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Weighted Time Warping Improves T-wave
Morphology Markers Clinical Significance
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Abstract— Background: T-wave (TW) morphology in-
dices based on time-warping (dw) have shown significant
cardiovascular risk stratification value. However, errors in
the location of TW boundaries may impact their prognostic
power. Our aim was to test the hypothesis that a weighted
time-warping function (WF) would reduce the sensitivity of
dw to these errors and improve their clinical significance.
Methods: The WFs were proportional to (i) the reference
TW (T ), and (ii) the absolute value of its derivative (D).
The index dw was recalculated using these WFs, and its
performance was compared to the unweighted control case
(C) in four different scenarios: 1) robustness against sim-
ulated TW boundaries location errors; 2) ability to retain
physiological information in an electrophysiological car-
diac model; 3) ability to monitor blood potassium concen-
tration changes (∆[K+]) in 29 hemodialysis (HD) patients; 4)
and the sudden cardiac death (SCD) risk stratification value
of the TW morphology restitution (TMR) index, derived from
dw, in 651 chronic heart failure (CHF) patients. Results and
Discussion: The WFs led to a reduced sensitivity (R) of dw
to TW boundary location errors as compared to C (median
R=0.19 and 0.22 and 0.35 for T , D and C, respectively).
They also preserved the physiological relationship between
dw and repolarization dispersion changes at ventricular
level. No improvements in ∆[K+] tracking were observed for
the HD patients (Pearson’s median correlation [r] between
∆[K+] and dw was 0.86 ≤ r ≤ 0.90 for T , D and C). In
CHF patients, the SCD risk stratification value of TMR was
improved by applying T (hazard ratio, HAR, of 2.80), fol-
lowed by D (HAR=2.32) and C (HAR=2.23). Conclusions and
Significance: The proposed WFs, with T showing the best
performance, increased the robustness of time-warping
based markers against TW location errors preserving their
physiological information content and boosting their SCD
risk stratification value. Results from this work support the
use of T when deriving dw for future clinical applications.

Index Terms— Electrocardiogram, T-wave time warping
analysis, weighting functions, T-wave morphology, blood
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I. INTRODUCTION

THE electrocardiogram (ECG) is a non-invasive diagnostic
tool that has substantial clinical impact on investigating

and monitoring the severity of cardiovascular (CV) diseases
[1]–[3]. Several T wave (TW)-derived indices, reflecting the
repolarization of the ventricles [4], have been proposed for risk
stratification, like the TW width [5], the distance from the peak
to the end of the TW (Tpe interval) [6], the dynamics of the Tpe
interval [7], the QT adaptation time [8], and the TW alternans
[9]. However, these markers do not capture variations of the
whole TW morphology, which has demonstrated improved
capacity for risk stratification [10]–[12].

The TW morphology markers duw [10] and dw [13], quan-
tifying the level of warping needed to temporally align two
TWs, showed good correlation with dispersion of ventricular
repolarization [10] and with blood potassium concentration
([K+]) variations in hemodialysis (HD) patients [13]. Notably,
the TW morphology restitution index (TMR), obtained from
duw, was found to be specifically associated with sudden car-
diac death (SCD) in 651 chronic heart failure (CHF) patients
(MUerte Súbita en Insuficiencia Cardiaca, MUSIC study) [11],
and was significantly associated with CV risk in a middle-
aged population undergoing an exercise stress test in the UK
Biobank [12]. However, the computation of TW-based markers
relies on the automatic location of TW onset and end timings,
which might be challenging in the presence of ECG noise
contamination, low TW amplitude or morphological variability
[14], [15]. We hypothesized that adding a weighting stage to
the calculation of duw and dw would attenuate the effects of
potential location errors, maintaining their physiological rele-
vance and, consequently, improving the SCD risk stratification
value of the TMR.

The aim of this study was to propose two weighting
functions (WFs) and thoroughly test their performance in four
different scenarios: (1) an error-controlled simulated set up; (2)
simulated ECGs from an electrophysiological cardiac model;
(3) a dataset of 29 patients undergoing HD; and (4) in the
MUSIC study.

II. MATERIALS

A. Hemodyalisis dataset
The HD dataset population included 29 end-stage renal dis-

ease (ESRD) patients undergoing HD at the Nephrology ward
at Hospital Clı́nico Universitario Lozano Blesa (Zaragoza,
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Spain) as previously described in [13]. A 48-h, standard
12-lead ECG Holter recording (H12+, Mortara Instruments,
Milwaukee, WI, USA, sampling frequency of 1 kHz, ampli-
tude resolution of 3.75 µV) was collected from each patient,
starting 5 min before the HD onset and lasting until the next
HD session, scheduled 48 h later. Simultaneously, 5 blood
samples were collected, from which 5 [K+] was assessed
before starting the HD (h0) and at every hour during the HD
session (h1, h2, h3, h4).

B. MUSIC dataset
A total of 992 patients with symptomatic CHF were enrolled

in the MUSIC study, a prospective, multicenter study designed
to assess risk predictors of CV mortality in ambulatory CHF
patients [11]. Two-(3%) or 3-lead (97%) 24-h Holter ECG
sampled at 200 Hz was recorded for each patient using
ELA Medical equipment (Sorin Group, Paris, France). The
study protocol was approved by the institutional investigation
committees, and all patients signed informed consent [16]. Al-
though the MUSIC study included patients in atrial fibrillation,
sinus, flutter, and pacemaker rhythm, in the present study we
only analyzed the ECG from the 651 patients in sinus rhythm.

Follow-up visits were conducted on an outpatient basis for a
median of 44 months. Subjects were classified as SCD, cardiac
death (CD), pump failure death (PFD) and survivors. CD was
defined as SCD if it was (1) a witnessed death occurring
within 60 minutes of the onset of new symptoms, unless a
cause other than cardiac was obvious; (2) an unwitnessed
death (< 24 hours) in the absence of preexisting progressive
circulatory failure or other causes of death; or (3) a death
during attempted resuscitation. Deaths occurring in hospitals
as a result of refractory progressive end-stage CHF were
defined as PFD [16].

As previously done in [11], we considered in the group of
non cardiac event (non-CE) the aggregation of survivors and
non-CD, and as non-SCD the aggregation of non-CE and PFD.
The number of patients in each group (SCD, PFD and non-
CE) and the number of patients with two or three recorded
leads are given in Table I.

TABLE I: Characteristics of the analyzed MUSIC dataset:
number of patients in sinus rhythm for each considered group
(i.e. SCD, PFD and non-CE) and number of records with two
or three leads.

Classification Criteria Clinical outcome #ECG leads

Group SCD PFD non-CE 3 leads 2 leads
# Patients 55 67 529 630 21

III. METHODS

A. ECG Pre-processing
Preprocessing of the ECG signals included low-pass filtering

at 40 Hz with a 6-th order Butterworth filter to remove
electric and muscle noise, allowing QRS detection, cubic
splines interpolation for baseline wander removal, and ectopic
beats detection [10]. A single-lead QRS detection and TW

delineation was performed, followed by a multi-lead strategy
for global TW delineation [17]. Then, Principal Component
Analysis (PCA) was applied lead-wise, learned over the seg-
mented TWs, to generate a transformed lead with emphasised
TW components. The TWs of the first PCA (PC1) were
further delineated and smoothed by applying a 12-th order
Butterworth 20 Hz low-pass filter to remove remaining noise
components outside the TW frequency band.

B. Time-warping markers definition

Let fr(tr) be the reference TW and fs(ts) the TW
under study (Fig. 1a, blue and red TW respectively), with
tr=

[
tr(1) · · · tr(Nr)

]>
and ts=

[
ts(1) · · · ts(Ns)

]>
their time samples, of length Nr and Ns, respectively.

Let γ(tr) be the warping function that relates tr and ts

such that the composition [fs ◦ γ](tr) = fs(γ(tr)) denotes
the re-parameterization, or time domain warping, of fs(ts)
using γ(tr). The warping information (green area in Fig. 1d)
was quantified as:

duw =
1

Nr

Nr∑
n=1

|γ∗(tr(n))− tr(n)|, (1)

where γ∗(tr) is the optimal warping function relating fr(tr)
to fs(ts) (Fig. 1d dashed red line) [10]. Similarly, the signed
version, dw, was quantified as in [13]:

dw =

(
sd
|sd|

)
1

Nr

Nr∑
n=1

|γ∗ (tr (n))− tr (n) | (2)

sd =
∑
n∈Nu

r

(γ∗ (tr (n))− tr (n)) +
∑
n/∈Nu

r

(tr (n)− γ∗ (tr (n)))

(3)
being Nu

r the set of up-slope samples [13]. The sign, sd,
was computed in the control case (C) with no weighting,
WC(tr) = 1, and then applied to dw obtained with and without
weighting.

C. Weighting functions

Aiming to attenuate the undesired effects caused by TW
delineation errors on the computation of duw and dw, two
different WFs were used to emphasize the TW peak and
the regions of maximum slope, respectively, while attenuating
both ends.

The first WF, WT (tr), was taken as the normalized refer-
ence TW itself, obtained by dividing fr(tr) by its maximum
value (Fig. 1b, blue TW). Then, the linear function connecting
the first and last samples was subtracted (Fig. 1b, magenta),
obtaining the green TW (Fig. 1b), which later was also nor-
malized by its maximum value, resulting in the final WT (tr)
(Fig. 1b, black).

The second WF, WD(tr), was taken as the derivative
of the reference TW and computed as follows. First, the
absolute value of the derivative of the reference TW, fr(tr),
was divided into two halves, with the middle zero value
(corresponding to the fr(tr) peak) taken as the splitting point.
Then, the same procedure previously described for WT (tr)



PALMIERI et al.: WEIGHTED TIME WARPING IMPROVES T-WAVE MORPHOLOGY MARKERS CLINICAL SIGNIFICANCE 3

(a) (b) (c)
No weighting
WC(t

r) = 1

(d)

T-wave weighting
WT (t

r)

(e)

T-wave-derivative weighting
WD(t

r)

(f)

Fig. 1: Illustration of the proposed weighting functionsWΓ (tr), Γ ∈ {C, T ,D}, and application for dw computation. Panel (a)
shows the reference and studied TW (blue and red, respectively). Panels (b) and (c) show the process to derive WT (tr) and
WD(tr), respectively, as detailed in section III-C. Panel (d) shows the calculation of the control dw,C (dark green area under
γ∗(tr)), while panels (e) and (f) show the calculation of dw,T and dw,D, estimated by using γ∗T (tr) and γ∗D(tr), respectively
computed as in eq. (4), obtaining the updated dark green areas.

was individually applied to each half. Finally, the two parts
were linked, obtaining WD(tr) (Fig. 1c).

The γ∗(tr) function was then multiplied by each WF

γ∗Γ (tr) = γ∗(tr) · WΓ (tr), (4)

being Γ ∈ {C, T ,D}. The resulting γ∗T (tr) and γ∗D(tr) are
depicted in Fig. 1e and Fig. 1f (black solid line) respectively.
Finally, both duw and dw were re-computed. We denoted
markers duw and dw extracted in the control case as duw,C
and dw,C , respectively, while as duw,T (dw,T ) and duw,D (dw,D)
those after weighting with WT (tr) and WD(tr), respectively.
The resulting dw,T and dw,D, quantifying the weighted dark
green area, are depicted in Fig. 1e and Fig. 1f, respectively.

D. Simulation of TW boundaries shift

To assess the impact of TW boundaries shift on the calcu-
lation of duw and dw with and without applying the proposed
WFs, a study simulating controlled variations in the TW
duration and amplitude at different levels of TW boundaries
shift was performed.

1) TW modulation: A reference TW, fr(tr), was extracted
from PC1 of a clean 12-lead ECG sampled at 1 kHz from a
healthy subject [18]. Then, a set of K = 300 TWs modulated in
amplitude and duration were generated, as in [10], according
to the following steps:

i. Adding amplitude variability. Nonlinear TW amplitude
variability was introduced as:

fsNL,k(tr) = fr(tr) + c(k) sin

(
2π

1

4Nr
tr
)
,

c(k) = 150 sin

(
π
(
K
2 + k − 1

)
K

)
, k = 1, · · · ,K

(5)

with Nr and tr defined in section III-B and k the TW
index. Next, TW linear amplitude variability was modeled
multiplying the deviations from the isoelectric line of
fsNL,k by a factor sinusoidally modulated across TW:

fsL,k(tr) =

(
1 + 0.15 sin

(
π
(
K
2 + k − 1

)
K

))
fsNL(tr)

(6)
ii. Adding time variability. Linear variations in the time of

the TW were simulated as in following equations:

tsL,k = γk(tr), k = 1, · · · ,K (7)

where γk(tr) resamples tr based on the factor α(k) [10]:

α(k) =
0.6 · (k − 1)

K − 1
+ 0.7, k = 1, · · · ,K (8)

Nonlinear variations in the temporal domain of the TW
were introduced by adding a sinusoidal modulation of
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Fig. 2: Simulated TW variations (upper panels) and their
corresponding boundaries shift with symmetrically modified
To and Te boundaries (lower panels). The reference fr(tr) is
displayed in blue and the modulated fsk(ts) (see eq. (10)) is
plotted in red for k = 1, 100, 200 and 300 in upper panels.
Lower panels show the resulting TWs after shifting To and
Te symmetrically by removing (adding) up to p=25 samples,
being in red the modulated fsk(ts) without shift (i.e. p=0).

period Nr and linearly varying amplitude, guaranteeing
a monotonic increasing function:

tsk = tsL,k + β(k)
Nr
Ns
· sin

(
2π

1

Nr
tsL,k

)
,

β(k) =
30(k − 1)

K − 1
− 15, k = 1, · · · ,K

(9)

The whole TW duration and amplitude variability can be
expressed as:

fsk(ts) = fsL,k

(
γk(tr) + β(k)

Nr
Ns
· sin

(
2π

1

Nr
γk(tr)

))
(10)

The upper panels in Fig. 2 show the resulting modulated TWs
for k = 1, 100, 200 and 300.

2) Boundaries shift: For each of the K=300 modulated
fsk(ts), we simulated TW boundary location errors to: (1) T
onset (To) only, (2) T end (Te) only and (3) both To and
Te positions symmetrically. In each test, p samples, ranging
from p=1 up to p=25, were progressively removed (added).
Therefore, for each fsk(ts), a total of 50 boundary-shifted
TWs were generated, having a boundary location standard
deviation of σ = 14.9 ms, a value within the manual TW end
determination tolerance [19]. Lower panels in Fig. 2 show the
symmetrical To and Te shift when k = 1, 100, 200 and 300.

Then, markers duw,Γ and dw,Γ were evaluated by time warp-
ing each boundary-shifted fsk(ts) and the reference fr(tr).
Finally, for every test (i.e. shift of To only, Te only and To-Te
symmetrically), a variation ratio (R) was computed for each
fsk(ts) and WF as:

RΓ,k =
σ(dΓ,k(p))

|dΓ,k(p = 0)|
, (11)

where k = 1, · · · , 300 accounts for the modulated TW,
p ∈ {−25, · · · , 25} denotes the samples added (removed),
d ∈ {duw, dw}, Γ ∈ {C, T ,D}, dΓ,k(p=0) is the marker value
computed when no shift is performed and σ(dΓ,k(p)) is the
standard deviation of the marker series for kth simulated TW.

E. Simulated variability in an electrophysiological model
To assess whether using the proposed WFs affects the

relationship between changes in myocardial repolarization
dynamics and duw [10] and dw, an electrophysiological model
[20] was used.

This equivalent double layer model formalizes the forward
problem in which action potentials at M ventricular sites are
projected onto the body surface. The action potentials repolar-
ization time at each cardiac site m is given by ρm = ρ̄+∆ρm,
where ρ̄ is the spatial mean repolarization time and ∆ρm
represents the deviation from ρ̄ at site m. The standard
deviation of ∆ρm, σ, is a measure of the global dispersion of
repolarization. Ventricular action potential data was obtained
from a normal male, and the ECG leads were calculated as
described in [10]. Spatial PCA was performed on the resulting
ECG leads, and the PC1 was preprocessed and delineated (see
section III-A). The extracted TW was taken as the reference
in this simulation study.

A total of five different TWs, j = 1, · · · , 5, were, then,
generated by varying the level of σ in two scenarios:

i. Varying the repolarization time dispersion, σ:

σ(j) =

√√√√ 1

M − 1

M∑
m−1

(∆ρm(j))2, j = 1, · · · , 5, (12)

with ∆ρm(j) = ∆ρm(1 + 0.2(j − 1)), expressed in ms.
ii. Varying σ as in eq. (12), simultaneously with the length-

ening of the mean repolarization time ρ̄, according to:

ρ̄(j) = ρ̄+ 25 · (j − 1), j = 1, · · · , 5. (13)

The resulting duw,Γ (j) and dw,Γ (j) were computed by warping
each jth TW with the reference TW, which for both scenarios
corresponds to the TW when j=1, and plotted with respect to
σ to infer the influence of the proposed WFs.

F. Hemodyalisis Dataset
To evaluate the influence of the proposed WFs on the

reported ability of dw and duw to track [K+] variations [13],
correlation between serum [K+] and duw,Γ and dw,Γ was
reestimated.

As in [13], TWs in 2-min windows centered around the
5-th and 35-th minutes of each available hour were selected
and a mean warped TW (MWTW) was computed from the
TWs in each window [10], [13]. Then, duw,Γ and dw,Γ were
computed by time warping each MWTW with respect to a
reference MWTW, selected at the HD end (h4).

The correlation between the relative variation of [K+],
∆[K+], and duw,Γ and dw,Γ was evaluated by Pearson correla-
tion (r) and compared for each of the different WF strategies.
∆[K+] was defined as:

∆[K+](hi) = [K+]hi
− [K+]h4

, (14)
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being [K+]hi
the concentration at the hith time point (h0 to

h4), and [K+]h4 the reference [K+] at the end of the HD (h4).

G. MUSIC dataset
To determine if the proposed WFs can improve the SCD

risk stratification value of TMR [11], we recalculated TMR
using duw,Γ and dw,Γ following these main steps [11]:

i. RR histogram construction. The histogram of the RR in-
tervals for all beats in the 24-h Holter ECG was obtained,
considering bins with a width of 10 ms (Fig. 3a). RR
bins with fewer than 50 occurrences (dot orange line in
Fig. 3a) were not considered in the following analysis.

ii. Intrasubject RR range definition. The median RR was
identified (Fig. 3a, green bin). Then, the two most dis-
tant RR bins from the median, distributed symmetrically
around it, were chosen as those defining the maximum in-
trasubject RR range, ∆RR. Then, naming RRmax (Fig. 3a,
red bin) and RRmin (Fig. 3a, blue bin) respectively the
maximum and the minimum RR:

∆RR = RRmax − RRmin (15)

iii. The MWTWs of the TWs in the RRmin and RRmax bins
were computed (Fig. 3b and Fig. 3c respectively) as the
average TW morphology in those bins [10]. Then, time
warping markers duw,Γ and dw,Γ were computed.

iv. TMR index was calculated dividing duw,Γ , or dw,Γ ,
by ∆RR, giving information on the TW morphological
change per RR increment:

TMRuΓ =
duw,Γ
∆RR

, TMRΓ =
dw,Γ
∆RR

(16)

The Mann-Whitney test was used to evaluate the association
of both TMRuΓ and TMRΓ with SCD and PFD. Receiver
operating characteristic (ROC) curves were used to test the
ability to predict SCD and to set cutoff points for risk
stratification. The population was divided into 5 equally sized
groups with similar SCD and non-SCD ratio, and in each
group, the criterion of minimal Euclidean distance from each
ROC curve to the upper-left corner was applied to select
the optimal threshold within each group [11], [21]. This was
repeated 10 times, and the mean and standard deviation (std)
of the AUCs, the median and interquartile range (IQR) of the
optimal thresholds and the accuracy were calculated.

Survival probability, performed by using the median optimal
threshold, was estimated by Kaplan-Meier methods [22], [23],
comparison of cumulative events was performed by using log-
rank (Mantel-Cox) tests and risk evaluation was quantified by
Cox proportion hazard test [24], [25]. Patients who died from
causes other than SCD were censored at the time of death. A p-
value (p-val)<0.05 was considered as statistically significant.

IV. RESULTS

A. Simulation of TW boundaries shift
Distributions of RΓ,k obtained when d = duw and d = dw

are depicted in Fig. 4a and Fig. 4b, respectively. In each
panel, the three tests (i.e. shift of To only, Te only and To-Te
symmetrically) are shown, being the green, purple and orange

(a)

(b) (c)

∆RR

Fig. 3: Estimation of MWTWs in the MUSIC dataset. Panel
(a) shows the RR histogram for a given patient with bins of
10 ms width. The green bin denotes the median RR interval,
while the blue and red bins correspond to those RR intervals
defining the maximum intrasubject range, ∆RR. The orange
line denotes the #50-threshold limit. Panels (b) and (c) plot the
MWTWs of the TWs included in the selected RR bins in (a).

boxplots the distributions resulting whenWC(tr),WT (tr) and
WD(tr) are applied respectively.

B. Simulated variability in electrophysiological model
Simulated TWs and their corresponding duw,Γ and dw,Γ

values were obtained as described in section III-E. For the first
considered scenario (i.e. only varying σ) results are presented
in Fig. 5 (a)-(c); while those for the second scenario (i.e.
combined variations in σ and ρ̄) are in Fig. 5 (d)-(f).

C. Hemodyalisis dataset
Distributions of ∆[K+], duw,Γ and dw,Γ across patients for

every hour hi during HD therapy are depicted in Fig. 6a and
Fig. 6b, respectively. In each panel, the blue boxplots represent
∆[K+] and referred to the left y-axis, while the corresponding
makers are referred to the right y-axis and depicted in green
(Γ = C), purple (Γ = T ) and orange (Γ = D).

Median (IQR) values for Pearson correlation between
∆[K+] and every duw,Γ and dw,Γ are presented in Table II.

D. MUSIC dataset
Distributions of TMRuΓ and TMRΓ are presented in Fig. 7a

and Fig. 7b, respectively. Boxplots are shown in purple for
WT (tr), in orange for WD(tr) and in green for the WC(tr)
case. Patients are grouped according to their outcomes (i.e.
SCD, PFD and non-CE). Significant Mann-Whitney test p-
val (see Fig. 7) was found for each TMRuΓ and TMRΓ when
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duw

(a)

dw

(b)

Fig. 4: Distribution of RΓ,k for each shift test (To only, Te
only and To-Te symmetrically), marker and WF. In each panel,
the green, purple and orange boxplots represent distributions
for WC(tr), WT (tr) and WD(tr), respectively.

Scenario 1: Varying σ

(a) (b) (c)

Scenario 2: Combined variations in σ and ρ̄

(d) (e) (f)

Fig. 5: Performance evaluation using the electrophysiological
cardiac model (section III-E). Panels (a)-(c) show the results
when only σ is varied in the model; while panels (d)-(f) show
the combined variation of σ and ρ̄. Panels (a) and (d) plot
the TWs; while duw,Γ and dw,Γ values for both scenarios
are shown in panels (b), (e), (c) and (f). Square, circle and
diamond-shaped markers denote results for WC(tr), WT (tr)
and WD(tr), respectively. Each colour denotes results for
the jth TW, corresponding to a particular σ, computed as in
eq. (12) and eq. (13) (scenarios 1 and 2, respectively).

comparing SCD victims and non-SCD patients regardless of
the employed WF, while difference between PFD and non-CE
were no significant. Finally, a statistical difference between
SCD and PFD was only found for the TMRΓ index.

Table III shows the mean and standard deviation (std)
of the area under the curve (AUC) from the ROC curve
analysis, median (IQR) for the optimal thresholds for SCD
risk stratification and the accuracy evaluated for TMRuΓ and
TMRΓ indexes.

Fig. 8 plots the Kaplan-Meier survival probability curves
obtained after dichotomizing the study population based on
the optimal thresholds for TMRuΓ and TMRΓ .

TABLE II: Pearson correlation (r) median (IQR) values across
patients computed between ∆[K+] and each duw,Γ and dw,Γ .

Γ r

duw,Γ

C 0.92 (0.36)
T 0.88 (0.36)
D 0.92 (0.40)

dw,Γ

C 0.89 (0.35)
T 0.86 (0.36)
D 0.90 (0.39)

TABLE III: AUC, mean (std), and optimal thresholds (THR),
median (IQR), for each TMRuΓ and TMRΓ . The accuracy is
included for a THR derived from the complete date set.

Γ
AUC Optimal THR Accuracymean (std) median (IQR)

TMRuΓ
C 0.62 (0.10) 0.045 (0.012) 0.59
T 0.58 (0.10) 0.012 (0.005) 0.65
D 0.60 (0.10) 0.021 (0.004) 0.68

TMRΓ
C 0.64 (0.08) -0.045 (0.010) 0.63
T 0.62 (0.10) -0.012 (0.002) 0.69
D 0.63 (0.09) -0.021 (0.004) 0.70

V. DISCUSSION

In this study, we proposed and introduced, for the first
time, two WFs to attenuate the effects of TW location er-
rors. Using these WFs, we recalculated two TW morphology
indices, dw,Γ and duw,Γ , and we thoroughly evaluated: their
robustness against simulated TW boundaries location errors,
their physiological relevance in an electrophysiological model
and in an HD dataset, and their SCD risk stratification value.
Our main findings were that the WFs reduce the effects of TW
boundaries location errors, with no impact in the ability of duw
and dw to reflect repolarization dispersion, but significantly
boosting their SCD risk stratification value. However, no
meaningful changes in monitoring [K+] were found.

A. Simulation of TW boundaries shift
The purpose of this analysis was to evaluate the ability of

the WFs in reducing the undesired effects of TW boundaries
misplacement under controlled conditions in three possible
scenarios: misplacement of just one extreme, either To or Te,
and both of them symmetrically.
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(a) (b)

Fig. 6: Distribution of ∆[K+] (blue, left y-axis), and duw,Γ (panel (a)) and dw,Γ (panel (b)) for each WF ( Γ ∈ {C, T ,D}
green, purple and orange boxplot, respectively, right y-axis), during the HD session from h0 to h4.

(a) (b)

Fig. 7: Distributions of TMRuΓ and TMRΓ (panels (a) and (b) respectively), for SCD, PFD and non-CE groups for Γ ∈
{C, T ,D} (green, purple and orange, respectively). Mann-Whitney test p-values, colour coded for each WF, between SCD and
PFD (uppermost row of p-val), PFD and non-CE (middle row of p-val) and SCD and the combination of PFD and non-CE
groups (non-SCD) are highlighted with a curly bracket, (lower row of p-val).

As shown in Fig. 4, the R values (representing the relative
error caused by those misplacements) were considerably lower
for duw,T and duw,D with respect to duw,C and similarly in case of
dw,T and dw,D with respect to dw,C . This can be appreciate in
the three tests (i.e. To only, Te only and To-Te symmetrically)
by comparing the distributions of RC (in green) when no
weighting was applied, with respect to RT (in purple) and
RD (in orange) obtained after weighting with WT (tr) and
WD(tr), respectively.

Moreover, across the three tests, smaller median and dis-
persion values were found for RT than for RD, suggesting a
slightly better performance ofWT (tr) with respect toWD(tr)
in terms of robustness against To and Te mislabeling.

B. Simulated variability in an electrophysiological model

This test aimed to evaluate the impact of the proposed WFs
on the physiological relevance of duw,Γ and dw,Γ . The results
obtained proved the preservation of the linear relationship
between duw,Γ and dw,Γ and the changes in dispersion of repo-
larization at cellular level, which only varied by a proportional
factor, as shown in Fig. 5 panels (b), (c) and (e), (f). These
findings are in agreement with previous study [10] where only
duw,C was tested and found to linearly change with dispersion
of repolarization as observed in this work.

A reduction in the sensitivity to changes in dispersion of
repolarization can also be observed in duw,T (dw,T ) and duw,D
(dw,D) with respect to duw,C (dw,C), in both scenarios 1 and 2.
Moreover, values for duw,Γ and dw,Γ were found to be similar
in absolute value but opposite in sign, since the increments
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Fig. 8: Kaplan-Meier survival curves for the two groups defined after dichotomising patients in the MUSIC dataset according
to the optimal threshold computed as described in section III-G. Curves for TMRuΓ and TMRΓ (eq. (16)) are depicted in panels
(a) to (c) and panels (d) to (f) respectively. In each panel, HAR value with corresponding 95% confidence intervals (CI) and
p-val from the long-rank test are shown. Significant p-val were found for HAR in all the Cox analysis.

in σ led to TWs having larger magnitude and width than the
reference one (black TW in Fig. 5a and Fig. 5d). Then, all
simulated TWs had to be shrunk, i.e. negatively warped, to fit
the reference.

C. Hemodyalisis dataset
A previous study [13] demonstrated that duw,C and dw,C were

able to follow ∆[K+] time-trend in patients undergoing HD.
This capacity remained unaltered in this study regardless of
the applied WF, being the differences in Pearson correlation
negligible (Table II). However, the dynamic ranges of both
duw,Γ and dw,Γ were reduced when a WFs was applied (Fig. 6),
as also observed in the first simulation scenario in this study.

In other words, no particular improvement in monitoring
[K+] during the HD resulted from the addition of a weighting
stage before time warping markers computation. This might be
a consequence of the substantial TW morphological changes
caused by ∆[K+] in ESRD patients: TW narrowing and re-
markable magnitude increment [26]–[29]. Then, TW morphol-
ogy changes due to boundary location errors, which may or
may not have occurred, seem to be negligible when compared
to those driven by ∆[K+], thus producing highly similar
Pearson correlation values between markers and ∆[K+].

D. MUSIC dataset
To evaluate the potential improvement of the TMR SCD

risk stratification power when using the proposed WFs, CHF
patients in sinus rhythm from the MUSIC study were analyzed.

Results from Mann-Whitney test (Fig. 7) demonstrated that
both TMRuΓ and TMRΓ are specific markers of SCD with no
relation to PFD risk, regardless of the applied WF. Whereas
the AUC (Table III) showed no clear advantages in using
one of the proposed WF, we observed an improvement in
accuracy (Table III) and in SCD risk prediction power of both
TMRuT (TMRT ) and TMRuD (TMRD) with respect to TMRuC
(TMRC), thus demonstrating a better ability in distinguish
between SCD and non-SCD, as visible from the Kaplan-Meier
survival curves (Fig. 8).

We observed TMRΓ provided the highest stratification
power, Fig. 7b. This could be due to the avoidance of opposite-
sign artifacts of similar absolute value, which may have been
wrongly considered as regular values when using TMRuΓ
(Fig. 7a). Moreover, the WF that led to the highest HAR values
when using TMRΓ was WT (tr), supporting its choice as WF
when deriving TMR for future SCD risk stratification studies.

Lastly, it is worth to mention the similarity of TMRuC
distribution for non-CE patients in the MUSIC study and those
obtained from the UKBiobank recently published in [12].

E. Final considerations: Effects of weighting functions
The two studied WFs were designed to reduce the con-

tribution of the boundary regions, and to explore different
attenuation profiles. The main difference is that WT (tr)
emphasises the peak region of the TW where the warping
function typically gets close to zero values, an attenuating the
extremes (Fig. 1d), whileWD(tr) emphasises the slopes of the
TW (Fig. 1c) resulting in a warping function, Fig. 1f, where
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the central point of the two halves was emphasized, with the
extremes also attenuated. This effect is particularly clear when
comparing Fig. 1d, with respect to both Fig. 1e and Fig. 1f,
and focusing on the extreme sections (light green area).

In the four studied scenarios, weighting withWT (tr) results
in warping markers more robust to TW boundary location
errors (see section V-A), leading to increased ability for SCD
risk stratification than its counterpart WD(tr). This would in-
dicate that useful physiological information may be overlooked
when WD(tr) is applied. One possible explanation might be
that the shape of this WF reduces, perhaps too sharply, the
regions near the TW peak. Another reason might be that
the regions around the TW boundaries are less attenuated
than when using WT (tr), resulting in a reduced boundary
misdetection attenuation effect.

Therefore, while WT (tr) is to be preferred to WD(tr) as
WF in time warping analysis and subsequent TMR computa-
tion for SCD risk stratification, it seems that WD(tr) would
result in duw,Γ and dw,Γ slightly better correlated with ∆[K+].
However, correlation coefficients are still very similar to draw
strong conclusions about which is the most suitable WF for
[K+] monitoring.

F. Clinical significance
Findings from the present study prove the usefulness of

the WFs in reducing the effects of TW location error when
deriving biomarkers based on TW time warping analysis. Even
though there were no significant changes in [K+] monitoring
in ESRD patients, a considerable improvement in SCD risk
predicting values of the TMR index was observed, thus in-
creasing its robustness and reliability for clinical applications.

G. Limitations and future works
Several limitations deserve to be mentioned. In this work,

as in Ramı́rez et al [10], the van Oosterom equivalent double
layer model was used to study the correlation between duw,Γ
(dw,Γ , respectively) and repolarization dispersion, but other
biophysically detailed models of human ventricular electro-
physiology [30], [31] could be used to further investigate the
mechanisms underlying changes in repolarization dispersion
reflected in variations in the analyzed warping-based indices.

The reduced number of patients in the HD dataset and
available blood samples for each patient included in the study
was a limitation to better frame the conclusion of the work.
However, although there was no noticeable improvement in
∆[K+] sensing by the application of the proposed WFs,
they do not make results worse either, so applying WF by
default in the signal processing pipeline would not decrease
the usefulness of the duw and dw dispersion markers in the HD
setting for monitoring [K+].

Prospective studies are needed to corroborate the observa-
tions in [11], and reinforced here with the weighting marker
versions, relative to the role of TMR in SCD risk prediction
in CHF patients. Indeed this study considered consecutive
patients, so the number of SCD victims was low, limiting the
possibilities for further statistical analysis. The clinical validity
and meaningfulness of the proposed WFs over extreme TW

morphological variations, such as biphasic TWs, remains to
be tested.

VI. CONCLUSION

T-wave morphology based markers derived from weighted
time warping show improved robustness against the undesired
effects of TW boundaries location errors without losing their
physiological significance. In clinical settings, this improve-
ment in robustness resulted in an enhancement of the SCD
risk stratification value of the TMR index in CHF patients,
but did not lead to a better ability to monitor [K+] in HD
patients.
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