
Gaussian Mixture Models for Affordance Learning
using Bayesian Networks

Pedro Osório Alexandre Bernardino Ruben Martinez-Cantin José Santos-Victor

Abstract— Affordances are fundamental descriptors of rela-
tionships between actions, objects and effects. They provide the
means whereby a robot can predict effects, recognize actions,
select objects and plan its behavior according to desired goals.
This paper approaches the problem of an embodied agent ex-
ploring the world and learning these affordances autonomously
from its sensory experiences. Models exist for learning the struc-
ture and the parameters of a Bayesian Network encoding this
knowledge. Although Bayesian Networks are capable of dealing
with uncertainty and redundancy, previous work considered
complete observability of the discrete sensory data, which may
lead to hard errors in the presence of noise. In this paper
we consider a probabilistic representation of the sensors by
Gaussian Mixture Models (GMMs) and explicitly taking into
account the probability distribution contained in each discrete
affordance concept, which can lead to a more correct learning.

I. INTRODUCTION

Affordances define the relationships between actions, ob-
jects and effects. As defined by James J. Gibson more than 30
years ago [7] affordances are agent-dependent object usages,
i.e. the action possibilities given by an object to an agent
with specific action capabilities. For example, a chair is only
sitable by an individual of a certain height; a tree is only
climbable by animals with specific capabilities. In fact, what
matters in obtaining a certain desired effect are the properties
of the objects more than the objects themselves.

The knowledge of object affordances is exploited in most
of our decisions: to choose the most appropriate way of
acting upon an object for a certain purpose; to search
and select objects that best suit the execution of a task;
to predict the effects of actions on objects; to recognize
ambiguous objects or actions; etc. Affordances are at the core
of high-level cognitive skills such as planning, recognition,
prediction and imitation.

Thus, learning object affordances is an essential step for
humans as they develop the required skills to interact with the
environment and ultimately with each other. It is logical that
affordances would be modeled in learning humanoid robots,
emulating the human development process.

A few works have addressed the problem of learning
affordances by autonomous exploration of the world. In [6],

This work was partially supported by the Portuguese Government -
Fundação para a Ciência e Tecnologia (ISR/IST pluriannual funding)
through the POS Conhecimento Program that includes FEDER funds, and
through the EC Funded projects HANDLE and FIRST-MM.

P. Osório, student of Biomedical Engineering and collaborator
of the Institute for Systems and Robotics, IST, Lisboa, Portugal
pedro.osorio@ist.utl.pt

A. Bernardino, R. Martinez-Cantin and J. Santos-Victor are
with the Institute for Systems and Robotics, IST, Lisboa, Portugal
{alex,rmcantin,jasv}@isr.ist.utl.pt

a robot learned the direction of motion of different objects
when poked and used this information at a later stage to
recognize actions performed by others. In [11] a set of
predefined actions (tap, touch, grasp) are applied to objects
of different shapes, colors and sizes, and the observed effects
(object/hand velocities, contact) are used to learn a network
of cause-effect relationships. However, these works do not
address the noisy characteristics of the perceived sensory
data, which may lead to difficulties in the learning stages.
This work builds on [11] but extends it in order to model
the learning process under noisy observations.

The paper is organized as follows. In the next section we
present the affordance learning methodology in [11] where
we base our work. Then, we describe our main contribution:
to model the noisy nature of observations and the deriva-
tion of an EM algorithm for learning the parameters of
the Bayesian Network. We present results from simulations
where we can observe the improvements provided by the
proposed methodology. Finally, we draw the conclusions and
point directions for future work.

II. LEARNING OBJECT AFFORDANCES

In this section we briefly describe the affordance learning
process as described in [11]. It consists in a developmen-
tal approach composed by three stages: (i) learning motor
primitives, (ii) learning object representations, (iii) learning
effects representation and finally (iv) learning the object’s
affordances.

A. Developing Basic Skills

The first skills learned by the robot are the motor ones. It
starts with a number of predefined actions such as grasping,
tapping or touching and fine-tunes these, using its sensory
abilities (i.e. relating the observed motion with the desired
motion). After this, the robot is presented with different
objects and forms perceptual categories. That is, for a number
of properties of an object (color, shape, size) it uses unsu-
pervised learning to form meaningful clusters (e.g. it may
find 3 clusters in the size space – small, medium, big). In a
subsequent stage the robot interacts with objects and, just as
in the case of visual perception, it forms clusters for a number
of properties (object velocity after contact, contact duration,
etc.). Finally, when the robot has learned to execute actions
(discrete) and categorize the objects and effects features in
discrete categories, it is ready to start creating cause-effect
links between actions on objects and the particular outcomes.
It is on this stage that we concentrate our attention.

1

Cita Bibliográfica
Published in: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010): conference proceedings, IEEE, 2010. Pp. 4432 - 4437



Fig. 1. BN with discrete,observed nodes

B. Affordance Modeling and Learning

Based on the work of [11], we use a graphical model
known as Bayesian Network (BN) to model affordances. This
model is used to encode probabilistic dependencies between
actions, object features and effects of the actions. In this
graphical model, nodes represent random variables and the
arc structure encodes conditional independence assumptions
between the variables. A fundamental result of BN is that
the joint distribution of the variables decomposes in the
following way:

p(X1, ..., Xn) =
n∏
i=1

p(Xi|XPa(Xi), θi) (1)

where Xi is the random variable associated with node i, θ
is the set of parameters of the probability distribution and
Pa(Xi) are the parents of node i.

Figure 1 is an example of a BN with the characteristics
of the model used in this work. All random variables are
observed and discrete-valued. ai are the actions, oi are the
object features and ei are the effects of the action.

Learning the affordances requires that, given a database
of cases (observations of actions, objects and effects), we
find the structure of the BN and the parameters θi that
describe the relationships between each node and its parents.
The structure can be efficiently approximated using Markov
Chain Monte Carlo (MCMC) as well as the K2 algorithm.

Since this model only has discrete, observed nodes, we can
model the conditional probability distributions of each node
given its parents as a multinomial distribution and we can
use the Dirichlet distribution as the prior distribution. Then,
we can use conjugate Bayesian analysis to do the inference
and update the parameters (see [8]).

C. Inference and Interaction Games

After the affordances are learned it is possible to use this
knowledge during execution to infer incomplete data using
a Bayesian inference strategy. For example, this can be used
to interact with others. If a human performs an action on a
given object, the robot can observe the effect. Even without
a mechanism to identify actions carried out by others, the
robot can use the object features, the effect and the learned
affordances to infer the action. In fact, we can use the model
to predict or infer any of the variables (actions, objects or
effects) given the other two.

III. PROBABILISTIC CLUSTERING FOR AFFORDANCES

The affordances model is based on the assumption that the
variables are separable, because objects features and effects
must have some semantic meaning. In some sense, it is the
first step towards relational learning, where abstract classes
define the properties for interaction. Therefore, the first step
is to find the semantic classes by unsupervised learning. In
the work of [11], this clustering is based on X-means [3],
which represents the data distribution as a Gaussian Mixture
Model. However, the work of [11] assigns the maximum a
posteriori (MAP) cluster to each data point. Intuitively, this is
a strong assumption considering many of the variables that
are involved in the affordances model, like object features
such us color or size.

For example, let us consider that our unsupervised learner
defines a ball with a radius greater than 5 cm as large, and
small otherwise. When the sensor detects an object with
a radius of 4.9 cm, it automatically assign the semantic
meaning of small object. Intuitively, we can see that the
object in fact falls in between. If we consider the sensor
noise, there is a high probability of the object being small,
but also there is a non-negligible probability of being large.
In our approach, we want to give a probabilistic assignment
to the different classes, which is more robust and can be used
to do Bayesian inference in the semantic level.

The Gaussian Mixture Model obtained from X-means
and similar algorithms provides a density estimation of the
probability distribution of the data. The advantage of using
mixture models is that we can still assign a semantic meaning
to every component, while recovering the whole distribution
for Bayesian inference. In the size example, we may find
that the distribution is the combination of two Gaussians,
such us N (4, 1) for the small objects and N (6.5, 2) for
the large ones. Therefore, our previous object of radius 4.9
cm has a probability of being small and a non-negligible
probability of large. It is important to note that the inference
model that we define in this paper could also deal with
probabilistic inputs from the actions. However, in the robotic
setup, control noise is negligible compared to sensor noise.
Therefore, we consider deterministic actions to simplify the
explanation.

Having defined a probabilistic assignment of the clusters
to the sensing variables, we can extend the BN to consider
the new dependencies (Fig. 2). The nodes that represent
the discrete classes of object features and effects are no
longer observed directly. Instead, the observed nodes are
their children, the sensor nodes which represents continuous
random variables.

A. Learning the Structure

By definition, we know that there is a dependency between
any continuous node -sensor- and the corresponding discrete
variable -feature-. Besides, the sensor is independent of the
rest of the network given the value of the feature. Therefore,
we can assume that this part of the structure is known and
fixed, simplifying the structure learning problem. In fact,
the structure to be learned is only the one that connects

2



Fig. 2. Bayesian Network of the new clustering approach. The af-
fordances are still represented as interactions between discrete variables
(squares). The GMM is represented by the new continuous variables
(circles). Shaded shapes represents observed variables during training
X = (Actions, Objects, Effects). However, during execution, we can
estimate any variable of X , given the other two observations. The thick
arrows represent the new dependence of the sensors and their associated
features

discrete nodes, like in [11]. However, the problem is different
because, in this case, some of the nodes are hidden. We can
use a Bayesian method such us Structural-EM [5], which
allows to estimate the structure of the network by integration
over all possible hidden variables. However, this Bayesian
approach is computationally very expensive and typically
requires large datasets. Instead, as in [11] we assign the MAP
value to any hidden variable. The MAP value is the one that
corresponds to

e∗i = arg max
ei

p(εi|ei) · p(ei)

o∗i = arg max
oi

p(φi|oi) · p(oi)
(2)

where the likelihood p(ε1|e1) or p(φi|oi), and the prior p(ei)
or p(oi), come from the estimation of the parameters of the
GMM.

Once we have assigned the MAP value to the discrete
variables -features-, we can treat them as observed variables.
Therefore, we can apply the structure learning algorithms
used the work of [11]. As commented in section II-B, we
can use MCMC [10] and K2 [2] to learn the structure as
if all nodes were observed. An important issue when doing
structure learning appears when dealing with causality. In or-
der to find causal relationship, we need to use interventional
data. However, in robot interaction, causality is implied in
the variables, that is, acting on an object produces and effect.

B. Learning the Parameters

Once we have learned the structure, we can proceed to
learn the parameters of the BN as commented in section II-
B. However, our new model has to deal with incomplete
data from the sensors, that is, in terms of network, some
variables are hidden. Therefore, we need to integrate over
all the hidden variables. For that purpose, we can use the
EM algorithm [4].

Before describing in the detail how this is done for
the previously described model, the notation used is the

following:
• Uppercase letters are used to refer to variables, and

lowercase to their values. However, we will often abuse
of the notation and use the lowercase both for the
variables and their respective values.

• Y = (Y (1), . . . , Y (k)) is the set of observed variables,
where the superindex represent the number of experi-
ment k.

• Z = (Z(1), . . . , Z(k)) is the set of hidden variables,
where the superindex represent the number of experi-
ment k. For each experiment, Z(k)

i being the ith hidden
node, where i = 1, . . . , N .

• X = (X(1), . . . , X(k)) is the set of variables for an
experiment, being X = Y ∪ Z.

• Pa(Zi) is the set of the parents of Zi and Pa(Zi) is the
set of hidden variables that are not parents of Zi. Note
that the structure is independent of the experiment, so
Pa(Zi) and Pa(Zi) are independent of k.

Since the log-likelihood of the parameters given the com-
plete data, log[p(X|θ)] cannot be computed (due to partial
observability), the E-step computes its expected value with
respect to the distribution p(Z|Y, θold), where θold is the
vector of parameters achieved on the last iteration of EM.
The set of parameters θ that maximize this expected value
are then computed in the M-step. In order to simplify
calculations, we also assume that the action is only observed
through a sensor. Therefore, there is also an auxiliary hidden
node for the action, with the corresponding observed child
node. This is equivalent to an observed action node but
allows the separation of the observed nodes from the hidden
ones on the joint probability of the network (1).

1) E step: – Compute the expected value of the complete
log-likelihood with respect to the distribution of the complete
data (on K experiments):

Q(θ, θold) = α+
K∑
k=1

∑
zk

[
wk

N∑
i=1

log θ(k)i

]
(3)

where

α =
K∑
k=1

∑
zk

[
wk · log p(Y (k)|Z(k)

]
being

wk = p(Z(k)|Y (k), θold)

and
θi = p(Z(k)

i |Pa(Zi), θ)

So the E-step consists of computing wk. It should be noted
that wk = w(Z(k)) and

∑
zk
w(Z(k)) = 1. The derivation

of equation (3) can be found in the appendix.
2) M step: – perform the maximization

θ∗ = arg max
θ

Q(θ, θold)

subject to the constraint
ri∑
zi=1

θi = 1

3



(a) (b) (c)

Fig. 3. RMS error of the difference between learned parameters and the real ones given a database with 300 or 3000 cases. a) Sensor noise distributed
according to N (0, 1), b) Sensor noise distributed according to N (0, 9) c) The simple Bayesian network.

where ri is the number of different values the ith node can
take. Basically this restriction corresponds to the partition
function, that is, for a fixed configuration of its parents, the
sum of the probabilities for all possible realizations has to
be 1. The optimal value for θi is:

θi =
∑K
k=1 p(z

(k)
i , Pa(zi)|Y (k), θold)∑ri

z=1

∑K
k=1 p(z

(k)
i , Pa(zi)|Y (k), θold)

(4)

If we consider the probability p(z(k)
i , Pa(zi)|Y (k), θold) as

the frequency of appearance of the realization, the solution
is analogous to the solution of the complete-data problem.
On the fully observable case (not considering the priors) we
assigned:

θi =
](zi, Pa(zi))
](Pa(zi))

(5)

where ](zi, Pa(zi)) is the number of cases of the database
that have Zi = zi as well as Pa(Zi) = Pa(zi) and
](Pa(zi)) =

∑ri

zi=1N(zi, Pa(zi)).
With hidden-variables, instead of occurrence (1) or non-

occurrence (0) of a specific configuration z
(k)
i , Pa(zi)

on each case of the database, we have the probability
of this configuration given the observed variables and the
parameters of the network computed on the last step. The
counts are replaced by the sum of these probabilities over
all the cases of the database.

This algorithm as is, has a time complexity which is linear
on the number of cases in the database, and on the number
of iterations. It is, however, exponential on the number of
nodes.

IV. RESULTS

A. Procedure

In order to evaluate the differences between the first
approach and the one proposed here, two types of Bayesian
networks were used. The first (Fig. 3(c)) is a sparse graph
(only two arcs, going to the same variable) with seven
discrete variables. Each has two possible values which leads
to 10 degrees of freedom in the parameters. The second
one (Fig. 4(b)) is the Bayesian network learned on [11]. It
has eight variables and ten arcs, the discrete variables have

between two and four possible values, the parameters of this
model have 125 degrees of freedom.

Each of the discrete nodes in these Bayesian networks
has a sensor node, similar to the ones described earlier.
The purpose of this work is to learn the parameters of the
discrete network, assuming that we know the distributions of
the sensor models. Thus, the conditional distribution of each
sensor given the value, v, of the associated discrete variable
was arbitrarily defined to be a normal with mean 5 · v, and
variance constant for all v1.

In order to test the EM algorithm against the discrete
representation used in [11], hereinafter called Discrete, we
generate a database of simulated experiments based on a
known sensors model and Bayesian network, which we
will use as ground truth. In order to avoid errors from the
clustering algorithm, we assume that the clusters are known.
The Discrete case takes the most probable cluster for each
data point. The EM algorithm is applied to the data and let
run until the root mean square (RMS) error of the difference
between the parameters obtained in consecutive iterations is
smaller than 0.001 to a maximum of 100 iterations. The log-
likelihood of the parameters given the data is computed for
the parameters obtained using each of the algorithms. The
RMS error of the difference between the learned parameters
and the ground truth is then computed and used as a metric
to evaluate the results of EM and Discrete.

B. Simple Bayesian Network Results

The procedure described above was applied 30 times to
the first kind of Bayesian network, and the results are on
Fig.3(a) and Fig.3(b) as boxplots with median, as well as
first and third quartiles. The network is exactly the same in
both cases, except that the normal distributions of the sensors
have standard deviation 1 and 3, respectively.

Focusing on the first case, it can be seen that, indepen-
dently of the database size, EM very slightly outperforms
the Discrete (the RMS error is reduced by less than 2%)
algorithm and, as expected, the error is much smaller when
more information is provided.

1Here, v is assumed to take all integer values between 0 and n-1, if the
discrete variable has n possible values

4



(a)

(b)

Fig. 4. a) RMS error of the difference between learned parameters
and the real ones given a database with 300, 3000 or 10000 cases.
b) Discrete variables of the realistic Bayesian network. The continuous
variables (sensors) have been removed for clarification.

However, the second case has sensors with bigger variance
and hence it is not as straightforward to infer the discrete val-
ues from the sensors. Thus, both algorithms perform worse
than they did with the first case. However, now EM clearly
outperforms Discrete (the RMS error is reduced by 58.5%
and 84.6% with 300 and 3000 cases); moreover, the EM
algorithm greatly benefits from the increase of information
whereas Discrete has similar errors on both situations.

C. Complex Bayesian Network Results

Apart from these tests with the simple Bayesian network,
similar tests were done with the more complex (125 degrees
of freedom) network. The means of the sensors distributions
are the same as before, the standard deviations are 3, as in
the second case. This time around, the procedure was applied
exactly as described 30 times, with database sizes of 300 and
3000, and additionally, with a database size of 10000. The
results of this procedure are summarized on Fig.4(a).

Just looking at the results for the database size of 300,
one could claim that, when applied to this more complex
network, the Discrete algorithm is superior to EM. However,
given that the network has 125 degrees of freedom, it is
very hard to believe that any meaningful information can be

Fig. 5. Evolution of the log-likelihood of the parameters for the realistic
network with a database of 300 cases

extracted from only 300 experiences, that would allow the
inference of the parameters of the model. As can be seen in
Fig.5, with such a short amount of experiments, even though
the log-likelihood of the parameters converges, the result is
still far from good.

This suspicion is confirmed, and the trend that was ob-
served on the previous case is seen again when the 3000
and 10000 database size results are taken into account. On
the 3000 case, the RMS error for the Discrete is slightly
lower but for the EM algorithm it becomes less than half
(compared to the 300 case), the RMS error is 7.7% lower
for the EM than for the Discrete. When one observes the
10000 database size, it becomes evident that EM makes use
of the extra information to perform a much better inference
(the RMS error is reduced by 43.1%), while the Discrete
algorithm performs almost at the same level as with the 3000
database size.

V. CONCLUSIONS AND FUTURE WORK

It has been shown that considering the full distribution of
the GMM applied to affordance learning performs better than
the MAP estimate, especially in situations where there is sig-
nificant overlap between the various values that descriptors
of object features and effects can take.

However, there are a number of flaws in the application
of the algorithm described. Namely, its execution time of the
EM algorithm is much slower than the close form solution
of the network parameters using the discrete nodes directly.
EM is also a batch algorithm, hence there can be no iterative
learning in the sense that the algorithm update the parameters
as new information becomes available. However, there are
some algorithm for online-EM which could be applied in
this setup [9], [1].

Interesting future work would include the development
of an algorithm with comparable performance to that of
EM but more efficient, particularly with regards to its time
complexity dependence on the number of nodes, in order to
make the algorithm scalable. This algorithm would ideally be
able to store the previously performed inference as a prior,
allowing iterative learning. This algorithm might also be

5



extended to deal with the structure of the problem similarly
to [5].

Also of interest is the question of whether it is feasible
to acquire the amounts of information that EM appears to
need in order to perform a satisfactory inference of complex
Bayesian Networks, given the context, a robot that performs
experiments just like a child would.

VI. ACKNOWLEDGMENTS
This work has been partly supported by PTDC/EEA-

ACR/70174/2006, grant SFRH/BPD/48857/2008 from FCT
and EU projects HANDLE and FIRST-MM.

APPENDIX

In this section, we derive the equations for the EM
algorithm.

1) E step: – Compute the expected value of the complete
log-likelihood with respect to the distribution of the complete
data (on K experiments):

Q(θ, θold) = Ep(z|y,θold) [log p(x|θ)]

=
K∑
k=1

Ep(z(k)|y(k),θold)

[
log p

(
x(k)|θ

)]
=

K∑
k=1

∑
z(k)

log
[
p
(
y(k), z(k)|θ

)]
p
(
z(k)|y(k), θold

)
︸ ︷︷ ︸

wk

=
K∑
k=1

∑
z(k)

wk

[
log p

(
y(k)|z(k)

)
+ log p

(
z(k)|θ

)]
=

K∑
k=1

∑
z(k)

[
wk log p

(
y(k)|z(k)

)]
︸ ︷︷ ︸

α

+

+
K∑
k=1

∑
z(k)

wk log p
(
z(k)|θ

)

= α+
K∑
k=1

∑
z(k)

wk
N∑
i=1

log p
(
z
(k)
i |Pai, θ

)
︸ ︷︷ ︸

θ
(k)
i


The, we can do the E step by computing

Q(θ, θold) == α+
K∑
k=1

∑
z(k)

[
wk

N∑
i=1

log θ(k)i

]
(6)

2) M step: – perform the maximization

θ∗ = arg max
θ

Q(θ, θold)

subject to the constraints
∑ri

z
(k)
i =1

θi = 1, being ri is the

number of different values the ith node can take.
We can use Lagrange Multipliers λi to solve the con-

strained optimization problem. For simplicity in the deriva-
tion, we replace z(k)

i with z.

Λ = Q(θ, θold)−
n∑
i=1

∑
Pai

λi

(
ri∑
z=1

θi − 1

)
(7)

Now, we can derivate Λ with respect to θi and make it equal
to 0. Then, developing the equation for a fixed z

(k)
i and

Pa(z(k)
i ) = Pai:

−λi +
K∑
k=1

∑
Pai

wk
θi

= 0⇔

⇔ λiθi =
K∑
k=1

∑
Pai

wk ⇔ (8)

⇔ λi

ri∑
z=1

θi = λi =
ri∑
z=1

K∑
k=1

∑
Pai

wk (9)

Replacing (9) in (8):

θi =

∑K
k=1

∑
Pai

wk∑ri

z=1

∑K
k=1

∑
Pai

wk
(10)

Thus, we can directly estimate the parameters θi. Further-
more, we have defined wk such us

wk ≡ p
(
z(k)|y(k), θold

)
where, we can integrate over all hiden variables that are not
parents of z(k)

i . Thus,∑
Pai

wk = p
(
z
(k)
i , Pai|y(k), θold

)
(11)

By replacing (11) on (10) we obtain equation (4).

REFERENCES

[1] O. Cappé and E.Moulines. On-line expectation–maximization algo-
rithm for latent data models. Journal of the Royal Statistical Society:
Series B, 71(3):593–613, 2009.

[2] G.F. Cooper and E. Herskovits. A bayesian method for the induction
of probabilistic networks from data. Machine Learning, 9(4):309–347,
1992.

[3] Andrew Moore Dan Pelleg. X-means: Extending k-means with
efficient estimation of the number of clusters. In Proceedings of
the Seventeenth International Conference on Machine Learning, pages
727–734, San Francisco, 2000. Morgan Kaufmann.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. J. Royal Statistical Society
B, 39:1–38, 1977.

[5] N. Firedman. The bayesian structural em algorithm. In Uncertainty
in Artificial Intelligence, UAI, 1998.

[6] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning
about objects through action: Initial steps towards artificialcognition.
In IEEE International Conference on Robotics and Automation, Taipei,
Taiwan, 2003.

[7] J. J. Gibson. The Ecological Approach to Visual Perception. Houghton
Mifflin, Boston, 1979.

[8] D. Heckerman. A tutorial on learning with bayesian networks.
Technical report, Microsoft Research Advanced Techonlogy Division,
1996.

[9] P. Liang and D. Klein. Online EM for unsupervised models. In North
American Association for Computational Linguistics (NAACL), 2009.

[10] D. Madigan and J. York. Bayesian graphical models for discrete data.
Intl. Statistical Review, 63:215–232, 1995.

[11] Luis Montesano, Manuel Lopes, Alexandre Bernardino, and José
Santos-Victor. Learning object affordances: From sensory–motor
coordination to imitation. IEEE Transactions on Robotics, 24(1):15–
26, Feb. 2008.

6




