000131514 001__ 131514
000131514 005__ 20241125101201.0
000131514 0247_ $$2doi$$a10.1063/5.0173585
000131514 0248_ $$2sideral$$a136896
000131514 037__ $$aART-2023-136896
000131514 041__ $$aeng
000131514 100__ $$aGracia, David
000131514 245__ $$aThe electrocaloric effect of lead-free Ba<sub>1-y Ca<sub>y Ti<sub>1-x Hf<sub>x O<sub>3 from direct and indirect measurements
000131514 260__ $$c2023
000131514 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131514 5203_ $$aWe report on the dielectric and electrocaloric properties of Ba1−yCayTi1−xHfxO3 for compositions 0.12 < x< 0.18 and y = 0.06, as well as x = 0.15 and 0 < y < 0.15, synthesized by the conventional solid-state reaction method. The addition of Hf/Ca broadens the ferroelectric-paraelectric phase transition while moving it toward room temperature. Two interferroelectric transitions are seen to converge, together with the ferroelectric–paraelectric phase transition, at ∼335 K for 0.12 < x<sub>c < 0.135 and y = 0.06. Consistent with the dielectric properties, the electrocaloric effect maximizes closer to room temperature with increasing Hf/Ca substitutions, which promote larger temperature spans. The electrocaloric responsivity gradually decreases from 0.2 to 0.1 K mm kV<sup>−1 with the addition of Hf/Ca. A homemade quasi-adiabatic calorimeter is employed to measure “directly” the electrocaloric data, which are also calculated from polarization-versus-electric-field cycles using “indirect” standard procedures. The comparison between measured and calculated values highlights the importance of having access to direct methods for a reliable determination of the electrocaloric effect.
000131514 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E11-23R$$9info:eu-repo/grantAgreement/ES/DGA-FSE/E12-23R-RASMIA$$9info:eu-repo/grantAgreement/EC/H2020/101029019/EU/Exploring Aurivillius phases for Green Electrocaloric Refrigeration/EAGER$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101029019-EAGER$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-124734OB-C21
000131514 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131514 590__ $$a5.3$$b2023
000131514 592__ $$a1.527$$b2023
000131514 591__ $$aPHYSICS, APPLIED$$b43 / 179 = 0.24$$c2023$$dQ1$$eT1
000131514 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000131514 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b46 / 141 = 0.326$$c2023$$dQ2$$eT1
000131514 593__ $$aEngineering (miscellaneous)$$c2023$$dQ1
000131514 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b122 / 439 = 0.278$$c2023$$dQ2$$eT1
000131514 594__ $$a9.6$$b2023
000131514 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131514 700__ $$0(orcid)0000-0001-8303-932X$$aLafuerza, Sara
000131514 700__ $$0(orcid)0000-0002-9706-3272$$aBlasco, Javier
000131514 700__ $$0(orcid)0000-0002-8028-9064$$aEvangelisti, Marco
000131514 773__ $$g11, 12 (2023), 121101 [8 pp.]$$pAPL mater.$$tAPL Materials$$x2166-532X
000131514 8564_ $$s6220767$$uhttps://zaguan.unizar.es/record/131514/files/texto_completo.pdf$$yVersión publicada
000131514 8564_ $$s842384$$uhttps://zaguan.unizar.es/record/131514/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131514 909CO $$ooai:zaguan.unizar.es:131514$$particulos$$pdriver
000131514 951__ $$a2024-11-22-12:11:45
000131514 980__ $$aARTICLE