation in iii to a Markovnikov-type
electronically and sterically favored protonation on a
coordinated alkyne, therefore enhancing specific gem-enyne
formation.

Recent results from our laboratories have revealed that
coordination of an N-heterocyclic carbene (NHC) ligand to
rhodium complexes resulted in efficient alkyne dimerization
catalysts.11i,15 Several chelate 1,3-bis-hetereoatomic acidato
(BHetA) ligands, such as carboxylato, thioacidato, or amidato,
have demonstrated their utility as internal bases to selectively
promote the formation of head-to-tail enynes. Now, along this
line, we hypothesize that increasing the robustness of the
chelate interaction should allow the anionic ligand to act not
only as a base but also as an efficient proton shuttle. In this
regard, pyridine-like moieties have previously been efficiently
anchored to Rh-NHC platforms.16 Thus, 2-heteroatom-
substituted pyridine ligands appear to be promising candidates
to fulfill the requirements of a BHetA structure with tight
chelate coordination.17 Particularly, 2-pyridonate moieties have
been shown to act as versatile proton-responsive ligands18

which can behave as powerful internal bases19 as well as
efficient proton shuttles.20 Moreover, its proven hemilability21

would be key for the generation of vacant sites and the proton
transfer process. Herein, we report on the preparation of RhI-

Scheme 1. Catalytic Ligand Assisted Proton Shuttle

Scheme 2. Metal-Ligand Cooperative Alkyne Dimerization
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NHC-pyridinato derivatives and their application as catalysts
for gem-specific alkyne dimerization. Experimental and
theoretical studies have revealed a rhodium-pyridonato LAPS
process as responsible for the enhancement of catalytic activity.

■ RESULTS AND DISCUSSION

Preparation of Rh-Pyridinato Catalysts. The dinuclear
precursor [Rh(μ-Cl)(η2-coe)(IPr)]2 (1) {IPr = 1,3-bis(2,6-
diisopropylphenyl)imidazolin-2-carbene; coe = cyclooctene}
reacts with a THF solution of deprotonated 2-heteroatom-
pyridine compounds to yield BHetA derivatives Rh{κ2-X,N-
(Xpy)}(η2-coe)(IPr) {py = C5H4N, X = O (2), NH (3), NMe
(4), S (5)} (Scheme 3). The new complexes were obtained as
yellow−orange solids with 55−72% yields. It is worth
mentioning that complex 2 can be directly obtained by
reaction of 1 with 2-pyridone in the absence of an external
base, although in low yield and purity. Moreover, in contrast to
related 8-quinoline derivatives,16a no O−H oxidative addition
to yield RhIII-hydride species was observed. On the contrary,
the reaction of 1 with the more acidic 2-mercapto-pyridine
resulted in the formation of several RhIII-hydride species, as
reflected in the appearance of 1H NMR highly shielded
doublets. As far as we know, the coordination of the 2-
heteroatom-pyridinato moiety into an Rh-NHC framework is
unprecedented.22−25

The solid-state structure of the pyridonato complex 2 was
elucidated by X-ray diffraction analysis. An ORTEP view of the
molecule with selected bond lengths and angles is displayed in
Figure 1. A mononuclear structure with a rare chelate
arrangement22 of the 2-pyridonato ligand is observed instead
of the more typical μ-bridge dinuclear assembly.23 The crystal
structure exhibits a distorted square planar geometry at the
metal center with the IPr in a cis arrangement with respect to
coe [C(1)−Rh−ct 94.32(6)°], and the oxygen atom in a trans
disposition to the latter [ct−Rh−O(44) 168.82(4)°]. The
Rh−C(1) bond length [1.947(2) Å] is similar to those already
reported for RhI−IPr complexes.16 The imidazolinyl ring
deviates from the typical perpendicular out-of-plane config-
uration [N(5)−C(1)−Rh−O(44) −68.0(2)°] and the calcu-
lated pitch (θ 10.1°) and yaw (ψ 1.5°) angles16e indicate a
distorted coordination with respect to the Rh−C(1) bond. As
for the chelate ligand, it exhibits a reduced bite angle [O(44)−
Rh−N(38) 62.85(7)°] and a relatively small pitch angle (θ
2.9°), bringing about a severely distorted κ2-N,O coordination
mode.22 In addition, the O(44)−C(39)−N(38) angle
[113.8(2)°] is smaller than that reported for the free 2-
pyridone26 (121.3°). Finally, the short C(39)−O(44) bond

length [1.297(3) Å] suggests a major contribution of the 2-
pyridonato carbon−oxygen double bond tautomer.
The NMR spectra of 2 is in agreement with the solid-state

structure; thus, we assume a related mononuclear square-
planar configuration also for 3−5. The 13C{1H}-APT NMR
spectra corroborates the presence of IPr, coe, and 2-
heteroatom-pyridyl ligands in 2−5 by the appearance of
three carbon−rhodium coupled doublets, with a coupling
constant JC−Rh of around 60, 15, and 3 Hz, respectively. The
1H NMR spectra display the characteristic feature of a
pyridinato moiety, namely, a deshielded doublet of doublets
between δ 7.71 and 7.19 ppm, corresponding to the H6‑py
proton, in addition to shielded resonances around 6 ppm,
ascribed to H3‑py and H5‑py atoms. Also of note is the
observation of only one septuplet around 3 ppm for 2, 3, and
5, ascribed to the four CH-isopropyl protons of the wingtips of
carbene. This fact is explained by the occurrence of a symmetry
plane and a rotational process of the IPr ligand,27 whose rate
slows down as a function of temperature resulting in the
observation of two broad signals at 203 K (See Figure S1 in the
Supporting Information for 2). The carbene rotation is
hindered in 4 by the methyl group of the amino-pyridinato
ligand. The presence of both nitrogenated ligands in 2−5 was

Scheme 3. Preparation of Rh-IPr 2-Heteroatom-Pyridinato Complexes

Figure 1. Solid-state crystal structure of 2. For clarity, all hydrogen
atoms are omitted. Selected bond lengths (Å) and angles (deg) are
N(38)−Rh 2.1536(19), O(44)−Rh 2.1245(16), C(1)−Rh 1.947(2),
Rh−ct 1.9655(2), C(30)−C(31) 1.393(4), C(39)−N(38) 1.366(3),
C(39)−O(44) 1.297(3), C(1)−Rh−ct 94.32(6), ct−Rh−O(44)
168.82(4), ct−Rh−N(38) 106.02(5), C(1)−Rh−O(44) 96.78(8),
C(1)−Rh−N(38) 159.59(8), O(44)−Rh−N(38) 62.85(7), O(44)−
C(39)−N(38) 113.8(2), ct: centroid of C(30) and C(31).
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further confirmed by 1H−15N HMQC NMR experiments. 15N
pyridyl resonances are in the expected range for metal-
coordinated ligands (δ 198−235 ppm),15a whereas 15N signals
of the IPr and amine functionalities in 3−4 appear around 192
and 105 ppm, respectively.
Interestingly, complex 2 appears as a unique species in C6D6

solutions but as two isomers in CD2Cl2, 2a:2b in 3:1 ratio,
displaying opposite disposition of the chelating pyridonato
ligand (Figure 2). A 1H−1H NOE NMR experiment (see
Figure S15 in the Supporting Information) confirms that the
major isomer (2a) presents the chelate ligand in the same
disposition as that determined in the solid state, whereas the
nitrogen atom is located cis to IPr in the minor isomer (2b).
Both isomers are in a thermodynamic equilibrium with similar
ratios in the temperature range 203−298 K, displaying fast
exchange at room temperature. DFT calculations show that
these isomers display a energy difference of 0.37 kcal·mol−1

(see Figure S2 in the Supporting Information). Larger
separation of 0.96 and 1.41 kcal·mol−1 were computed for
the amino- and mercapto-pyridinato derivatives, respectively,
which is agreement the observation of a single isomer in
solution.
Dimerization of Alkynes. The new RhI-NHC-pyridinato

complexes 2−5 were evaluated as catalysts for alkyne
dimerization. Phenylacetylene was initially studied as a
benchmark substrate (Scheme 4, Table 1). The course of the

reaction was monitored by NMR using 2 mol % of catalyst
loading in C6D6 at 25 °C. Rh-pyridonato complex 2 is
extremely active and selective. Total conversion to the head-to-
tail enyne, 1,3-diphenylbut-3-en-1-yne, was observed in the
first 1H NMR experiment recorded, after less than 5 min
(entry 1). A TOF1/2 value of 16 000 h−1 was calculated, which
is, as far as we know, the highest value reported for alkyne
dimerization at room temperature.11i Catalytic activity
remained very high after reducing catalyst loading to 0.5 mol
%, with complete phenylacetylene conversion after only 6 min

of reaction (entry 2). Catalyst 2 was also efficient at 0.1 mol %
catalyst loading (entry 3). Further decrease of the catalyst
loading to a 1:2000 catalyst:substrate ratio resulted in a 54%
conversion in 4 h, still maintaining complete selectivity for the
gem-enyne product (entry 4). In contrast, amino-pyridine-
based catalyst precursors 3−4 are much less efficient and
selective (entries 5−6). Moreover, although Rh-mercapto-
pyridine catalyst 5 was able to fully transform phenylacetylene
in 5 h, it showed poor selectivity (entry 7).
The catalytic activity of 2 was studied for different alkynes

(Table 2). Electronic modification on the aromatic ring of
phenylacetylene resulted in only slight changes in catalytic
activity (entries 3−4). Aliphatic alkynes were also efficiently
transformed with high selectivity (entries 5−7). Catalyst 2
tolerates the presence of heteroatoms well (entries 8−10).
Particularly, the hydroxy group in 3-butynol did not affect
significantly the catalytic activity with regard to an ether
functionality (entries 8 vs 10). It is interesting to note that this
alcohol is involved for the first time in an alkyne dimerization
process.28 Increasing of bulkiness in the substrate is
detrimental to catalytic activity. Thus, trimethylphenyl-
acetylene reacted very slowly but maintaining the head-to-tail
selectivity (entry 11). In contrast, no regioselectivity was
observed for trimethylsilylacetylene (entry 12), whereas (Z)-
(1,3,5-tritert-butyl)hexa-3,5-dien-1-yne trimer was found to be
the major product when tert-butylacetylene was used (entry
13). Finally, catalyst 2 was ineffective for the transformation of
2-pyridylacetylene.

Figure 2. Selected regions of the 1H,13C{1H}-APT and 1H−15N-HMQC NMR spectra in CD2Cl2 at 298 K for the equilibrium mixture of 2a−2b.

Scheme 4. Alkyne Dimerization Products

Table 1. Catalyst Evaluation for Dimerization of
Phenylacetylenea

entry catalyst mol % t (h) conv (%) gem/E TOF1/2 (h
−1)b

1 2 2 <0.1 >99 >99 16000
2 2 0.5 0.1 >99 >99 8300
3 2 0.1 3 >99 >99 11000
4 2 0.05 4 54 >99 6900c

5 3 2 22 29 95/5
6 4 2 25 55 96/4 1
7 5 2 5 >99 54/46 11

aReaction conditions: 0.5 mL of C6D6, 0.5 mmol of phenylacetylene,
25 °C. bTurnover frequency at 50% conversion. cCalculated at 40%
conversion.
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Mechanistic Investigation. In order to shed light on the
operative mechanism for the Rh-NHC-pyridinato catalyzed
alkyne dimerization, low temperature reactivity studies were
made. Unfortunately, catalyst 2 dimerized phenylacetylene
very fast, even at 213 K, thwarting the detection of catalytic
intermediates. In view of this, reactivity studies were carried
out with a less efficient catalyst or a less reactive alkyne
(Scheme 5). Thus, the addition of phenylacetylene to the
mercaptopyridine complex 5 at 233 K gave the π-phenyl-
acetylene complex Rh{κ2-S,N-(Spy)}(η2-HCCPh)(IPr)
(6)11i by alkyne-coe exchange, which can be proposed as the
first step of the catalytic cycle. Warming the solution led to the
smooth formation of the head-to-head and head-to-tail enynes,
according to the selectivity observed in the catalytic experi-
ments (entry 7, Table 1), and a mixture of unidentified
complexes. In contrast, addition of the bulky trimethylphenyl-
acetylene to 2 afforded Rh{κ2-O,N-(Opy)}{η2-H2CC(Mes)-
CC(Mes)}(IPr) (7), that results from the η2-CC
coordination of the enyne reaction product formed by fast
dimerization of the alkyne. This uncommon coordination
mode for an enyne29 is reflected in the appearance in the

13C{1H}-APT NMR spectrum of two doublets at δ 50.3 and
41.0 ppm with JC−Rh around 18.8 Hz, corresponding to the
coordinated olefin. Most likely, the presence of the bulky
substituents in the proximity of the alkynyl moiety hinders the
coordination of the triple bond.
Based on previous investigations in our group,11i the

pyridinato ligand must play a role in the deprotonation of
the rather acidic terminal proton of the alkyne. Thus, addition
of triflic acid to a CD2Cl2 solution of 2 at 223 K resulted in the
formation of Rh[κ1-O-{OC(−CHCH−CHCH−)-
NH}]{κ1-O-(CF3O3S)}(η

2-coe)(IPr) as a mixture of two
isomers in a 1:1 ratio, tentatively assigned to 8a and 8b,
where the nitrogen atom of the pyridonato ligand has been
protonated (Scheme 6) (see Theoretical Calculations on the
Mechanism section). The 1H−15N HMQC NMR spectrum
shows two NH cross-peaks at δ 174.0 and 170.3 which
correlate with δ 11.73 and 10.97 ppm proton signals,
respectively, thereby confirming the presence of pyridin-
2(1H)-one ligands in both isomers. Moreover, the 19F NMR
spectrum displays the typical broad signal of a coordinated
triflate ligand.
Deuterium-labeling experiments using phenylacetylene-d1

were performed with the aim of gaining information about
the turnover limiting step (Scheme 7). First, the H/D kinetic
isotopic effect (KIE) was measured by performing separate
NMR experiments using 0.4 mol % of catalyst 2. A KIE of 1.67
± 0.12 was found. This relatively small value suggests that a
X−H cleavage or formation event is not likely involved in the
turnover limiting step.30 Further, a catalytic test with a mixture
of natural and phenylacetylene-d1 in a 1:1 ratio resulted in a
different deuteration degree of the geminal positions of the
enyne. The calculated H/D ratios show the overdeuteration of
the vinyl proton cis to the phenyl group (0.37 vs 0.63 H).
Taking into consideration a syn addition process and no
preference between natural and deuterated alkyne as the
acceptor partner, this result suggests that the cleavage of the
C−H bond is 1.7 times faster than that of the C−D bond,
which is in concordance with the calculated KIE. Moreover,
the ability of the pyridonato ligand to act as an efficient shuttle
was analyzed. The mixture resulting from a catalytic test with
phenylacetylene-d1 and 2 in the presence of natural pyridin-2-
one resulted in the clean formation of gem-enyne-d2. The lack
of incorporation of protons from the heterocycle indicates that

Table 2. Screening of Alkynes Catalyzed by 2a

aReaction conditions: 0.5 mL of C6D6, 0.5 mmol of alkyne, 0.01
mmol of 2, 25 °C. bTurnover frequency at 50% conversion. c0.1 mol
% of 2. d(Z)-(1,3,5-tritert-butyl)hexa-3,5-dien-1-yne trimer was also
obtained.

Scheme 5. Reactivity of Pyridinato Complexes with Alkynes
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hydrogen transfer is faster than the metal-pyridone ligand
coordination exchange.
Theoretical Calculations on the Mechanism. To

further clarify the operating pathway leading to the observed
gem-enyne selectivity, a detailed density functional theory
(DFT) computational analysis on the dimerization of phenyl-
acetylene promoted by the Rh-NHC-pyridinato complexes has
been carried out. All plausible mechanistic pathways have been
thoroughly examined (ΔG in kcal·mol−1), excluding the
external attack on coordinated π-alkyne and vinylidene-
mediated dimerization pathways as these usually do not result
in gem-selectivity.
The first step considered in this study is the preactivation of

catalyst 2 by phenylacetylene-coe exchange via an associative
mechanism. This exergonic process (−6.1 kcal·mol−1) has an
energetic barrier of 13.7 kcal·mol−1 (see Figure S103 in the
Supporting Information). The resulting complex Rh{κ2-O,N-
(Opy)}(η2-HCCPh)(IPr) (A) can be considered as the
active species, and hence, it has been selected as the energetic
reference for all DFT calculations in this section.
First, we have analyzed the pathway starting by oxidative

addition of the alkyne to form a RhIII-hydride-alkynyl
intermediate.15 The energy profile of this cycle is shown in
Figure 3. The initial step is the slippage of the η2-(CC)-
alkyne bond in A rendering the η2-(C−H) agostic interaction
in B. This process presents an energetic barrier characterized
by TSAB of 19.9 kcal·mol−1, and it is endergonic by 10.4 kcal·
mol−1. The formation of the σ-complex B is essential in the

cleavage of the C−H bond.10a,13b,d,f,h From that point, the
oxidative addition takes place by a negligible energy barrier,
characterized by TSBC, leading to the RhIII-hydride-alkynyl C,
which presents a relative free energy of 8.3 kcal·mol−1. The
reaction continues by coordination of a second alkyne to the
metal center and subsequent hydrometalation. The two
possible orientations of the alkyne toward its insertion on
the Rh−H bond are characterized by the transition states
TSCDg (leading to the gem product) and TSCDt (leading to
the E product), with free energies of 20.2 and 23.7 kcal·mol−1,
respectively. It should be noted that, although Dt is more
stable than Dg, the reaction is under kinetic control and Dt is
not accessible. The insertion of the alkyne into the Rh−C
bond has been discarded based on previous studies on similar
systems.11e,15a The obtained alkynyl-alkenyl complexes D
evolve to the final products via reductive elimination via
TSDAg and TSDAt, showing energetic barriers of 7.4 and 12.4
kcal·mol−1, respectively. This mechanistic proposal presents an
overall activation energy of 20.2 kcal·mol−1 for the gem-enyne,
which is preferentially obtained due to the significantly higher
barrier for the E product (23.7 kcal·mol−1).
For the sake of comparison, a classical mechanism

alternative to alkyne oxidative addition is a base-mediated
nonoxidative pathway. In our case the pyridonato ligand may
play this role via a concerted metalation-deprotonation
(CMD) process. The energetic profile is shown in Figure 4.
The reaction starts by coordination of a second alkyne to A,
allowed by the hemilabile behavior of the pyridonato ligand.21

As a result, a switch to a {κ1-N-(Opy)} coordination mode of
this molecule is observed.31 This process is characterized by
TSAE (energetic barrier of 14.2 kcal·mol−1) leading to the
intermediate E Rh{κ1-N-(Opy)}(η2-HCCPh)2(IPr), dis-
playing a mutually trans disposition for the two π-alkyne
molecules.32 Since the pyridonato ligand is now coordinated to
the metal only by the nitrogen atom, free rotation about the
Rh−N bond becomes possible thus enabling the easy approach
of the basic oxo group to any terminal hydrogen of the η2-
coordinated alkynes of E. Therefore, the subsequent CMD
step is characterized by the TSEF transition state, which has an
energetic barrier of 15.9 kcal·mol−1, leading to the intermediate
F Rh(-CCPh){κ1-N-{HOpy}(η2-HCCPh)(IPr). The pos-
sible deprotonation of the alkyne by the nitrogen atom of the
pyridonato was also computed revealing a higher energetic
barrier of 20.7 kcal·mol−1 (TSEG see Figure S104 in the
Supporting Information). However, the resulting pyridin-2-one
intermediate G is almost isoenergetic to F, in accordance to
the experimental observation that 8 forms after the protonation
of 2 with triflic acid.
Once the RhI-alkynyl intermediate F is obtained, carbome-

talation is available via TSFHg (30.2 kcal·mol−1) or TSFHt
(26.5 kcal·mol−1) depending on the orientation of the alkyne

Scheme 6. Protonation of 2 with Triflic Acid

Scheme 7. Deuterium Labeling Experiments
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(Figure 4). However, these energetic barriers are higher than
that computed for the oxidative route. An alternative pathway
can be envisaged starting from the RhI-alkynyl intermediate F.

The κ1-N-hydroxypyridine ligand can now act as an intra-
molecular Brønsted acid able to transfer the proton to the
remaining η2-alkyne of F to yield D.33 Two possibilities arise

Figure 3. DFT calculations (ΔG in kcal·mol−1, relative to A and isolated molecules) along phenylacetylene dimerization following the oxidative
addition, migratory insertion, and reductive elimination steps.

Figure 4. DFT calculations (ΔG in kcal·mol−1, relative to A and isolated molecules) along phenylacetylene dimerization following the pyridonato-
mediated proton shuttle and reductive elimination steps.
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for this selectivity-determining step as the proton can be
transferred to either the terminal or the substituted carbon
atoms of phenylacetylene. Protonation of the external position
via TSFDg (14.8 kcal·mol−1), which ultimately leads to gem-
enynes, is much more favored than the protonation of the
internal one (TSFDt, 19.3 kcal·mol−1). Alternative protonation
reactions by the κ1-O- pyridin-2-one ligand in complex G are
considerably more disfavored (see Figure S104 in the
Supporting Information). The catalytic cycle ends via
alkenyl-alkynyl reductive elimination within D as previously
analyzed. The concurrence of the E → F and F → D steps
shows a very efficient cooperative Rh-pyridonato-mediated
LAPS process. Figure 4 shows that the higher energetic barrier
corresponds to the CMD event (TSEF, 15.9 kcal·mol−1),
although those of the associative coordination of a second
molecule of alkyne (TSAE, 14.2 kcal·mol−1) or proton transfer
(TSFDg, 14.8 kcal·mol−1) are very close in energy, and thus,
its contribution to the overall kinetics of the catalytic cycle
might be not negligible. In order to evaluate the proposed
mechanism for aliphatic alkynes, key structures were calculated
considering propyne as a model system. An increment in the
overall energy barrier from 15.9 to 17.7 kcal mol−1 is observed
which is in accordance with a lower catalytic activity (see Table
S3 in the Supporting Information).
As extracted from Figure 4, the regioselectivity is controlled

by the proton transfer to the alkyne, determined by a difference
of 4.5 kcal·mol−1 between the energetic barriers for the gem-
and E-enynes. The origin of this selectivity can be explained by
inspecting the NBO atomic charges in the intermediate F and
the transition states TSFDg and TSFDt (Figure 5). Polar-

ization of the coordinated alkyne in F was observed, showing a
negative charge at the terminal carbon atom (−0.243e) larger
than that at the internal position (−0.042e). Since the atomic
charge of the hydrogen is +0.378e in TSFDg and +0.410e in
TSFDt, the hydrogen migration can be considered formally a
proton transfer, and not surprisingly, it will take place
preferentially on the carbon bearing a larger negative charge,
in this case the terminal carbon atom.
In order to understand the excellent catalytic performance of

pyridonato complex 2 in comparison to similar amino-
pyridinato (3) and mercapto-pyridinato derivatives (5), the
energetic barrier for the CMD step has been calculated.
Deprotonation by an oxygen atom is more efficient (15.9 kcal·

mol−1) since the energetic barrier increases up to 22.5 and 26.5
kcal·mol−1 for the NH or S substituents, respectively, in
agreement with the experimental results (see Figure S106 in
the Supporting Information).

Mechanistic Considerations. Experimental and computa-
tional studies on the phenylacetylene dimerization catalyzed by
2 have revealed an operative metal−ligand cooperative
mechanism as an alternative to the classical alkyne-C−H
oxidative-addition or base mediated nonoxidative pathways
(Scheme 8). The key point of this mechanism is the role of the
Rh-pyridonato motif in the cooperative LAPS process. Initially,
the hemilability of the ligand21 is essential to promote a κ1-N
coordination mode which triggers the CMD step. Then, the
proton is transferred selectively to the terminal position of a
coordinated alkyne to finally close the cycle via a fast alkynyl-
alkenyl reductive elimination. Indeed, the step determining the
selectivity also changes. The orientation of the alkyne relative
to the Rh−X bond in the insertion step generally directs the
selectivity in conventional pathways, although reductive
elimination is essential in some cases.11h,j Thus, the difficult
stereoelectronic control on π-alkyne coordination usually
results in a mixture of isomers. However, the selectivity in
the LAPS mechanism is directed by a protonation event. Thus,
the attack to the terminal position of the alkyne is favored by
4.5 kcal·mol−1 due to the formation of the more stable
substituted carbocation intermediate, therefore enhancing
specific gem-enyne formation. The combination of nitrogen−
oxygen atoms within a pyridinato framework seems essential,
since amino or thio functionalities show a lower ability for the
CMD step.
As far as the deuterium labeling experiments are concerned,

the relative small KIE value of 1.67 ± 0.12 discards, in
principle, a C−H bond cleavage in the rate-determining step.
However, DFT calculations have revealed that the CMD step
is the one with the higher energetic barrier. A rational
explanation for this, at first view paradoxical result, arises from
the analysis of the CMD transition state TSEF (Figure 6).
Inspection of the geometrical parameters reveals an early
transition state character, as indicated by the distances d(C, H)
and d(O, H) of 1.14 and 1.66 Å, respectively. Hence, the η2-
(C−H) agostic interaction component in this transition state is
prevalent over the C−H cleavage, therefore explaining its
moderate effect in the KIE value. In fact, the theoretically
computed KIE for this step is 1.57, which agrees with the
experimentally determined value (see Table S1 in the
Supporting Information).

■ CONCLUSION
A series of mononuclear square-planar Rh{κ2-X,N-(Xpy)}(η2-
coe)(IPr) (X = O, NH, NMe, S) BHetA complexes have been
prepared. Among them, the N,O-pyridonato derivative displays
an outstanding catalytic activity for gem-specific alkyne
dimerization reaching TOF1/2 values of up to 17 000 h−1 at
room temperature. The proposed mechanism entails a
cooperative LAPS process followed by fast alkenyl-alkynyl
reductive elimination, which boosts the catalytic activity by
lowering the energy barrier from 5 to 10 kcal·mol−1 compared
to RhIII-hydrometalation or RhI-carbometalation conventional
pathways. Hemilability of the pyridonato moiety has been
revealed to be essential for an efficient CMD rate-limiting step.
Moreover, the change in the selectivity-determining step from
insertion to protonation is responsible for the exclusive
formation of gem-enynes. These results prompt us to extend

Figure 5. NBO atomic charges of atoms (in a.u.) involved in the
proton transfer in structures F, TSFDg, and TSFDt.
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the underlying principles described herein to related C−C and
C−heteroatom bond forming catalytic reactions via C−H
activation.

■ EXPERIMENTAL SECTION
General Considerations. All reactions were performed

with rigorous exclusion of air and moisture using Schlenk-tube

techniques and drybox when necessary. The organometallic
precursor [Rh(μ-Cl)(IPr)(η2-coe)]2 (1) was prepared as
previously described.34 Chemical shifts (expressed in parts
per million) are referenced to residual solvent peaks (1H and
13C{1H}), NH3 (

15N), or CFCl3 (
19F). Coupling constants, J,

are given in Hz. Spectral assignments were achieved by
combination of 1H−1H correlation spectroscopy (COSY),
13C{1H} attached proton test (APT), and 1H−13C hetero-
nuclear single quantum correlation/heteronuclear multiple
bond correlation (HSQC/HMBC) experiments.

Preparation of Rh{κ2-O,N-(Opy)}(η2-coe)(IPr) (2a,b). A
mixture of 2-hydroxypyridine (49 mg, 0.52 mmol) and tBuOK
(58 mg, 0.52 mmol) in 5 mL of THF was stirred for 30 min at
r.t. Then, a solution of dinuclear complex 1 (300 mg, 0.24
mmol) in 10 mL of THF was added, and the resulting mixture
was stirred for an additional 1 h at r.t. After removing the
solvent in vacuo, the residue was dissolved in toluene (10 mL)
and was filtered through celite. Then, the filtrate was
evaporated to dryness. The addition of hexane at −40 °C
induced the precipitation of a yellow solid, which was washed
with cold hexane (3 × 2 mL) and dried in vacuo. Yield: 236
mg (72%). Satisfactory elemental analysis could not be
obtained. HRMS (ESI+): m/z calc for C40H54N3RhO (M+ −
coe − H) 583.2180 exp 583.2173. IR (cm−1, ATR): 1598
ν(OCNsym), 1471 ν(OCNasym). NMR data evidenced the
presence of two isomers 2a and 2b (80:20), in equilibrium.
Data for complex 2a: 1H NMR (500.1 MHz, CD2Cl2, 298 K):
δ 7.51 (t, JH−H = 8.0, 2H, Hp‑Ph‑IPr), 7.38 (d, JH−H = 8.0, 4H,
Hm‑Ph‑IPr), 7.19 (dd, JH−H = 5.2, 1.9, 1H, H6‑py), 7.11 (ddd,
JH−H = 8.6, 6.9, 1.9, 1H, H4‑py), 6.97 (s, 2H, CHNIPr), 5.97

Scheme 8. Rh-Pyridonato Cooperative Mechanism for gem-Specific Alkyne Dimerization

Figure 6. DFT optimized geometrical representation of TSEF. Key
geometrical parameters (in Å) are indicated.
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(ddd, JH−H = 6.9, 5.2, 1.1, 1H, H5‑py), 5.74 (dd, JH−H = 8.6, 1.1,
1H, H3‑py), 2.98 (sept, JH−H = 6.8, 4H, CHMeIPr), 2.57 (m, 2H,
CHcoe), 1.6−1.0 (12H, CH2‑coe), 1.42 and 1.12 (both d,
JH−H = 6.8, 24H, CHMeIPr).

13C{1H}-APT NMR (125.8 MHz,
CD2Cl2, 298 K): δ 184.5 (d, JC−Rh = 61.1, Rh−CIPr), 181.3 (d,
JC−Rh = 3.0, C2‑py), 147.5 (s, Cq‑IPr), 144.7 (s, C6‑py), 138.9 (s,
C4‑py), 137.4 (s, CqN), 129.9 (s, CHp‑Ph‑IPr), 124.9 (d, JC−Rh =
1.2, CHNIPr), 124.1 (s, CHm‑Ph‑IPr), 110.7 (d, JC−Rh = 1.2,
C3‑py), 108.4 (s, C5‑py), 57.8 (d, JC−Rh = 16.0, CHcoe), 30.4,
30.3, and 27.8 (both s, CH2‑coe), 29.3 (s, CHMeIPr), 26.6 and
23.2 (both s, CHMeIPr).

1H−15N HMQC NMR (50.7 MHz,
CD2Cl2, 298 K): δ 207.8 (Npy), 191.8 (NIPr). Data for complex
2b: 1H NMR (500.1 MHz, CD2Cl2, 298 K): δ 7.52 (t, JH−H =
8.0, 2H, Hp‑Ph‑IPr), 7.38 (d, JH−H = 8.0, 4H, Hm‑Ph‑IPr), 7.32 (dd,
JH−H = 5.2, 1.9, 1H, H6‑py), 7.17 (ddd, JH−H = 8.7, 6.9, 1.9, 1H,
H4‑py), 7.01 (s, 2H, CHNIPr), 6.18 (ddd, JH−H = 6.9, 5.2, 1.1,
1H, H5‑py), 5.80 (dd, JH−H = 8.7, 1.1, 1H, H3‑py), 2.84 (m, 6H,
CHMeIPr and CHcoe), 1.6−1.0 (12H, CH2‑coe), 1.18 and
1.13 (both d, JH−H = 6.8, 24H, CHMeIPr).

13C{1H}-APT NMR
(125.8 MHz, CD2Cl2, 298 K): δ 186.2 (d, JC−Rh = 61.7, Rh−
CIPr), 179.2 (d, JC−Rh = 3.0, C2‑py), 147.1 (s, Cq‑IPr), 144.8 (d,
JC−Rh = 1.8, C6‑py), 138.5 (s, C4‑py), 137.4 (s, CqN), 130.1 (s,
CHp‑Ph‑IPr), 125.3 (s, d, JC−Rh = 1.2, CHNIPr), 124.3 (s,
CHm‑Ph‑IPr), 112.3 (s, C3‑py), 108.2 (d, JC−Rh = 1.5, C5‑py), 62.1
(d, JC−Rh = 15.5, CHcoe), 30.0 and 28.2 (both d, JC−Rh = 1.7,
CH2‑coe), 29.3 (s, CHMeIPr), 27.1 (s, CH2‑coe), 26.6 and 22.7
(both s, CHMeIPr).

1H−15N HMQC NMR (50.7 MHz,
CD2Cl2, 298 K): δ 203.0 (Npy), 192.2 (NIPr).
Preparation of Rh{κ2-N,N-(NHpy)}(η2-coe)(IPr) (3). This

compound was prepared as described for 2 starting from 2-
aminopyridine (30 mg, 0.32 mmol), tBuOK (37 mg, 0.33
mmol), and 1 (200 mg, 0.16 mmol). Yellow solid. Yield: 130
mg (59%). Satisfactory elemental analysis could not be
obtained. HRMS (ESI+): m/z calcd for RhC40H55N4 (M+ −
coe − H) 583.2314 exp 583.2303. IR (cm−1, ATR): 1595
ν(NCNsym), 1447 ν(NCNasym).

1H NMR (400.2 MHz, C6D6,
298 K): δ 7.37 (dd, JH−H = 5.5, 1.8, 1H, H6‑py), 7.29 (t, JH−H =
7.2, 2H, Hp‑Ph‑IPr), 7.18 (d, JH−H = 7.2, 4H, Hm‑Ph‑IPr), 6.76
(ddd, JH−H = 8.7, 6.9, 1.8, 1H, H4‑py), 6.47 (s, 2H, CHNIPr),
5.63 (ddd, JH−H = 6.9, 5.5, 1.0, 1H, H5‑py), 5.51 (dd, JH−H =
8.7, 1.0, 1H, H3‑py), 3.67 (d, JH−Rh = 6.6, 1H, NH), 3.11 (sept,
JH−H = 6.8, 4H, CHMeIPr), 2.73 (m, 2H, =CHcoe), 2.0−1.2 (m,
12H, CH2‑coe), 1.50 and 1.04 (both d, JH−H = 6.8, 24H,
CHMeIPr).

13C{1H}-APT NMR (100 MHz, C6D6, 298 K): δ
187.6 (d, JC−Rh = 63.8, Rh−CIPr), 177.8 (d, JC−Rh = 4.2, C2‑py),
146.6 (s, Cq‑IPr), 145.9 (s, C6‑py), 137.8 (s, CqN), 137.0 (s,
C4‑py), 129.6 (s, CHp‑Ph‑IPr), 123.9 (s, CHm‑Ph‑IPr), 123.9 (
CHNIPr), 107.5 (d, JC−Rh = 1.3, C3‑py), 104.7 (s, C5‑py), 59.7 (d,
JC−Rh = 14.5, CHcoe), 30.6 (d, JC−Rh = 1.0, CH2‑coe), 29.9 (d,
JC−Rh = 1.7, CH2‑coe), 27.1 (s, CH2‑coe), 29.1 (s, CHMeIPr),
26.2 and 23.0 (both s, CHMeIPr).

1H−15N HMQC NMR
(40.5 MHz, C6D6, 298 K): δ 198.8 (Npy), 190.8 (NIPr), 105.0
(NH).
Preparation of Rh[κ2-N,N-{N(Me)py}](η2-coe)(IPr) (4).

This compound was prepared as described for 2 starting from
N-methyl-2-aminopyridine (29 mg, 0.26 mmol), tBuOK (29
mg, 0.26 mmol), and 1 (150 mg, 0.12 mmol). Yellow solid.
Yield: 102 mg (61%). Anal. calcd for C41H57N4Rh: C, 69.47;
H, 8.11; N, 7.90. Found: C, 69.35; H, 8.06; N, 7.53. IR (cm−1,
ATR): 1594 ν(NCNsym), 1487 ν(NCNasym).

1H NMR (300.1
MHz, C6D6, 298 K): δ 7.38 (dd, JH−H = 5.4, 1.8, 1H, H6‑py),
7.4−7.1 (m, 6H, HPh‑IPr), 7.02 (ddd, JH−H = 8.8, 6.9, 1.8, 1H,
H4‑py), 6.48 (s, 2H, CHNIPr), 5.7−5.6 (m, 2H, H5‑py and

H3‑py), 3.99 and 2.05 (both sept, JH−H = 6.7, 4H, CHMeIPr),
2.73 (s, 3H, NMe), 2.66 (m, 2H, CHcoe), 1.8−1.0 (m, 12H,
CH2‑coe), 1.53, 1.29, 1.16, and 0.98 (all d, JH−H = 6.7, 24H,
CHMeIPr).

13C{1H}-APT NMR (75.5 MHz, C6D6, 298 K): δ
192.3 (d, JC−Rh = 60.0, Rh−CIPr), 177.1 (d, JC−Rh = 4.0, C2‑py),
147.5 and 146.4 (both s, Cq‑IPr), 145.9 (s, C6‑py), 137.7 (s,
CqN), 137.6 (s, C4‑py), 129.7, 124.8, and 123.6 (all s, CHPh‑IPr),
124.5 (d, JC−Rh = 1.3, CHNIPr), 104.1 (s, C5‑py), 100.7 (s,
C3‑py), 57.9 (d, JC−Rh = 14.6,CHcoe), 36.0 (d, JC−Rh = 3.5, N-
Me), 30.6 and 29.7 (both d, JC−Rh = 1.0, CH2‑coe), 29.0 and
28.8 (both s, CHMeIPr), 27.2 (s, CH2‑coe), 26.9, 26.0, 23.3, and
22.7 (all s, CHMeIPr).

1H−15N HMQC NMR (40.5 MHz,
C6D6, 298 K): δ 200.1 (Npy), 191.7 (NIPr), 106.0 (NMe).

Preparation of Rh{κ2-S,N-(Spy)}(η2-coe)(IPr) (5). This
compound was prepared as described for 2 starting from 2-
mercaptopyridine (38 mg, 0.35 mmol), tBuOK (39 mg, 0.35
mmol), and 1 (200 mg, 0.16 mmol). Orange solid. Yield: 123
mg (55%). Anal. calcd for C40H54N3SRh: C, 67.49; H, 7.65; N,
5.90; S, 4.50. Found: C, 67.19; H, 7.44; N, 6.22; S, 4.45. IR
(cm−1, ATR): 1579 and 1444 ν(SCN). 1H NMR (400.2 MHz,
C6D6, 298 K): δ 7.71 (dd, JH−H = 5.5, 1.7, 1H, H6‑py), 7.3−7.2
(m, 6H, HPh‑IPr), 6.56 (dd, JH−H = 8.1, 1.4, 1H, H3‑py), 6.54 (s,
2H, =CHNIPr), 6.47 (ddd, JH−H = 8.1, 7.2, 1.7, 1H, H4‑py), 5.85
(ddd, JH−H = 7.2, 5.5, 1.4, 1H, H5‑py), 3.4−3.2 (m, 6H,
CHMeIPr and CHcoe), 2.0−1.2 (m, 12H, CH2‑coe), 1.64 and
1.05 (both d, JH−H = 6.8, 24H, CHMeIPr).

13C{1H}-APT NMR
(100 MHz, C6D6, 298 K): δ 185.2 (d, JC−Rh = 60.9, Rh−CIPr),
184.7 (d, JC−Rh = 4.1, C2‑py), 146.8 (s, Cq‑IPr), 146.5 (s, C6‑py),
138.0 (s, CqN), 135.1 (s, C4‑py), 129.7 and 124.1 (both s,
CHPh‑IPr), 126.7 (s, C3‑py), 124.6 (d, JC−Rh = 1.2, =CHNIPr),
114.9 (s, C5‑py), 64.1 (d, JC−Rh = 14.1, =CHcoe), 30.5 and 29.7
(both d, JC−Rh = 1.0, CH2‑coe), 29.3 (s, CHMeIPr), 27.0 (s,
CH2‑coe), 26.5 and 23.5 (both s, CHMeIPr).

1H−15N HMQC
NMR (40.5 MHz, C6D6, 298 K): δ 235.7 (Npy), 191.9 (NIPr).

In Situ Formation of Rh{κ2-S,N-(Spy)}(η2-HCCPh)-
(IPr) (6). A solution of 5 (25 mg, 0.035 mmol) in toluene-d8 at
233 K (0.5 mL, NMR tube) was treated with phenylacetylene
(6 μL, 0.053 mmol). NMR spectra were recorded immediately
at low temperature. 1H NMR (400.2 MHz, toluene-d8, 233 K):
δ 7.64 (d, JH−H = 6.8, 2H, Ho‑Ph), 7.3−6.9 (9H, HPh), 6.73 (dd,
JH−H = 5.1, 1.7, 1H, H6‑py), 6.49 (s, 2H, =CHNIPr), 6.33 (dd,
JH−H = 7.8, 1.7, 1H, H3‑py), 6.24 (ddd, JH−H = 7.8, 7.1, 1.7, 1H,
H4‑py), 5.55 (ddd, JH−H = 7.1, 5.1, 1.7, 1H, H5‑py), 4.54 (d,
JH−Rh = 2.3, 1H, η2-HCCPh), 3.63 and 2.82 (both sept, JH−H
= 6.8, 4H, CHMeIPr), 1.75, 1.48, 1.08, and 1.04 (all d, JH−H =
6.8, 24H, CHMeIPr).

13C{1H}-APT NMR (100.4 MHz,
toluene-d8, 233 K): δ 184.9 (d, JC−Rh = 56.8, Rh−CIPr),
181.9 (d, JC−Rh = 4.0, C2‑py), 145.8 and 145.3 (both s, Cq‑IPr),
142.3 (s, C6‑py), 137.0 (s, CqN), 135.8 (s, C4‑py), 130.8, 129.3,
128.7, 128.6, 128.4, and 127.1 (all s, CHPh), 125.2 (s, C3‑py),
123.9 (s, = CHNIPr), 123.2 (s, Cq‑Ph), 115.0 (s, C5‑py), 89.2 (d,
JC−Rh = 15.6, HCCPh), 81.9 (d, JC−Rh = 14.1, HCCPh),
29.1 and 28.9 (both s, CHMeIPr), 26.5, 25.7, 23.3, and 22.8 (all
s, CHMeIPr).

In Situ Formation of Rh{κ2-O,N-(Opy)}{η2-H2CC-
(Mes)CC(Mes)}(IPr) (7). A solution of 2 (30 mg, 0.043
mmol) in toluene-d8 at 243 K (0.5 mL, NMR tube) was
treated with 2-ethynyl-1,3,5-trimethylbenzene (21 μL, 0.129
mmol). NMR spectra were recorded immediately at low
temperature. 1H NMR (300.1 MHz, toluene-d8, 298 K): δ
7.5−6.5 (m, 10H, HPh), 6.80 (m, 1H, H5‑py), 6.65 and 6.62
(both br, 2H, = CHNIPr), 5.76 (dt, JH−H = 8.5, 1.1, 1H, H6‑py),
5.54 (ddd, JH−H = 6.8, 5.3, 1.0, 1H, H4‑py), 5.25 (dt, JH−H = 5.3,
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1.1, 1H, H3‑py), 3.97, 3.95, 3.50, and 2.85 (all sept, JH−H = 6.7,
4H, CHMeIPr), 3.27 and 3.07 (both dd, JH−H = 2.2, JH−Rh = 1.0,
2H, CH2‑π‑enyne), 2.3−2.0 (18H, Meπ‑enyne), 1.80, 1.57, 1.55,
1.30, 1.14, 1.11, 1.08, and 1.02 (all d, JH−H = 6.7, 24H,
CHMeIPr).

13C{1H}-APT NMR (75.5 MHz, toluene-d8, 243
K): δ 185.0 (d, JC−Rh = 60.1, Rh−CIPr), 181.4 (d, JC−Rh = 2.7,
C2‑py), 150.0, 148.2, 146.6, and 145.3 (all s, Cq‑IPr), 142.4 (s,
C3‑py), 142−134 (all s, Cq‑Ph‑π‑enyne), 139.0 (s, C5‑py), 138.9 and
137.1 (both s, CqN), 131−123 (all s, CHPh), 128.4 (s, 
CHNIPr), 110.1 (s, PhCCC(Ph)CH2), 109.8 (s, C6‑py),
109.0 (s, C4‑py), 83.2 (s, PhCCC(Ph)CH2), 50.3 (d, JC−Rh
= 17.9, CH2), 41.0 (d, JC−Rh = 17.8, CCH2), 30.3, 29.4,
28.8, and 28.7 (all s, CHMeIPr), 29−20 (all s, Meπ‑enyne), 28.4,
28.3, 26.8, 26.6, 24.0, 23.5, 23.4, and 21.6 (all s, CHMeIPr).
In Situ Formation of Rh[κ1-O-{OC(−CHCH−CH

CH−)NH}]{κ1-O-(CF3O3S)}(η
2-coe)(IPr) (8a,b). A solution of

2 (23 mg, 0.033 mmol) in CD2Cl2 at 223 K (0.5 mL, NMR
tube) was treated with trifluoromethanesulfonic acid (3 μL,
0.033 mmol). NMR spectra were recorded immediately at low
temperature. NMR data evidenced the presence of an
equilibrium mixture of two isomers, 8a and 8b (50:50). Data
for complex 8a: 1H NMR (400.1 MHz, CD2Cl2, 223 K): δ
11.73 (s, 1H, NH), 7.8−7.1 (m, 6H, HPh,IPr), 7.67 (m, 1H,
H6‑py), 7.52 (m, 1H, H4‑py), 7.06 (s, 2H, CHNIPr), 6.85 (d,
JH−H = 9.0, 1H, H3‑py), 6.43 (m, 1H, H5‑py), 3.55 and 2.75
(both sept, JH−H = 6.8, 4H, CHMeIPr), 2.9−2.7 (m, 2H, 
CHcoe), 1.6−1.0 (m, 36H, CH2‑coe and CHMeIPr).

13C{1H}-
APT NMR (100.6 MHz, CD2Cl2, 223 K): δ 177.0 (d, JC−Rh =
62.1, Rh−CIPr), 165.2 (s, C2‑py), 147.0 and 146.9 (both s,
Cq‑IPr), 142.7 (s, C4‑py), 136.1 (s, CqN), 135.9 (s, C6‑py), 130−
123 (all s, CHPh‑IPr), 120.0 (s, C3‑py), 109.7 (s, C5‑py), 66.9 (d,
JC−Rh = 14.0, =CHcoe), 33−25 (all s, CH2‑coe), 29.0 and 28.4
(both s, CHMeIPr), 26.2, 22.5, 22.2, and 22.0 (all s, CHMeIPr).
1H−15N HMQC NMR (40.5 MHz, C6D6, 233 K): δ 174.0
(NHpy).

19F NMR (282.3 MHz, CD2Cl2, 223 K): δ −77.9 and
−79.2 (both br, CF3). Data for complex 8b: 1H NMR (400.1
MHz, CD2Cl2, 223 K): δ 10.97 (s, 1H, NH), 7.8−7.1 (m, 6H,
HPh,IPr), 7.37 (m, 1H, H6‑py), 7.30 (m, 1H, H4‑py), 7.06 (s, 2H,
=CHNIPr), 6.45 (m, 1H, H3‑py), 6.43 (m, 1H, H5‑py), 2.66 and
2.27 (both br, 4H, CHMeIPr), 2.9−2.7 (m, 2H, =CHcoe), 1.6−
1.0 (m, 36H, CH2‑coe and CHMeIPr).

13C{1H}-APT NMR
(100.6 MHz, CD2Cl2, 223 K): δ 177.0 (d, JC−Rh = 62.1, Rh−
CIPr), 164.6 (s, C2‑py), 146.0 (s, Cq‑IPr), 142.5 (s, C4‑py), 135.5
(s, CqN), 135.1 (s, C6‑py), 130−123 (all s, CHPh‑IPr), 119.9 (s,
C3‑py), 108.6 (s, C5‑py), 66.9 (d, JC−Rh = 14.0, CHcoe), 33−25
(all s, CH2‑coe), 29.0 and 28.4 (both s, CHMeIPr), 26.2, 22.5,
22.2, and 22.0 (all s, CHMeIPr).

1H−15N HMQC NMR (40.5
MHz, CD2Cl2, 223 K): δ 170.3 (NHpy).

19F NMR (282.3
MHz, CD2Cl2, 223 K): δ −77.9 and −79.2 (both br, CF3).
Standard Conditions for the Catalytic Alkyne Dime-

rization. To a C6D6 solution (0.5 mL) in a NMR tube under
argon atmosphere, 0.01 mmol of catalyst and 0.17 mmol of
toluene as internal standard were added. The solution was
frozen by means of a dewar flask containing isopropanol at 195
K. Then, 0.50 mmol of alkyne were added and the NMR tube
was sealed under argon. The solution was allowed to warm up
to room temperature just before the first NMR spectrum was
recorded. The reaction course was monitored by 1H NMR
spectroscopy, and the conversion was determined by
integration of the corresponding resonances of the internal
standard and the products. In case of 0.5, 0.1, or 0.05 mol % of
catalyst loading, a 20 mM solution of catalyst in C6D6 was
prepared, and then, the corresponding amount of solution was

added to the reaction mixture and it was proceeded as
described above.

Crystal Structure Determination. Single crystals of 2
suitable for the X-ray diffraction studies were grown by slow
diffusion of hexane into a toluene solution of the compound.
X-ray diffraction data were collected at 100(2) K on a Bruker
APEX SMART CCD diffractometer with graphite-monochro-
mated Mo−Kα radiation (λ = 0.71073 Å) using 0.6° ω
rotations. Intensities were integrated and corrected for
absorption effects with SAINT-PLUS35 and SADABS36

programs, both included in the APEX2 package. The structures
were solved by the Patterson method with SHELXS-9737 and
refined by full matrix least-squares on F2 with SHELXL-2014,38

under WinGX.39

Crystal Data and Structure Refinement for 2.
C40H54N3ORh, 695.77 g mol−1, Monoclinic, P21/c, a =
11.2672(10) Å, b = 10.7013(10) Å, c = 29.775(3) Å, b =
90.3070(10)°, V = 3590.0(6) Å3, Z = 4, Dcalc = 1.287 g cm−3, μ
= 0.510 mm−1, F(000) = 1472, θmin/θmax = 1.807/25.680°,
index ranges −13 ≤ h ≤ 13, −13 ≤ k ≤ 13, −36 ≤ l ≤ 36,
reflections collected/independent 36521/6806 [R(int) =
0.0410], data/restraints/parameters 6806/13/452, GooF(F2)
1.041, R1 = 0.0282 [I > 2σ(I)], wR2 = 0.0635 (all data), largest
diff. peak/hole 0.350/−0.422 e·Å−3. CCDC deposition
number 2015873.

Computational Details. All DFT theoretical calculations
were carried out using the Gaussian program package.40 The
B97D3 exchange correlation functional41 has been employed
for the calculation of energies, gradients, and frequencies in
combination to the def2-SVP basis set42 which considers
effective core potentials for Rh. Single point calculations at the
M06L/def-TZVP level of theory,43 including also the SMD
approach44 for benzene to simulate solvation effects were
performed to refine the energetic values. All calculations were
done using the “ultrafine” grid. Relative energies are Gibbs free
energies referred to a 1 M standard state using the
approximation of Goddard et al.45 at 25 °C. Analytical
frequency analyses were employed to confirm the nature of
the stationary points. An intrinsic reaction path or coordinate
scan calculations connecting both minima were performed for
flat or unclear transition states.
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