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Abstract

Normal forces exerted by the adhesive to the substrategithiinsqueeze flow occurring in compaction of bonded
joints are analyzed using theoretical, numerical and éxy@ertal techniques. An analytical solution, derived frdma t
squeeze-flow theory of a viscoplastic material, is geregdlito be valid for any initial shape of the adhesive cord.
The rheology of the material is modeled according to the ¢tersBulkley model and is fitted with experimental data
available from the characterization of an epoxy-based sidbe The analytical law is compared with a numerical
model, where the two-phase problem for the squeeze-flovistestved by finite-volume methods using a commercial
CFD solver. The results obtained with these two approachew &xcellent agreement with experimental forces
obtained for a wedge-shaped specimen. The proposed méthggdman therefore be useful for the optimization of
the bond lines in assembling processes.
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1. Introduction cases it is produced by a raise in the stress concentra-
tion that usually appears in the extremes of the over-
During the last years, the utilization of adhesive- |aps (when the thickness exceed the optimum one). For
bonding techniques have seen a remarkable growth. Be-3 comprehensive overview of these issues the reader is
sides their lower production cost indeed, these proce- referred to [3, 4] and references thereffor these rea-
dures dfer several important advantages over conven- sons the compaction process constitutes a critical phase
tional mechanical fasteners, such as: high strength-to-that must be adequately controlled to guarantee the fi-
weight ratio, resistance to corrosion and degradation in na| quality of the joints. In particular, the assembly pro-
aggressive environments, continuity and impermeabil- cess must be designed to ensure a final thickness within
ity of the joints, dficient bonding of dissimilar or het-  the admissible ranges, in order to guarantee the required
erogeneous materials and, through a careful selection ofmechanical performance. In certain cases, the adhesive
the materials, a high capacity for energy and vibration thickness along the bonded areas cannot be controlled
absorption [1]. through gauges or spacers, thus the final result mainly
However, in Iarge assemblies the thickness and Shapedepends on the forces imposed during Compaction'
of the adhesive cord can stronglffect the strength of  |n this work we analyze these forces by means of analyt-
the joints and thus of the component [Zfhis isawell  ical tools, a two-phase numerical model and experimen-
known issue, especially for rigid or toughened structural ta| measurements. The test case is the squeeze-flow of
adhesives, where significant reductions of the maximum gp epoxy-based adhesive, whose rheology is modeled
load capacity of the joints are observed if the bondline according to a viscoplastic constitutive law (Herschel-
thickness deviates from an optimum value. This phe- Bulkley model), fitted with experimental data available
nomenon is sometimes associated to a change in thefrom a characterization. An analytical solution is gen-
failure mode (from cohesive to adhesive, generally for eralized to be valid for any initial shape of the adhe-
thicknesses lower than the optimum one) and in other sjve cord (wedge-shaped in this work). The numerical
model is intended as an auxiliary tool, whose utiliza-
tion in conjunction with the analytical law allows to cor-
rectly predict compressive forces in complex adhesive
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Figure 1: (Color online) Experimental system used for theatiari-
zation and the squeeze-flow tests.

shapes_ The aim of this crossed analysis is to provide Figure 2: (Color online) Schemes for the analy'tical s_olutioylin-
valuable information about the limits of each technique d"ical (&) and wedge-shaped (b) geometriese dimensions aret]

. .. ranges from 10 to 25 mni,maxis 160 mm,R ranges from 15 to 30
and abogt how to combine them to a.ccura_tely predict 1, 'andD ranges from 100 to 400 mm
compaction forces for dierent geometries. Finally, the
control of the compaction forces allows to optimize the
parameter set-up in the assembly process. specimen additional aluminum profiles were added to
The outline of the paper is as follows: the experimental the lower plate. The gap between these profiles and the
set-up is firstly briefly explained; successively the an- wooden block was adjusted to guarantee a friction-free
alytical and numerical approaches are discussed. TheVvertical movement. The adhesive samples were previ-
results obtained and the comparison between the ap-Ously prepared on separate plates. The shape of the
proaches with experimental data are presented in sec-specimens (cylindrical or wedge-shaped) was obtained

tion 3. A brief discussion of the results and of the pro- by firstly using a palette for a preliminary modeling and
posed methodo|ogies concludes the paper. then accurately finished with a laser-cut steel. Each

specimen was tested on its individual plane used for the
preparation, which was correctly positioned and fixed

to the universal machine. Force values were instanta-
neously recorded by TestWofk4 [6].

2. Methodology

2.1. Experimental set-up

The squeeze tests were performed using the experi-5 o Analytical model
mental set-up shown in Fig. 1. A squeeze tool, inter-
nally designed, was mounted in a MTS Universal Test-
ing Machine (model Alliance RF100) [5]. The tests
were conducted with two load cells: a 1 kN load cell
for the tests on the cylindrical specimens and a 100 kN
one for those on the wedge-shaped specimens. The test
were performed with a crossbeam velocity between 50
mnymin and 250 miimin. The squeeze tool is based
on guided parallel plates. The four vertical columns en-
sure a uniform distribution of pressure over the speci-
men. The lower aluminum plate is fixed to the frame
plane, whilst the upper one is assembled to the mobile
crossbeam of the universal machine. For the squeeze, aeing 7o the yield shear-stress threshold, the con-
wooden block covered by kraftliner paper was mounted sistency index anah the power-law index. This con-
on the upper plate using bolts. In order to contain the figuration has been previously studied [8, 9], particu-
lateral overflow of the material, for the wedge-shaped larly, Adams et al. [10] demonstrated that for no-slip
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Analytical solutions for squeeze-flow are typically
derived for cylindrical samples [7] as shown in Fig. 2
(a). For this case, the following conditions are con-
sidered: a constant velocity = —dH/dt; an inter-

late volumerRZ,,,H, which is assumed to be always
ull of material and thus the contribution to the force
of the overflow (when squeezing beyoRdy) is ne-
glected; a rheology given according to the Herschel-
Bulkley model, which in scalar form reads:

T =10+ Ky"; (2)



boundary conditions at the walls and a plasticity num- F} is the dimensionless shear force:
ber defined a$ = (RVKl/”)/(HZTé/“), in the ranges N
0< S <100andQ < n < 1the mean pressure has the Fi=1+ (i)(zn + 1) s
following form: n+3 n

_ F Rro [2 2 (2n+1\"_,
= — = —_ = _— . 2
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(8)

which dominates at larg8 (and largeL/H). F; is a
normal force arising from the uniaxial yield stress.
Considering a Von Mises solid [90 = V37, and this
force reads:

being oo the uniaxial yield stress. It is typically as-
sumed thaR/H >> 1 and that the contribution afg 3v3H
is negligible as compared witRrg/H. However, these Fh= Tf; 9)
two simplifications must be avoided for generalizing the
solution to arbitrary shapes of the sample, see for exam- Which is typically relevant in a transition region be-
ple Fig. 2 (b). For the generalization, the contact area
must be a function of the contact lendgth Thus, for
cylindrical sampled. = R and the contact area is com-
puted asA = 7L.2. For wedge-shaped samples this con-
tact area isA = LD. The definition of the generalized
plasticity numbesS is then:
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and the generalized expression for the compressive
force follows from Eq. (2):
2LA
F = 0'0A+ mToﬁ-
2LAK (2n+1 ”(g)“ 0(5)2
(n+3)H n H2 L/~

(4)
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The vyield stress threshold is straightforwardly defined
from the above equatioim the limit of V — 0 and ne-
glectingog as:

_ 3HF
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Figure 3: (Color online) Computational mesh and time evolutbn
When working at constant force, an expression for the the fluid-dynamic solution fow = 50 mmmin.
velocity as a function of the force can be obtained from
Eq. (4) and can be used to compute the separation heighfweenS = 1 andS — 0. The last forceF; encom-
as a function of time all(t,) = H(t,_1)— Vét, where the passes all higher order terms, which are mainly related

explicit expression for the squeeze velocity is (neglect- t0 surface-fluid interactions. These include slifeets,
ing O(H/L)2-terms): surface tension and any other surface potential related

70
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to, for example, electrostatic forces. This forces are ex-
2
=l
L \2n+1
(6)

pected to be relevant at smé&llor equivalently at small
L/H andor small shear rates«(V/H). To approximate
the value of this force, we consider that in the regime

Making dimensionless the force F with the vyield-

stress force (RArp)/(3H) the dimensionless compres-

sive forceF* is obtained, which is the result of three

contributions:

F'=FL+F+F. 7)

of S — 0 the flow is at small shear rates and thus in
a Newtonian plateau and that there is full slip at the
walls. Using this assumptions the following force is ob-
tained [11]:

) . (10)
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Figure 4: (Color online) Comparison of analytical and numargplutions with experimental data for the squeeze-flowaesbnstant velocity.
The experimental data and numerical solutions are leasts(dttad.

Normal and higher-order forces are usually neglected system is given by the incompressible Navier-Stokes
in squeeze-flow analysis but they are the main forces in- equations as:
volved whenL/H >> 1, which occurs, for example, at
the beginning of the compression of a geometry as the
oneinFig. 2 (b). . . p(a—V+V~VV)=—Vp+)7V2V; (14)

The contact length in arbitrary geometries can be ap- ot

proximated as a weighted function between the initial beingp the densityp the pressurey the velocity and
and the maximum contact length, expressed as a func-ihe gynamic viscosity. The tracking of the interface be-
tion of the separation height H as: tween the primary (air) and secondary phase (adhesive)

L is achieved by the solution of a volume fraction equa-
L= Q(Lmax_ maXH) +(1- @) Lmax (11) tion, which allows Eq. (14) to be shared by the phases
max through the properties andn. The rheology of the ad-
hesive is given by the Herschel-Bulkley model (Eq. 1),
through the viscosity as:

V-v=0; (13)

beinga a geometric function defined as:

1 2 _ Y .
4= ——— (12) o % b4 ]
H-5 <ve:n=——1+K|2-n){M-1)—]|; (15
1+exp[_7] Y<%Yc-T1 e 0 ( ) ( )7c (15)
- \n-1
The two fitting_coﬁicientsﬂ andy can be geometrically Y>Yein= o,k (l) : (16)
computed or fitted from CFD ayat experimental data. Y Ye

beingy. a critical shear rate. Equations are solved im-
2.3. Numerical model posing pressure boundary conditions on the left and

right vertical exits, no-slip on the walls. The numeri-

The experimental set-up employed for the character- cal solution is carried out by finite volume method us-
ization of the epoxy-based adhesive is reproduced us-ing the commercial CFD solver ANSYS Fluéhw14.0.
ing the two-dimensional computational domain shown We adopt a third order discretization scheme (MUSCL)
in Fig. (3). The domain consist in a compression cham- for momentum and the PRESTO scheme for pressure.
ber, enclosed between two parallel walls. All the bound- The Semi-Implicit Method for Pressure Linked Equa-
aries are static, except for the upper central wall, which tions (SIMPLE) is used for the pressure-velocity cou-
is used for the compression. The adhesive is modeled aspling and the transient scheme is first order implicit.
secondary phase and squeezed in the central (thinner)
zone of the domain, reproducing a single-lap joint as- 3 Results
sembly. The multi-phase model adopted is the Volume-
Of-Fluid (VOF) method. In this approach a single mo- 3.1. Adhesive rheology
mentum equation is shared between the phases, there- The analytical solution given by Eq. (4) allows us to
fore the conservation of mass and momentum for the use the equipment described in Section 2.1 as a squeeze-
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Figure 5: (Color online) Comparison of the dimensionlessydital and numerical solutions with experimental data\fpre= 50 mnymin, Vo = 100
mmnymin andVz = 250 mmimin . Inset: decomposition of the analytical soluti®hfor Vo = 100 mmmin (red) in its contributions. Fdr/H > 1
the flow regime is shear-dominated, while fotH < 1, the flow regime is dominated B(L/H)2-order forces. In the transition region normal
forces prevalil.

of 11%. Setting the yield stress to this mean value six

Table 1: Fitting of the parameters for the Herschel-Bulkleydelo . .
experiments at constant velocity were performed (see

Vm/s] n[-] K[Pas] Table 1) to adjust the values ofandK to experimen-
0.05 0.305 232.37 tal data using Eq. (4). The regression @méents for
0.05 0228 251.80 all cases aréR?> > 0.99. The mean values obtained
0.10 0.310 23073 weren = 0.324 with a standard deviation of 18% and

K = 25730 with a standard deviation of 16%. The use

0.10 0.351 219.46 of the squeeze flow rheometer is especially appropriate

0.25 0347 32541 for the compression of adhesives, as long as the flow has
0.25 0.400 284.03 the same shear rate values and history as in the compres-
Mean 0.324 257.30 sion of the adhesive in real geometries.

3.2. Adhesive squeeze-flow analysis

flow rheometer. Thus, the parameters of the Herschel- Experimental and numerical tests at constant veloc-
Bulkley model,n, K andrq in Eq. (1) are obtained by ity have been conducted and compared to the analyti-
fitting experimental data. For these rheometric experi- cal solution. Dimensional results are reported in Fig.
ments, cylindrical test samples of 30 mm radius and 20 4. The comparison shows a very good agreement for
mm height are used. The material used is the Spabondall cases. The final thickness of the adhesive can be
340LV Resin by Gurit [12]. The experiments were car- computed by Eq. (5) using the force, the contact area
ried out in a range of room temperatures between 294 and the yield stress of the adhesivén additional di-
and 296 K. We first performed two creeping experi- mensionless comparison provides insight into the ori-
ments at constant force (196 and 412 N) to obtain the gin of forces during the squeeze-flow process, see Fig.
yield stress from Eg. (5). The mean value obtained for 5. It can be observed that there are three regimes, each
the yield stress was 372.9 Pa with a standard deviation one dominated for one of the contributed forces in Eq.
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Figure 6: (Color online) Comparison of the analytical santivith
experimental data for the squeeze-flow test at constant.force

(7). TheS > 1 limit is well recovered by the two ap-
proaches. In th& — 0 limit both CFD simulations
and experimental results show significant oscillations
around the expected analytical force. This is due to the
nature of forces involved in this regime (i.e. surface ten-
sion, wall friction) that are all of the same order and
interplay giving a dynamical behavior which has a non-
trivial analytical characterization. The real interplayi
forces are not exactly the same as in CFD simulations
because these latter are aldteaeted by numerical dif-
fusion of the interphase in this stage, but they are any-
way of the same order of magnitude. The intermediate
regime, in which the normal forces prevalil, is not prop-
erly recovered by CFD simulations. The reason is that
the yield stress is not defined in the same way. In the
analytical solution we deal with a Von Mises yield cri-
terion but in the CFD simulation the yield criterion is
defined byrg andy.. A Von Mises yield criterion or ad-

4. Conclusions

An analytical model for squeeze forces occurring dur-
ing compaction of bonded joints has been proposed.
The analytical solution is generalized to be valid for
any initial shape of the adhesive before its squeeze. A
two-phase numerical model of the squeeze-flow test has
been also introduced. The results obtained with the
two approaches showed excellent agreement with ex-
perimental data available for a wedge-shaped adhesive
geometry. The proposed numerical solution can then
be seen as an auxiliary tool to be used in conjunction
with the analytical solution for the prediction of forces
in complex geometries. The accurate prediction and
thus the control of the compressive forces fdfatient
shapes of the adhesive cord, allows optimization for ex-
ample of the position of the jigs (if present) and opti-
mize the amount of material required for the joint exe-
cution, reducing the material overflow.

The analysis and decomposition of the analytical solu-
tion in its various contributions, provides informations
on good-engineering practices to apply when perform-
ing CFD simulations of this kind of flows. Particularly,
CFD techniques are useful when working&t> 1,
otherwise forces can be obtained moficeently from

the analytical expression. If simulations f8r< 1 are
needed, it is suggested to elaborate further on surface
forces and on yield criteria.

The analytical model developed can be further improved
in several ways. For example, in order to take into
account the fect of roughness in thin bondlines, the
following modeling approaches have been previously
adopted [13]: the use of arffective location of straight
walls, the use of slip conditions, the use of dfeetive
viscosity or the use of a representative porous-media
layer. Another point that could be improved is the use of
a temperature-dependent rheology, including tiects

of adhesive curing. The latter would be particularly im-
portant when analyzing assembling processes with tem-
poral scales in the same range than those of curing.

vanced pressure-dependent Drucker-Prager one are nofAcknowledgments

usually implemented in CFD with non-Newtonian rhe-
ologies as the conversion from a displacement formula-
tion to a velocity one requires the use of advanced mod-
els for the transport of the stress.

Additional tests at constant force were carried out, but
only experimental and analytical results are reported in
Fig. 6. CFD simulations at constant force < 1 are
difficult to carry out because of the oscillation of forces,
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