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Abstract

Normal forces exerted by the adhesive to the substrate during the squeeze flow occurring in compaction of bonded
joints are analyzed using theoretical, numerical and experimental techniques. An analytical solution, derived from the
squeeze-flow theory of a viscoplastic material, is generalized to be valid for any initial shape of the adhesive cord.
The rheology of the material is modeled according to the Herschel-Bulkley model and is fitted with experimental data
available from the characterization of an epoxy-based adhesive. The analytical law is compared with a numerical
model, where the two-phase problem for the squeeze-flow testis solved by finite-volume methods using a commercial
CFD solver. The results obtained with these two approaches show excellent agreement with experimental forces
obtained for a wedge-shaped specimen. The proposed methodology can therefore be useful for the optimization of
the bond lines in assembling processes.
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1. Introduction

During the last years, the utilization of adhesive-
bonding techniques have seen a remarkable growth. Be-
sides their lower production cost indeed, these proce-
dures offer several important advantages over conven-
tional mechanical fasteners, such as: high strength-to-
weight ratio, resistance to corrosion and degradation in
aggressive environments, continuity and impermeabil-
ity of the joints, efficient bonding of dissimilar or het-
erogeneous materials and, through a careful selection of
the materials, a high capacity for energy and vibration
absorption [1].
However, in large assemblies the thickness and shape
of the adhesive cord can strongly affect the strength of
the joints and thus of the component [2].This is a well
known issue, especially for rigid or toughened structural
adhesives, where significant reductions of the maximum
load capacity of the joints are observed if the bondline
thickness deviates from an optimum value. This phe-
nomenon is sometimes associated to a change in the
failure mode (from cohesive to adhesive, generally for
thicknesses lower than the optimum one) and in other
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cases it is produced by a raise in the stress concentra-
tion that usually appears in the extremes of the over-
laps (when the thickness exceed the optimum one). For
a comprehensive overview of these issues the reader is
referred to [3, 4] and references therein. For these rea-
sons the compaction process constitutes a critical phase
that must be adequately controlled to guarantee the fi-
nal quality of the joints. In particular, the assembly pro-
cess must be designed to ensure a final thickness within
the admissible ranges, in order to guarantee the required
mechanical performance. In certain cases, the adhesive
thickness along the bonded areas cannot be controlled
through gauges or spacers, thus the final result mainly
depends on the forces imposed during compaction.
In this work we analyze these forces by means of analyt-
ical tools, a two-phase numerical model and experimen-
tal measurements. The test case is the squeeze-flow of
an epoxy-based adhesive, whose rheology is modeled
according to a viscoplastic constitutive law (Herschel-
Bulkley model), fitted with experimental data available
from a characterization. An analytical solution is gen-
eralized to be valid for any initial shape of the adhe-
sive cord (wedge-shaped in this work). The numerical
model is intended as an auxiliary tool, whose utiliza-
tion in conjunction with the analytical law allows to cor-
rectly predict compressive forces in complex adhesive
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Figure 1: (Color online) Experimental system used for the characteri-
zation and the squeeze-flow tests.

shapes. The aim of this crossed analysis is to provide
valuable information about the limits of each technique
and about how to combine them to accurately predict
compaction forces for different geometries. Finally, the
control of the compaction forces allows to optimize the
parameter set-up in the assembly process.
The outline of the paper is as follows: the experimental
set-up is firstly briefly explained; successively the an-
alytical and numerical approaches are discussed. The
results obtained and the comparison between the ap-
proaches with experimental data are presented in sec-
tion 3. A brief discussion of the results and of the pro-
posed methodologies concludes the paper.

2. Methodology

2.1. Experimental set-up

The squeeze tests were performed using the experi-
mental set-up shown in Fig. 1. A squeeze tool, inter-
nally designed, was mounted in a MTS Universal Test-
ing Machine (model Alliance RF100) [5]. The tests
were conducted with two load cells: a 1 kN load cell
for the tests on the cylindrical specimens and a 100 kN
one for those on the wedge-shaped specimens. The tests
were performed with a crossbeam velocity between 50
mm/min and 250 mm/min. The squeeze tool is based
on guided parallel plates. The four vertical columns en-
sure a uniform distribution of pressure over the speci-
men. The lower aluminum plate is fixed to the frame
plane, whilst the upper one is assembled to the mobile
crossbeam of the universal machine. For the squeeze, a
wooden block covered by kraftliner paper was mounted
on the upper plate using bolts. In order to contain the
lateral overflow of the material, for the wedge-shaped

Figure 2: (Color online) Schemes for the analytical solution: cylin-
drical (a) and wedge-shaped (b) geometries.The dimensions are:H
ranges from 10 to 25 mm,Lmax is 160 mm,R ranges from 15 to 30
mm andD ranges from 100 to 400 mm.

specimen additional aluminum profiles were added to
the lower plate. The gap between these profiles and the
wooden block was adjusted to guarantee a friction-free
vertical movement. The adhesive samples were previ-
ously prepared on separate plates. The shape of the
specimens (cylindrical or wedge-shaped) was obtained
by firstly using a palette for a preliminary modeling and
then accurately finished with a laser-cut steel. Each
specimen was tested on its individual plane used for the
preparation, which was correctly positioned and fixed
to the universal machine. Force values were instanta-
neously recorded by TestWorks®4 [6].

2.2. Analytical model

Analytical solutions for squeeze-flow are typically
derived for cylindrical samples [7] as shown in Fig. 2
(a). For this case, the following conditions are con-
sidered: a constant velocityV = −dH/dt; an inter-
plate volumeπR2

maxH, which is assumed to be always
full of material and thus the contribution to the force
of the overflow (when squeezing beyondRmax) is ne-
glected; a rheology given according to the Herschel-
Bulkley model, which in scalar form reads:

τ = τ0 + Kγ̇n; (1)

being τ0 the yield shear-stress threshold,K the con-
sistency index andn the power-law index. This con-
figuration has been previously studied [8, 9], particu-
larly, Adams et al. [10] demonstrated that for no-slip

2



boundary conditions at the walls and a plasticity num-
ber defined asS = (RVK1/n)/(H2τ

1/n
0 ), in the ranges

0 < S < 100 and 0.1 < n < 1 the mean pressure has the
following form:

p =
F
πR2
= σ0 +

Rτ0
H

[

2
3
+

2
n+ 3

(

2n+ 1
n

)n

Sn

]

; (2)

beingσ0 the uniaxial yield stress. It is typically as-
sumed thatR/H >> 1 and that the contribution ofσ0

is negligible as compared withRτ0/H. However, these
two simplifications must be avoided for generalizing the
solution to arbitrary shapes of the sample, see for exam-
ple Fig. 2 (b). For the generalization, the contact area
must be a function of the contact lengthL. Thus, for
cylindrical samplesL = R and the contact area is com-
puted asA = πL2. For wedge-shaped samples this con-
tact area isA = LD. The definition of the generalized
plasticity numberS is then:

S =
LV
H2

(

K
τ0

)1/n

; (3)

and the generalized expression for the compressive
force follows from Eq. (2):

F =σ0A+
2LA
3H
τ0+

2LAK
(n+ 3)H

(

2n+ 1
n

)n (LV
H2

)n

+O
(H

L

)2

. (4)

The yield stress threshold is straightforwardly defined
from the above equationin the limit of V → 0 and ne-
glectingσ0 as:

τ0 =
3HF
2LA
. (5)

When working at constant force, an expression for the
velocity as a function of the force can be obtained from
Eq. (4) and can be used to compute the separation height
as a function of time asH(tn) = H(tn−1)−Vδt, where the
explicit expression for the squeeze velocity is (neglect-
ing O(H/L)2-terms):

V =
H2

L

( n
2n+ 1

)

[(

F − Aσ0 −
2LA
3H
τ0

)

(n+ 3)H
2LAK

]1/n

.

(6)

Making dimensionless the force F with the yield-
stress force (2LAτ0)/(3H) the dimensionless compres-
sive forceF∗ is obtained, which is the result of three
contributions:

F∗ = F∗s + F∗n + F∗h. (7)

F∗s is the dimensionless shear force:

F∗s = 1+

(

3
n+ 3

) (

2n+ 1
n

)n

Sn; (8)

which dominates at largeS (and largeL/H). F∗n is a
normal force arising from the uniaxial yield stressσ0.
Considering a Von Mises solid [9],σ0 =

√
3τ0 and this

force reads:

F∗n =
3
√

3
2

H
L

; (9)

which is typically relevant in a transition region be-

Figure 3: (Color online) Computational mesh and time evolutionof
the fluid-dynamic solution forV = 50 mm/min.

tweenS = 1 andS → 0. The last forceF∗h encom-
passes all higher order terms, which are mainly related
to surface-fluid interactions. These include slip effects,
surface tension and any other surface potential related
to, for example, electrostatic forces. This forces are ex-
pected to be relevant at smallS or equivalently at small
L/H and/or small shear rates (≈ V/H). To approximate
the value of this force, we consider that in the regime
of S → 0 the flow is at small shear rates and thus in
a Newtonian plateau and that there is full slip at the
walls. Using this assumptions the following force is ob-
tained [11]:

F∗h =
3
2

K
τ0

(H
L

)2

. (10)
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Figure 4: (Color online) Comparison of analytical and numerical solutions with experimental data for the squeeze-flow testat constant velocity.
The experimental data and numerical solutions are least-square fitted.

Normal and higher-order forces are usually neglected
in squeeze-flow analysis but they are the main forces in-
volved whenL/H >> 1, which occurs, for example, at
the beginning of the compression of a geometry as the
one in Fig. 2 (b).
The contact length in arbitrary geometries can be ap-
proximated as a weighted function between the initial
and the maximum contact length, expressed as a func-
tion of the separation height H as:

L = α

(

Lmax−
Lmax

Hmax
H

)

+ (1− α) Lmax; (11)

beingα a geometric function defined as:

α =
1

1+ exp
[

−H−β
γ

] . (12)

The two fitting coefficientsβ andγ can be geometrically
computed or fitted from CFD and/or experimental data.

2.3. Numerical model

The experimental set-up employed for the character-
ization of the epoxy-based adhesive is reproduced us-
ing the two-dimensional computational domain shown
in Fig. (3). The domain consist in a compression cham-
ber, enclosed between two parallel walls. All the bound-
aries are static, except for the upper central wall, which
is used for the compression. The adhesive is modeled as
secondary phase and squeezed in the central (thinner)
zone of the domain, reproducing a single-lap joint as-
sembly. The multi-phase model adopted is the Volume-
Of-Fluid (VOF) method. In this approach a single mo-
mentum equation is shared between the phases, there-
fore the conservation of mass and momentum for the

system is given by the incompressible Navier-Stokes
equations as:

∇ · v = 0; (13)

ρ

(

∂v
∂t
+ v · ∇v

)

= −∇p+ η∇2v; (14)

beingρ the density,p the pressure,v the velocity andη
the dynamic viscosity. The tracking of the interface be-
tween the primary (air) and secondary phase (adhesive)
is achieved by the solution of a volume fraction equa-
tion, which allows Eq. (14) to be shared by the phases
through the propertiesρ andη. The rheology of the ad-
hesive is given by the Herschel-Bulkley model (Eq. 1),
through the viscosity as:

γ̇ < γ̇c : η =
2− γ̇

γ̇c

γ̇c
τ0 + K

[

(2− n) (n− 1)
γ̇

γ̇c

]

; (15)

γ̇ > γ̇c : η =
τ0

γ̇
+ K

(

γ̇

γ̇c

)n−1

; (16)

being ˙γc a critical shear rate. Equations are solved im-
posing pressure boundary conditions on the left and
right vertical exits, no-slip on the walls. The numeri-
cal solution is carried out by finite volume method us-
ing the commercial CFD solver ANSYS Fluent® v14.0.
We adopt a third order discretization scheme (MUSCL)
for momentum and the PRESTO scheme for pressure.
The Semi-Implicit Method for Pressure Linked Equa-
tions (SIMPLE) is used for the pressure-velocity cou-
pling and the transient scheme is first order implicit.

3. Results

3.1. Adhesive rheology
The analytical solution given by Eq. (4) allows us to

use the equipment described in Section 2.1 as a squeeze-
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Figure 5: (Color online) Comparison of the dimensionless analytical and numerical solutions with experimental data forV1 = 50 mm/min,V2 = 100
mm/min andV3 = 250 mm/min . Inset: decomposition of the analytical solutionF∗ for V2 = 100 mm/min (red) in its contributions. ForL/H ≫ 1
the flow regime is shear-dominated, while forL/H ≪ 1, the flow regime is dominated byO(L/H)2-order forces. In the transition region normal
forces prevail.

Table 1: Fitting of the parameters for the Herschel-Bulkley model.

V [m/s] n [−] K [Pa·sn]

0.05 0.305 232.37

0.05 0.228 251.80

0.10 0.310 230.73

0.10 0.351 219.46

0.25 0.347 325.41

0.25 0.400 284.03

Mean 0.324 257.30

flow rheometer. Thus, the parameters of the Herschel-
Bulkley model,n, K andτ0 in Eq. (1) are obtained by
fitting experimental data. For these rheometric experi-
ments, cylindrical test samples of 30 mm radius and 20
mm height are used. The material used is the Spabond
340LV Resin by Gurit [12]. The experiments were car-
ried out in a range of room temperatures between 294
and 296 K. We first performed two creeping experi-
ments at constant force (196 and 412 N) to obtain the
yield stress from Eq. (5). The mean value obtained for
the yield stress was 372.9 Pa with a standard deviation

of 11%. Setting the yield stress to this mean value six
experiments at constant velocity were performed (see
Table 1) to adjust the values ofn andK to experimen-
tal data using Eq. (4). The regression coefficients for
all cases areR2 > 0.99. The mean values obtained
weren = 0.324 with a standard deviation of 18% and
K = 257.30 with a standard deviation of 16%. The use
of the squeeze flow rheometer is especially appropriate
for the compression of adhesives, as long as the flow has
the same shear rate values and history as in the compres-
sion of the adhesive in real geometries.

3.2. Adhesive squeeze-flow analysis

Experimental and numerical tests at constant veloc-
ity have been conducted and compared to the analyti-
cal solution. Dimensional results are reported in Fig.
4. The comparison shows a very good agreement for
all cases. The final thickness of the adhesive can be
computed by Eq. (5) using the force, the contact area
and the yield stress of the adhesive.An additional di-
mensionless comparison provides insight into the ori-
gin of forces during the squeeze-flow process, see Fig.
5. It can be observed that there are three regimes, each
one dominated for one of the contributed forces in Eq.
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Figure 6: (Color online) Comparison of the analytical solution with
experimental data for the squeeze-flow test at constant force.

(7). TheS > 1 limit is well recovered by the two ap-
proaches. In theS → 0 limit both CFD simulations
and experimental results show significant oscillations
around the expected analytical force. This is due to the
nature of forces involved in this regime (i.e. surface ten-
sion, wall friction) that are all of the same order and
interplay giving a dynamical behavior which has a non-
trivial analytical characterization. The real interplaying
forces are not exactly the same as in CFD simulations
because these latter are also affected by numerical dif-
fusion of the interphase in this stage, but they are any-
way of the same order of magnitude. The intermediate
regime, in which the normal forces prevail, is not prop-
erly recovered by CFD simulations. The reason is that
the yield stress is not defined in the same way. In the
analytical solution we deal with a Von Mises yield cri-
terion but in the CFD simulation the yield criterion is
defined byτ0 andγ̇c. A Von Mises yield criterion or ad-
vanced pressure-dependent Drucker-Prager one are not
usually implemented in CFD with non-Newtonian rhe-
ologies as the conversion from a displacement formula-
tion to a velocity one requires the use of advanced mod-
els for the transport of the stress.
Additional tests at constant force were carried out, but
only experimental and analytical results are reported in
Fig. 6. CFD simulations at constant force forS < 1 are
difficult to carry out because of the oscillation of forces,
as seen in the dimensionless analysis, which makes the
simulation unstable.

4. Conclusions

An analytical model for squeeze forces occurring dur-
ing compaction of bonded joints has been proposed.
The analytical solution is generalized to be valid for
any initial shape of the adhesive before its squeeze. A
two-phase numerical model of the squeeze-flow test has
been also introduced. The results obtained with the
two approaches showed excellent agreement with ex-
perimental data available for a wedge-shaped adhesive
geometry. The proposed numerical solution can then
be seen as an auxiliary tool to be used in conjunction
with the analytical solution for the prediction of forces
in complex geometries. The accurate prediction and
thus the control of the compressive forces for different
shapes of the adhesive cord, allows optimization for ex-
ample of the position of the jigs (if present) and opti-
mize the amount of material required for the joint exe-
cution, reducing the material overflow.
The analysis and decomposition of the analytical solu-
tion in its various contributions, provides informations
on good-engineering practices to apply when perform-
ing CFD simulations of this kind of flows. Particularly,
CFD techniques are useful when working atS > 1,
otherwise forces can be obtained more efficiently from
the analytical expression. If simulations forS < 1 are
needed, it is suggested to elaborate further on surface
forces and on yield criteria.
The analytical model developed can be further improved
in several ways. For example, in order to take into
account the effect of roughness in thin bondlines, the
following modeling approaches have been previously
adopted [13]: the use of an effective location of straight
walls, the use of slip conditions, the use of an effective
viscosity or the use of a representative porous-media
layer. Another point that could be improved is the use of
a temperature-dependent rheology, including the effects
of adhesive curing. The latter would be particularly im-
portant when analyzing assembling processes with tem-
poral scales in the same range than those of curing.
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