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Abstract

To test the capability of the multilayer model, we used previously published layer-specific experi-
mental data relating to the axial pre-stretch, the opening angle, the fiber distribution obtained by
polarized light microscopy measurements, and the uniaxial and biaxial response of the porcine de-
scending and abdominal aorta. We fitted the mechanical behavior of each arterial layer using Gasser,
Holzapfel and Ogden strain energy function using the dispersion parameter κ as phenomenological
parameter obtained during the fitting procedure or computed from the experimental fiber distribu-
tion. A multilayer finite element model of the whole aorta with the dimensions of the circumferential
and longitudinal strips were then built using layer-specific material parameters previously fitted. This
model was used to capture the whole aorta response under uniaxial and biaxial stress states and to
reproduce the response of the whole aorta to internal pressure.

Our results show that a model based on a multilayer structure without residual stresses is unable
to render the uniaxial and biaxial mechanical response of the aorta (R2 = 0.6954 and R2 = 0.8582
for ddescending thoracic aorta (DTA) and infrarenal abdominal aorta (IAA), respectively). Only an
appropriate multilayer model that includes layer-specific residual stresses can reproduce the response
of the whole aorta (R2 = 0.9787 and R2 = 0.9636 for DTA and IAA respectively). In addition, a
multilayer model without residual stresses produces the same stress distribution as a monolayer model
without residual stresses where the maximal value of circumferential and longitudinal stresses appears
at the inner radius of the intima. Finally, if layer-specific residual stresses are not available, there is
less error the stress distribution using a monolayer model with residual stresses that a multilayer
model without residual stresses.
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1 Introduction

According to the World Health Organization, chronic cardiovascular diseases are the lead-
ing cause of death. For this reason, the study of the mechanical factors that induce vascular
pathologies is one of the main research lines in Biomechanics. The mechanical variables that
strongly influence vascular mechanobiology may be computed thanks to a large number of
constitutive relations describing the mechanical response which have been proposed for cardio-
vascular tissue. (Humphrey, 2002). In this context, the study of the arteries has gained much
attention.

Many connective tissues consist of multiple layers composed of proteins such as collagen. One
example of a multi-layered tissue structure is the aortic wall. Healthy arteries are composed
of three clearly defined layers. The intima (the innermost layer) consists of a single layer of
endothelial cells, a thin basal membrane and a subendothelial layer; the media (the middle
layer) is composed of a 3D network of elastin, smooth muscle cells and collagen fibres; and the
adventitia (the outer layer) consists of fibroblasts, fibrocytes, ground matrix and thick bundles
of collagen fibres (Rhodin, 1980). The reason for considering three separate layers also arises
from the histology of arteries because the composition and the distribution of the components
of the intima, media and adventitia layers (elastin, collagen and cell contents) are different.

Residual stresses in the blood vessel walls are one of the most important features of vascular
tissues. Specifically, it is widely accepted in blood vessel modeling that residual stresses play
a homogenizing role with regard to the circumferential stress distribution (Chuong and Fung,
1986; Fung, 1993). Since they have a strong influence in the final stress distribution within the
arterial wall, it is of paramount importance to include the residual stresses present in a vessel
for the accurate modeling of their mechanical behavior under physiological conditions (Alas-
trué et al., 2007). Residual stresses are defined as those stresses present in the vessels when no
loads are applied. It has been shown that the three individual aortic layers, the intima, media
and adventitia, undergo drastically different residual deformations upon separation (Holzapfel
et al., 2007; Holzapfel and Ogden, 2010; Peña et al., 2015; Sokolis, 2015; Amabili et al., 2019).
However, there are few in vitro studies of layer-separated arterial tissue available in the lit-
erature (Lu et al., 2003; Holzapfel et al., 2005a; Pandit et al., 2005; Sommer et al., 2010;
Sokolis et al., 2012; Weisbecker et al., 2012; Peña et al., 2015; Sassani et al., 2015b,a; Sokolis,
2015; Deveja et al., 2018; Amabili et al., 2019; Sokolis, 2019). Furthermore, residual stresses
or mechanical properties are not included in some of these studies. To the best of the authors’
knowledge, the studies by Sommer et al. (2010) on human carotid arteries, Peña et al. (2015)
on porcine aortas, Sokolis et al. (2012); Sassani et al. (2015b,a) on ascending thoracic aortic
aneurysms and Amabili et al. (2019) on human aorta are the only works that present the
layer-specific mechanical properties and residual stresses at the same time.

Accurate mechanical models and appropriate numerical approaches can be an asset in the
study of cardiovascular dysfunctions and the simulation of surgical interventions, e.g. balloon
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angioplasty or stenting. Computational models require constitutive equations of the vascular
tissue. It is possible to develop constitutive models able to accurately reproduce the stress-
stretch experimental curves which allow the simulation of the placing of the stent and its inter-
action with the vessel wall (Garćıa et al., 2011). Such models should be based on anatomical
information and comprehensive experimental data and help to understand and interpret exper-
imental observations. Therefore, a complete 3-D stress-strain quantification requires separate
properties for each of the layers and the inclusion of residual stresses within the constitutive
modelling framework. However, quantitative data on residual stresses of each layer are difficult
to obtain, so models incorporate residual stresses (RS) without distinguishing the contribu-
tions of media and adventitia (Chaudhry et al., 1997; Alastrué et al., 2007; Cilla et al., 2012).
In contrast, there are several models in the literature that consider a multilayer model of the
aorta neglecting the residual stresses (Holzapfel et al., 2002, 2004; Calvo et al., 2007; Badel
et al., 2012; Sáez et al., 2012). Both approaches, using multilayer models without RS or mono-
layer models with RS, are well established in the literature. However, there is few papers about
the influence of both approaches on the stress distribution obtained (Wan et al., 2010; Bellin
et al., 2013; Mousavi and Avril, 2017; Maes et al., 2019).

One objective of the paper is to verify the capability of the multilayer model considering layer-
specific mechanical properties to capture the whole response of the aorta. To test this capability,
we used experimental data taken from a previous work by our group which measured the axial
pre-stretch, the opening angle (OA), the fiber distribution, and the uniaxial and biaxial re-
sponse of the descending thoracic aorta (DTA) and infrarenal abdominal aorta (IAA) (Peña
et al., 2015, 2018). We fitted the mechanical behavior of each arterial layer using the uniaxial
experimental results. A multilayer model of the whole aorta was then built using layer-specific
material parameters. This model was used to capture the whole aorta response under uniaxial
and biaxial stress states. Another objective of the paper is to test the hypothesis that the multi-
layer model with residual stresses (circumferential and axial RS) is the most appropriate model
for reproducing the response of the whole aorta. To test this hypothesis, we simulated a multi-
layer model of idealized descending thoracic aorta using the layer-specific material parameters
under diastolic (70 mmHg), physiological systolic (120 mmHg) and supra-physiological systolic
(150 mmHg) internal pressure and residual stress. Four models were computed and compared:
a three-layer model with residual stresses; a three-layer model without residual stresses; a
one-layer model with residual stresses; and a one-layer model without residual stresses.

2 Material and Methods

From all the data from (Peña et al., 2015, 2018), we selected sample II data for our analysis
and unpublished data of layer-specific collagen distribution to calibrate the structural model
in order to obtain specific constitutive parameters for each layer of the aorta.

3



2.1 Fitting uniaxial response of layer-specific mechanical properties

To reproduce the mechanical response of each arterial layer, we consider the Gasser, Holzapfel
and Ogden (GOH) strain energy function (SEF) (Gasser et al., 2006) that defined the general-
ized structure tensor H = κ1+ (1−3κ)M0 (where 1 is the identity tensor and M0 = m0⊗m0

is a structure tensor defined using unit vector m0 specifying the mean orientation of fibers)

Ψ = µ (I1 − 3) +
∑
i=4,6

[
k1

2k2

(
exp

{
k2Êi

]
} − 1

)]
, (1)

where Êi = κI1 + (1− 3κ)Ii− 1 for the i-th family of collagen fibres (i = 4, 6). In this equation
I1 = trC̄ represents the first invariant of the modified Cauchy-Green tensor (C̄ = J−2/3FTF)
characterizing the isotropic mechanical response of the elastin (Gundiah et al., 2009; Lillie et al.,
2010) and F the deformation gradient (Spencer, 1971), while Ii = m0i ⊗m0i : C̄ characterize
the mechanical response in the preferential directions of the fibers/cells. κ ∈ [0, 1/3] is a
dispersion parameter (the same for each collagen fiber family); when κ = 0, the model is the
same as that published in Holzapfel et al. (2000), and when κ = 1/3 it recovers an isotropic
potential similar to that used in Demiray (1972). Note that κ could have histological meaning
due to the fully characterized distribution (Gasser et al., 2006), so assuming that the embedded
collagen fibres are distributed according to a transversely isotropic and p-periodic Von Mises
orientation density function (ODF),

ρ(θ) = 4

√
b

2π

exp(b[cos(2θ) + 1])

erfi(
√

2b)
, (2)

where the concentration parameter b ∈ R+ is a measure of the anisotropy. b → 0 represents
an isotropic material, and b→∞ a transversally isotropic one. Erfi(x) is the imaginary error
function. Finally, we can compute κ by the expression (Gasser et al., 2006)

κ =
1

4

∫ π

0
ρ sin3 θdθ. (3)

Due to the physiological meaning of κ, we can obtain this parameter by fitting or we can
compute the collagen fiber distribution by histological measurements. The present work used
polarized light microscopy (PLM) together with a universal rotary stage to identify the three-
dimensional structural arrangement of collagen in the aorta (Smith et al., 1981; Canham
et al., 1989; Gasser et al., 2012). For this purpose, segments of thoracic and abdominal aorta
from Sample II were fixed and prepared for histological analysis. Wall longitudinal speci-
mens, approximately 0.5.0x0.25 cm in size, were prepared from each tissue sample being fixed
in formaldehyde for 24 h and then moved to 70% alcohol. Following Gasser et al. (2012),
only one slices in the intima, two in the media and one in the adventitia on the tangential
plane (circumferential-longitudinal plane) of each specimen, were analyzed. Slides were stained
for birefringence enhancement with Picrosirius Red stain (Figure 1), which causes collagen
to appear in a brighter orange-yellow color when viewed through polarized light (Canham
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et al., 1997, 1989; Smith et al., 1981). The samples were analyzed in a DM2500 M microscope
equipped with a DFC295 digital microscope color camera (Leica Microsystems, Germany) and
with a Universal Rotary Stage (Carl Zeiss GmbH, Jena, Germany) (Smith et al., 1981). The
orientation of a collagen fiber in 3D space was uniquely defined by its elevation angle Φ and
its azimuthal angle Θ. However, for modeling purposes we considered only its azimuthal angle
Θ for simplicity (Sáez et al., 2016). A least-square minimization procedure with the objective
function χ2 =

∑n
i=1(ρexpi −ρODFi )2 was used in order to estimate Von Mises ODF ρODFi param-

eters from the experimentally identified collagen orientation distribution ρexpi . A 39th degree
discretisation proposed by Heo and Xu (2001) with n = 600 integration directions were used.

Accordingly, any continuous integration over the unit sphere can be approximated by a nu-
merical integration

〈(•)〉 =
1

4π

∫
U2

(•) dA ≈
n∑
i=1

wi (•)i, (4)

where we denote by {wi}i=1,··· ,n the corresponding weighting factors. Each experimentally
measured orientation was assigned to the closest spatial orientation of the corresponding nu-
merical integration direction, pi being the number of experimental orientations assigned to
each integration direction i. In order to fulfill the normalization requirements of the numerical

integration, 1
4π

∫
U2 ρ

exp
i dA ≈

n∑
i=1

wi ρexpi , the experimental collagen orientation distribution was

defined as ρexpi = pi
p̂

where p̂ =
∑n
i=1(wipi). Finally the quality of the model representation or

experimental fitting was assessed by the normalized square error, NSE = Σn
i=1

(ρexpi −ρODFi )2

ρexpi
.

(a) DTA specimen (b) IAA specimen

Fig. 1. Polarized light microscope images taken from the adventitia layer of DTA (left) and the IAA
(right) specimens of Sample II.

We fitted the mechanical behavior of each arterial layer at physiological level loads (until 120
kPa) using the uniaxial experimental results of our previous work (Peña et al., 2015) for sample
II. The tissue was assumed to be incompressible (Carew et al., 1968), i.e. det(F) = λ1λ2λ3 = 1,
where F represents the deformation gradient tensor and λi, i = 1, 2, 3, the stretches in the
principal directions. Considering an uniaxial tension test in the longitudinal or circumferential
directions, the First Piola-Kirchhoff stress tensor becomes P = [Pii, 0, 0]. The fitting of the
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experimental data was developed by using a Nelder and Mead type minimization algorithm
(Nelder and Mead, 1965) that is a heuristic search method that uses the concept of simplex by
defining the objective function Eq.(5). In this function, Pθθ and Pzz are the First Piola-Kirchhoff
(engineering) stress data obtained from the uniaxial tests, PΨ

θθ = ∂Ψ
∂λθ
− p and PΨ

zz = ∂Ψ
∂λz
− p are

the analytical First Piola-Kirchhoff stress for the j th point for a homogeneous pure uniaxial
state Ψ, where p is a Lagrange multiplier associated with the incompressibility constraint
(determined from the equilibrium equations and the boundary conditions) and n is the number
of data points.

χ2 = Σn
j=1

[(
Pθθ − PΨ

θθ

)2

j
+
(
Pzz − PΨ

zz

)2

j

]
. (5)

The traditional coefficient of determination R2 ∈ [0, 1] and the normalized mean square root

error (RMSE) ε ∈ [0, 1], ε =

√
χ2

n−q

$
, were computed for each fitting. In this equation, $ =

Σnj=1(σ)j
n

is the mean value of the measured stresses, q is the number of parameters of the SEF,
so n − q is the number of degrees of freedom, and µ the mean stress already defined above.
Two different sets of parameters have been considered. First, an optimization procedure of
the experimental data considering κ and θ as parameters to be fitted was developed. A total
of 5 elastic parameters (µ, k1, k2, κ, θ) had to be fitted (phenomenological set parameters).
Another set of parameters was computed considering the κ and θ values obtained from the
histological data (structural set parameters). Because κ and θ had been previously computed
by histological analysis, a total of only 3 elastic parameters (µ, k1, k2) had to be fitted.

In order to prove that the material parameters (phenomenological and structural set param-
eters) obtained during the fitting procedure can reproduce the behavior of the tissue, a finite
element (FE) simulation of the uniaxial experiments was done. The geometric model was re-
constructed from the measurements for the whole aorta and the intima, media and adventitia
layers for circumferential and longitudinal directions of DTA and IAA for sample II (Peña
et al., 2015). A FE model reflecting the boundary conditions of each of the uniaxial tests was
created. The specimen arms were held rigidly in clamps and fixed displacements, ux and uy
were applied. A mesh sensitivity analysis was carried out in order to investigate the model mesh
independence. Finally, between 3402 and 6820 eight node brick elements were used depend-
ing on the geometry. Force-displacement curves for each computed test were compared with
the equivalent experimental data. FE simulations were performed using the Abaqus/Standard
v6.13-2 software package.

2.2 Multilayer model of an aorta: validation by uniaxial and biaxial tests

In Peña et al. (2015), the longitudinal and circumferential residual stresses were measured for
DTA and IAA specimens. Due to this fact, two different sets of computations were performed
using a multilayer model without and with residual stresses, see Tables 1 and 2. In order to
include the residual stresses on the aorta using the methodology proposed by Alastrué et al.
(2007), and assuming an incompressibility response of the layers, a user subroutine UMAT was
implemented in Abaqus. A diagram of the different deformation states appearing during stress
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enforcement is represented in Figure 2. The first state Ωsf is defined as the initial stress-free
state, corresponding to the initial stress-free geometry. The second state Ωlf is reached by
means of a non-compatible tensor Ψ0 that enforces residual stresses in the solid. Since Ψ0

may lead to an unbalanced situation, a third compatible state appears. Fcomp maps the Ωlf

configuration into Ω′lf enforcing the equilibrium conditions. These two configurations should be
very similar if the non-compatible tensor Ψ0 is properly chosen. In other words, Fcomp should be
very close to I, which means that the deformations between Ωlf and Ω′lf should be very close to
zero and the stresses in states Ωlf and Ω′lf should be almost the same. The fourth configuration
Ωl is the result of applying the external load onto the model with the deformation gradient
tensor Fload. Therefore, the whole deformation gradient between the stress free configuration
Ωsf and the physiological state Ωl is defined as Ft = FloadFcompΨ0. To introduce residual
stresses into the finite element formulation, it is necessary to specify Ψ0 pointwise within the
finite element mesh. An equilibrium step is then applied with zero forces obtaining Fcomp.
A second load step will result in the deformation gradient Fload that balances the externally
applied forces.

Fig. 2. Deformation gradient decomposition diagram.

A multilayer model of DTA and IAA samples was built using the whole sample dimensions
and the thickness ratio between intima-media-adventitia (0.21:0.48:0.31 and 0.30:0.54:0.16 for
DTA and IAA, respectively) obtained for sample II (Peña et al., 2015), see Figure 3.a and
Tables 1 and 2. The previously fitted layer-specific material parameters (phenomenological
and structural set parameters) for the intima, media and adventitia were used to reproduce
the uniaxial response of the whole aorta, i.e. the set of parameters (µ, k1, k2, κ, θ) that were
identified by the fitting procedure for the layer samples, were used to capture the mechanical
data of the whole aorta. The joints between the intima-media and the media-adventitia were
modelled as a perfectly bonded interface. As described in the previous section, the specimen
arms were held rigidly in clamps and fixed displacements, ux and uy were applied. Between
8514 and 11770 hexahedral elements were used depending on the geometry. Again, force-
displacement curves for the FE models with and without residual stresses were computed and
compared with the experimental data for whole DTA and IAA specimens and each direction
of sample II as presented in Peña et al. (2015).
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(a) Uniaxial (b) Biaxial (c) Inflation

Fig. 3. Geometry for the multilayer model of uniaxial, biaxial and cylindrical inflation cases for the
aorta. Uniaxial, biaxial and inflation samples were built using the whole sample with dimensions and
thickness ratio between intima-media-adventitia of 0.21:0.48:0.31 and 0.30:0.54:0.16, respectively. e:
thickness, h: weight, L: length and φint: diameter.

Longitudinal residual stresses were computed directly by measuring λresz from the experiments
developed by Peña et al. (2015) while the curling of axial strips was disregarded. Regarding the
circumferential stresses, on the whole aorta part of the arterial specimen undergoes tension,
while the opposite side experiences compression. After the OA experiment, the main part of
the stress distribution is released and the remaining stresses are due to the fact that each layer
has different OAs. We compute the remaining circumferential residual stresses of each layer
by using the geometry data of the opened sector of the whole sample and of each layer, and
approximate by a uniform value corresponding to the mean of the λθ(r) of the inner and outer
walls λθi and λθ0 respectively. So, the stresses associated with radially-cutting rings have been
disregarded.

DTA IAA

Intima Media Adventitia Whole Intima Media Adventitia Whole

Thickness [mm] 0.500 1.100 0.740 2.830 0.477 0.817 0.240 1.517

Length [mm] 28.380 28.540 31.770 26.800 27.850 25.380 30.060 24.940

Width [mm] 2.790 2.500 2.880 2.390 2.190 2.310 2.240 2.630

λrestheta [-] 0.9541 1.0334 0.9286 - 1.0154 1.0162 0.9593 -

Table 1
Geometry and in situ stretch of intima, media, adventitia and whole aorta from (Peña et al., 2015)
for DTA and IAA circumferential specimens of Sample II

Regarding the biaxial response of the aorta, a multilayer model with and without residual
stresses of square specimens of 35 x 35 mm were created for the DTA, see Tables 1 and 2, and
Figure 3.b. Only experimental data for the DTA specimen is available, so we can only validate
the model for this sample. Again, we consider the thickness ratio between the intima-media-
adventitia of uniaxial specimens. The layer-specific material parameters (phenomenological
and structural) fitted as described in the previous section were also included. A mesh with
approximate 7500 eight node brick elements were selected. The biaxial boundary conditions
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DTA IAA

Intima Media Adventitia Whole Intima Media Adventitia Whole

Thickness [mm] 0.520 0.930 0.717 2.800 0.420 0.610 0.217 1.453

Length [mm] 21.950 24.640 22.570 20.620 13.830 18.400 14.674 21.580

Width [mm] 2.203 2.363 2.660 3.560 2.247 2.320 2.290 2.640

λresz [-] 0.9570 1.0384 0.9521 - 0.9645 1.0053 0.9427 -

Table 2
Geometry and in situ stretch of intima, media, adventitia and whole aorta from (Peña et al., 2015)
for DTA and IAA longitudinal specimens of Sample II

were prescribed, which left the specimen’s edges free to expand laterally and longitudinal
and circumferential loads were applied at the edge of the sample. The biaxial response of
the multilayer model with and without residual stresses was compared with the experimental
results for sample II presented in Peña et al. (2015).

2.3 Three-layer model of an idealized aorta

After validation of the DTA material parameters using the biaxial results, a multilayer model
of an idealized cylindrical DTA aorta was built using the whole sample dimensions and the
previously obtained thickness ratio between the intima-media-adventitia, see Figure 3.c. The
dimensions of the cylinder, i.e., the inner radius and thickness correspond to the sample II
reported in Peña et al. (2015) were considered, see Table 3. As commented above, the choice
of Ψ0 is arbitrary and should be specified pointwise. Nevertheless, a proper choice of tensor
should result in a Fcomp tensor very close to I (ideally, Fcomp = I). Among all the possibilities for
determining the residual strains field, we chose the one proposed by Chuong and Fung (1986).
We then assumed that the opening angle problem can be modeled as a pure bending problem.
The aorta was considered as a thick-walled cylindrical tube. Assuming incompressibility, the
residual deformation gradient tensor Foi of each i layer can be written as a function of the
principal stretches and the unitary vectors of the bases defined in the opened and in the closed
configurations of the idealized cylinder, see Alastrué et al. (2007).

Foi = (λθλ
tot
zi

)−1er ⊗ ER + λθieθ ⊗ EΘ + λtotzi ez ⊗ EZ (6)

where λz and λθ(R) = κr
R

are the in situ stretch, κ = 2π
(2π−α)

is a measure of the OA α,

{ER,EΘ,EZ} is the cylindrical coordinate system in the opened configuration and {er, eθ, ez}
is the cylindrical coordinate system in the closed configuration. For more details see (Alastrué
et al., 2007).

The measured OA (α) were 127o, 67o, 73o and 76o for the intima, media, adventitia and whole
aorta of the DTA specimen from Sample II (Peña et al., 2015). Finally, the total longitudinal
in situ stretch of each i layer (λzi) was computed as the composition of the measured λreszi of
each layer and the λreszwhole , i.e., λtotzi = λreszwholeλ

res
zi

, see Table 3.
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DTA

α [o] Ri [mm] ri [mm] h [mm] λresz [-]

Intima 127 17.51 5.04 0.324 0.957

Media 67 9.96 5.53 1.389 1.038

Adventitia 73 10.035 6.42 0.545 0.9521

Whole 76 10.09 4.99 2.090 1.198

Table 3
Geometrical parameters needed to estimate the in situ stretch of the intima, media, adventitia and
whole aorta from Peña et al. (2015) for DTA specimens from Sample II.Ri and ri represent the internal
radius of the aorta in the opened and closed configurations, respectively, and h is the thickness of the
ring in the opened configuration.

The layer-specific material parameters (phenomenological and structural set parameters) for
the intima, media and adventitia were used to reproduce the mechanical data of the whole aorta
for DTA specimens from Sample II. The joint between intima-media and media-adventitia were
modeled again as a perfectly bonded interface. The cylinder was meshed with 675 hexahedral
eight node elements per axial layer with only two elements were taken into account in the
axial direction, and plane strain boundary conditions were applied. The effect of the layer-
specific residual stresses under internal physiological and supra-physiological pressures were
studied. Diastolic 9.33 kPa (70 mmHg), physiological systolic 16 kPa (120 mmHg) and supra-
physiological systolic 20 kPa (150 mmHg) pressures were considered.

3 Results

3.1 Fitting uniaxial response of layer-specific mechanical properties

Von Mises ODF ρODFi was fitted from the experimentally identified collagen orientation dis-
tribution ρexpi a. κ parameter is computed from the Von Mises ODF ρODFi parameter b by
Equation (3). Figure 4 illustrates that collagen in the porcine aorta predominantly aligns into
two families of fibers. Higher dispersion of the collagen fibers were found in the intima and
adventitia layers and a more concentrated distribution was found in the media layer, aligned
with the circumferential direction. In addition, almost all the samples exhibit two distinct
families of collagen fibers with respect to their azimuthal angle.

The uniaxial experimental data reported in our previous work (Peña et al., 2015) for sample II
were fitted using the proposed SEF following the procedure explained in Section 2.1. The results
considering κ and θ as fitting parameters (phenomenological set parameters) and considering
the κ and θ values obtained from the histological data (structural set parameters) are shown
in Table 4. Our results indicated that the best fitting was in general with the GOH SEF using
the phenomenological parameters, especially for the IAA media sample, showing a RMSE
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(a) DTA whole (b) DTA intima (c) DTA media (d) DTA adventitia

(e) IAA whole (f) IAA intima (g) IAA media (h) IAA adventitia

Fig. 4. Color-coded and stereographic mapping of the Von Mises orientation distribution function
(ODF) where b is the concentration parameter. The data represent the collagen fiber orientations in
the DTA (top) and IAA (bottom) wall of the porcine aorta sample II

of ε = 0.0263. In all cases, we obtained the worst fitting using the microstructural GOH
parameters. This is because the phenomenological GOH SEF has more parameters than the
microstructural, so it is able to identify an appropriate set of parameters that reduce the
error between experiments and analytical predictions. For both sets of parameters and the
DTA and IAA positions, the worst fitting was for the adventitia layer showing a RMSE of
ε = 0.0263 and ε = 0.2513 for the phenomenological and microstructural set of parameters
for DTA and ε = 0.2518 and ε = 0.1742 for IAA, respectively. When the distribution of the
fibers is included in the fitting procedure, we obtain lower dispersion parameters (κ) and higher
orientation angles (θ close to 45o) than the real measured data for the whole aorta and the
intima and media layers. These fitting parameters are close to the experimental ones for the
adventitia layer, however this fitting is not accurate for DTA. Optimization is a difficult task,
especially when the many parameters of the hyperelastic constitutive equation are the terms to
be optimized. The solution is not unique and the fitted parameters have no physical meaning.

For the validation of the mechanical constitutive model parameters, uniaxial tests for the
descending thoracic aorta and infrarenal abdominal aorta curves of each layer were simulated
by FE models separately. Figure 5 shows overlays of the experimental and model-predicted
measured load [mN] versus extension [mm] on the grips of the uniaxial test. As can be seen
from the plots the correlation of the model responses is satisfactory. Similar to the results of
the fitting process, the best correlation between the experimental and FE predicted load was
in general with the GOH SEF using phenomenological parameters.
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DTA Phenomenological parameters Microstructural parameters

Specimen µ k1 k2 κ θ ε µ k1 k2 b κ θ ε

Whole 11.86 77.69 20.38 0.150 42.95 0.080 13.66 161.01 24.35 0.840 0.248 39.92 0.133

Intima 22.68 55.73 28.57 0.042 44.72 0.057 22.57 276.45 42.85 0.870 0.246 42.85 0.135

Media 24.74 184.31 30.19 0.261 27.19 0.030 14.30 290.22 4.87 1.085 0.224 35.01 0.106

Adventitia 13.79 139.21 315.28 0.330 16.56 0.238 1.61 278.86 87.62 0.849 0.275 42.78 0.251

IAA

Whole 7.80 68.56 6.59 0.015 42.24 0.086 7.31 246.70 8.03 1.053 0.225 39.29 0.102

Intima 16.80 75.31 12.42 0.002 43.36 0.070 15.88 297.73 22.45 1.020 0.228 42.51 0.126

Media 13.33 73.84 8.25 0.016 39.40 0.026 17.57 170.85 19.93 1.272 0.204 34.03 0.035

Adventitia 47.37 118.93 124.93 0.251 27.99 0.047 28.26 450.42 0.010 1.101 0.231 38.21 0.174

Table 4
Material constants obtained for the descending thoracic aorta (DTA) and infrarenal abdominal aorta
(IAA) curves. For microstructural parameters, κ and θ values were obtained from the histological
data. Constants µ and k1 in MPa, θ in degrees, k2, κ and b are dimensionless.

3.2 Uniaxial and biaxial response of the whole aorta

To illustrate the multilayer response related to the experimental mechanical properties of
the whole samples, plots of the averaged stress-stretch response together with the underlying
experimental data are depicted in Figure 6 for the phenomenological and microstructural
parameters. Figure 6 compares the results for the multilayer model considering and neglecting
residual stresses. The average Cauchy stresses were determined as σθθ = Fθ

tθwθ
λθ and σzz =

Fz
tzwz

λz, where tθ,z and wθ,z are the initial thickness and width respectively. Fθ,z are the sum of
the reaction loads on the node clamps of the FE model and λθ,z are the stretch computed as
λθ,z = 1 +

uθ,z
Lθ,z

. Finally, uθ,z are the displacements of the node clamps of the FE model and

Lθ,z the distance between clamps for circumferential and longitudinal samples.

It is observed in Figure 6 that both sets of parameters provide a good approximation of
the experimental data if the residual stresses are included. Regarding the uniaxial response
when residual stresses are included, we obtained a better fitting for the DTA sample using
the microstructural set of parameters (R2 = 0.9787) than the phenomenological parameters
(R2 = 0.8783) for the circumferential direction and a worse fitting for the longitudinal direction.
For the IAA sample, we obtained better fittings in both directions using the phenomenolog-
ical (R2 = 0.9636) rather than the microstructural parameters (R2 = 0.8557). This could be
explained by observing Figure 5 which shows that the worst fittings of the separated layers
were obtained for the microstructural set of parameters. Nevertheless, substantial differences
between the multilayer models and the experimental results can be observed, when residual
stresses are neglected. We obtained a better fitting for the DTA sample using the microstruc-
tural set of parameters (R2 = 0.8316) than the phenomenological parameters (R2 = 0.6954).
For the IAA sample, we also obtained better fittings using the microstructural (R2 = 0.8846)
rather than the phenomenological parameters (R2 = 0.8582). The stress-stretch curves pro-
vided by both sets of parameters along the circumferential and longitudinal directions are
stiffer than the experimental ones. Nevertheless, more pronounced differences are found in
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(a) DTA intima (b) DTA media (c) DTA adventitia

(d) IAA intima (e) IAA media (f) IAA adventitia

Fig. 5. Experimental uniaxial tensile tests (Load versus extension) of DTA and IAA samples compared
to FE predictions based on SEF of Eq. (1) and the material properties of Table 4. The black line
corresponds to the numerical FE approximation using the phenomenological set parameters and
the gray line corresponds to the numerical FE approximation using the structural set parameters.
Exp: experimental data, phenom: fitting with phenomenological set parameters and struct: fitting
structural set parameters

the circumferential direction. For example, a stress value of about 170 kPa was obtained for a
stretch of 1.35 for the DTA circumferential experiments, Figure 6.a, whereas the corresponding
value provided by the model using the phenomenological set of parameters is far out of the
scale of the graph shown.

Contour plots of the Cauchy stress distribution of FE based on multilayer models with and
without residual stresses and the phenomenological properties of Table 4 are presented in
Figure 7. There are two main findings from this Figure . (i) We notice the discontinuity caused
by the inhomogeneous composition of the multilayer model. The combined effect of prestress
and the load exerted by the clamps reduced the stress discontinuity between layers. With the
exception of the circumferential DTA sample, we obtain a quasi-uniform stress distribution
along the sample thickness. Although the intima has compression residual stresses, the highest
stress is located at the innermost radius on the intima due to the elevated stiffness response of
the layer, as we can see in Figures 5.a and b. We found a similar response for the adventitia. For
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(a) DTA (b) IAA

Fig. 6. Experimental uniaxial tensile tests (stress versus stretch) of DTA and IAA whole samples
compared to FE predictions based on multilayer model with and without residual stresses and and
the material properties of Table 4 for the corresponding layer. Exp: experimental data, phenom:
fitting with phenomenological set parameters and struct: fitting structural set parameters

the models without residual stresses, the stress jump was much more important. Specifically, in
the IAA and longitudinal DTA samples, stress at the intima and adventitia layers were higher
than that at the media layer, but the opposite was observed for the circumferential DTA
sample. (ii) Non physiological stresses were obtained when residual stresses were neglected.
For example, stresses between 200 to 350 kPa were observed for the intima and adventitia
layers without residual stresses, while the stress on models with prestress were between 95
and 140 kPa. Taking the effects of residual stresses into account did not substantially alter the
stresses at the media layer. These non physiological stresses explain the divergence results of the
stress versus stretch curves plotted in Figure 6 between the multilayer models without residual
stresses and the experimental data. Similar results were obtained for the set of microstructural
parameters (data not shown).

Finally, the results for the biaxial test of the DTA whole sample II compared to FE predictions
based on a multilayer model with and without residual stresses and the material properties of
Table 4 for the each layer are shown in Figure 8. The average Cauchy stresses were determined
as σθθ = Fθ

tzwz
λθ and σzz = Fz

tθwθ
λz, where tθ,z. Fθ,z are the sum of the reaction loads on the

node clamps of the FE model and λθ,z are the stretch computed as λθ,z = 1 +
uθ,z
Lθ,z

. Finally,

uθ,z are the displacements of the node clamps of the FE model and Lθ,z the distance between
the clamps for the circumferential and longitudinal samples. The predictive capacity of the
multilayer models fitted using uniaxial tests to reproduce the biaxial response of the tissue
are better for the models which consider residual stress providing a reasonable approximation
of the experimental data of the equibiaxial test (2:2) and the biaxial tests (2:1 and 1:2). The
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(a) DTA circumferential (b) DTA longitudinal

(c) IAA circumferential (d) IAA longitudinal

Fig. 7. Cauchy stress contour plot [kPa] of uniaxial FE multilayer models with and without residual
stresses and the material properties of Table 4 for (a,b) DTA and (c,d) IAA samples. Intima, media
and adventitia are indicated by the arrows in (a) and the same locations were replicated in the other
cases.

multilayer model without residual stresses was not able to capture the passive biaxial properties
of the whole aorta over a wide range of biaxial deformations. The microstructural parameters
were able to better reproduce the biaxial deformations showing better predictive capacity in
spite of the worse fitting properties on the uniaxial tests.
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(a) 1:1 (b) 1:0.5 (c) 0.5:1

Fig. 8. Experimental biaxial tensile tests (stress versus stretch) of DTA whole sample II compared
to FE predictions based on multilayer models with and without residual stresses and the material
properties of Table 4 for the each layer.

Regarding stress maps, Figure 9 shows the predicted mechanical response of the biaxial samples
at λ = 1.10 for the FE multilayer model with and without residual stresses. Similar results to
the uniaxial case have been obtained. Figure 9.a demonstrates the relatively high values of the
circumferential stress in the media compared with that in the adventitia with residual stresses.
Nevertheless, when the residual stresses are neglected, the high values of the circumferential
stress are located in the adventitia with non-physiological values. It is noticeable that there
is a significant discontinuity in the circumferential stress across the thickness, and a smaller
discontinuity in the longitudinal stress. Whereas there is no essential difference in the thickness
behavior in the longitudinal direction between the models with and without residual stresses,
the global behavior has some significant differences, as shown in Figure 8.

3.3 Three-layer model of an idealized aorta

Four different sets of results are compared in this section corresponding to four FE models:
three-layer and one-layer models with circumferential and longitudinal residual stresses and
three-layer and one-layer models without residual stresses.

The inhomogeneous nature of the three-layer model affects the circumferential residual stress
distribution. In the intima, compressive stress is presented in the innermost radius; its minimal
value was about -5.19 kPa. We observed that the stress value increased until reaching its
maximal value of 2.44 kPa at the interface between the intima and media. At the innermost
radius of the media, the circumferential stress was again compressive with a minimum value of -
15.39 kPa . This value was much lower than that in the intima. Therefore, a stress jump of 17.83
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(a) DTA circumferential (b) DTA longitudinal

Fig. 9. Cauchy stress contour plot [kPa] of biaxial FE multilayer models with and without residual
stresses at λ = 1.10. (a) circumferential stress map and (b) longitudinal stress map. Intima, media
and adventitia are located on the top, middle and bottom of the sample, respectively.

kPa appeared. We found compressive stress through its whole thickness with the maximum
value of -7.74 kPa at the interface between the media and adventitia. We found tension in
the adventitia through its whole thickness. At the innermost radius of the adventitia, the
circumferential stress had a value of 7.54 kPa. This value was much higher than that in the
media. Therefore, a stress jump of 15.28 kPa appeared. From this minimal stress value in the
inner radius, the stress increased to the outer radius of the adventitia, where a value of 15.18
kPa was computed. However, the well-known residual stress distribution was obtained when
Foi from Eq (6) ) was applied to the one layer model, Figure 10b. A compressive stress of -10.9
kPa was found in the inner radius with increasing relative value when moving to the outermost
radius, where a tensile stress of 8.71 kPa appears.

Fig. 10. Circumferential residual stress distribution [kPa] when Foi from Eq (6) with data from Table
3 was applied. (a) three layer model and (b) one layer model.
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Results for internal diastolic (70 mmHg), physiological systolic (120 mmHg) and supra-
physiological systolic (150 mmHg) pressure application are shown in Figure 11. Now, the whole
thickness of the cylinder is in tension. It can be clearly observed how the inclusion of residual
stresses in the model strongly modifies circumferential stress maps. Maximal circumferential
stress values appear in the inner radius when no residual stresses are considered whereas they
appear in the outermost radius when residual stresses are accounted for. This effect is more
evident for the multilayer model where the stress distribution is more uniform. We again notice
the discontinuity caused by the inhomogeneous composition of the three layers. The minimal
circumferential stress appeared at the media (37, 46 and 54 kPa at 70, 120 and 150 mmHg
respectively) and the maximal at the adventitia (75, 110 and 140 kPa at 70, 120 and 150
mmHg respectively). As in the case of the residual stress map, we can clearly distinguish the
interface between the intima-media and media-adventitia, finding that the adventitia bears
most of the load at supra-physiological systolic pressure. A well-known circumferential stress
map was obtained using the monolayer model under internal pressure and residual stresses.
The minimum stress always appeared in the intima, at the inner radius, reaching a value of
44, 52 and 86 kPa at 70, 120 and 150 mmHg respectively. Again the maximum stress was
located at the outer radius of the adventitia with values of 61, 80 and 94 kPa at 70, 120 and
150 mmHg respectively. We observe a more homogeneous circumferential stress distribution
for the monolayer model than for the three layer model with a lower stress gradient (8 kPa)
at supra-physiological systolic (150 mmHg) pressure.

When only the internal pressure is applied, the stress distribution is the well-known distribution
for a cylinder under internal pressure. Maximal circumferential stress values appear in the inner
radius when no residual stresses are considered, reaching values of 104, 173 and 249 kPa at 70,
120 and 150 mmHg, respectively, for the three layer model and 96, 162 and 227 kPa at 70, 120
and 150 mmHg, respectively, for the one layer model. Unlike the case of the prestressed aorta,
we can not clearly distinguish the interface between the intima-media and media-adventitia at
systolic pressures (120 and 150 mmHg) for the multilayer model.

In Figure 12, we can appreciate the effect on the circumferential, longitudinal and radial
stresses caused by residual stresses with the monolayer and three-layer models . The curve
marked ”with- out RS” represents the stress distribution without residual stress. We observe
the maximal value of circumferential and longitudinal stresses at the inner radius of the intima
and a de- creasing gradient to the adventitia, where the stresses decreased to quite low values.
In contrast, a positive gradient of the radial stress is obtained which is lower than the stress
gradient of the circumferential and longitudinal stresses. We clearly observe the discontinuity
caused by the non-homogeneous composition of the aorta for the multilayer model. The stress
distribution obtained using the monolayer model shows similar tendency than the discontinuous
results obtained with the multilayer model.

The effect of the pressure level on the stress is also observed in Figure 12. Differences in the
stress distribution between the multilayer and monolayer models increase when the pressure
level increases. The discontinuity caused by the non-homogeneous composition of the aorta
is maximal for supra-physiological systolic and minimal for physiological diastolic pressures.
These differences are more marked for the circumferential and longitudinal stress distribution
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(a) 70 mmHg (b) 120 mmHg (c) 150 mmHg

(d) 70 mmHg (e) 120 mmHg (f) 150 mmHg

(g) 70 mmHg (h) 120 mmHg (i) 150 mmHg

(j) 70 mmHg (k) 120 mmHg (`) 150 mmHg

Fig. 11. Circumferential stress under diastolic (70 mmHg), physiological systolic (120 mmHg) and
supra-physiological systolic (150 mmHg) internal pressure and residual stress (kPa). First row: three-
layer model with residual stresses; second row: three- layer model without residual stresses; third row:
one- layer model with residual stresses; and fourth row: one- layer model without residual stresses.

and insignificant for the radial stress distribution. It is important to note that for supra-
physiological systolic pressure in the monolayer model, the circumferential and longitudinal
stresses are uniform along the thickness of the wall aorta.
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(a) Circ stress 70 mmHg
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(b) Long stress 70 mmHg
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(c) Rad stress 70 mmHg
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(d) Circ stress 120 mmHg
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(e) Long stress 120 mmHg
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(f) Rad stress 120 mmHg
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(g) Circ stress 150 mmHg
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(h) Long stress 150 mmHg
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(i) Rad stress 150 mmHg

Fig. 12. Circumferential, longitudinal and radial stress variation (kPa) across the normalized thickness
[-] under diastolic (70 mmHg), physiological systolic (120 mmHg) and supra-physiological systolic
(150 mmHg) internal pressures for the three- layer model with and without residual stresses and
the one- layer model with and without residual stresses. Note that discontinuity of the radial stress
distributions at the interfaces between layers and no vanish value at the outer radius are due to stress
are computed on the integration points instead of the nodes.
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4 Discussion

Most of the existing computational models developed for the simulation of cardiovascular
devices have modeled the non-diseased arterial wall as a homogeneous and single-layer structure
(Garćıa et al., 2012; Gasser and Holzapfel, 2007; Migliavacca et al., 2005) and more recently as
a three-layer structure without residual stresses (Conway et al., 2014; Holzapfel et al., 2005b,
2002; Sáez et al., 2012; Zahedmanesh et al., 2010). It is considered in the literature that the
three-layer model approximates the mechanics of the arterial wall better than the single-layer
model. However, to the best of the authors’ knowledge, this hypothesis has not been verified
to date.

Our hypothesis was that the multilayer model can only reproduce the response of the whole
aorta if the layer- specific residual stresses are included. To test this hypothesis, we compared
the experimental results of uniaxial and biaxial tests of the whole aorta with the numerical re-
sults obtained by FE simulations of a multilayer model where the experimental residual stresses
and mechanical properties of each separated layer were considered. Our results demonstrate
that substantial differences between the multilayer models and the experimental results can
be observed when residual stresses are neglected. Both phenomenological and microstructural
multilayer models reproduce the response of the whole aorta when residual stresses are included
in a similar way, with small differences in uniaxial cases. However, when the material param-
eters obtained using uniaxial tests are considered to capture the biaxial response, the GOH
model using microstructural parameters reproduces better results than the same model using
phenomenological parameters, show- ing the better capability of the microstructural properties
to reproduce different stress states in spite of the worse fitting in the uniaxial tests. Due to the
solution is not unique, the fitted parameters should be no physical meaning. It is possible that
two totally different solutions give the same value of the cost function but when implemented
in the whole-layer FE model each solution provide a different response when the parameters
κ and θ are considered as phenomenological parameters. For this reason, it is better working
a model when the structural parameters κ and θ are derived from experiments.

The results also demonstrate that there is a discontinuity stress map caused by the inhomo-
geneous composition of the multilayer model. The combined effect of prestress and the load
exerted by the clamps reduces the stress discontinuity showing a quasi-uniform stress distri-
bution along the sample thickness. This is consistent with the well-known hypothesis that the
main effect of residual stresses is to decrease the transmural gradient of stresses (Chaudhry
et al., 1997; Chuong and Fung, 1986; Peterson and Okamoto, 2000).

After validation of the multilayer model, we built an idealized cylindrical aorta model to analyze
the effect of the multilayer model vs the monolayer model with and without residual stresses
on the mechanical response of the whole aorta. The results obtained show that including the
three-layer model with residual stresses reduces the stress gradient for the three considered
pressures, especially for the diastole and systole pressures in the physiological range (70 and
120 mmHg). However, for the single-layer model with residual stresses, the uniform stress
distribution is given for systole pressures (120 and 150 mmHg). In contrast, using a three-
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layer model without residual stresses provides similar results as a monolayer model, without
relevant differences between the two models. These results contradict the view established in
the literature that a three-layer model without residual stresses provides better results than a
single-layer model. The stress distribution provided by the three-layer models without residual
stress is similar to the single-layer model, showing a distribution with the maximum stress
value on the inner radii of the aorta and the minimum stress value on the outer, see Figure 12.

Although the most realistic results are obtained using the multilayer model with residual
stresses, it is very complicated to obtain the residual stresses for the intima, media and adven-
titia layers, especially in vessels with a smaller diameter than that of the aorta. To the best of
the authors’ knowledge, the studies by Sommer et al. (2010) on human carotid arteries, Peña
et al. (2015) on porcine aortas, Sokolis et al. (2012); Sassani et al. (2015b,a) on ascending
thoracic aortic aneurysms and Amabili et al. (2019) on human aorta are the only works that
present the layer-specific mechanical properties and residual stresses at the same time.

The results presented herein could explain the unphysiological stress values in the intima ob-
tained in some works that consider a coronary multilayer model using the mechanical properties
of the intima, media and adventitia obtained by Holzapfel et al. (2005a). For example in Cilla
et al. (2012), the maximum stress value on healthy intima without residual stress was around
800 kPa for physiological pressure. This value was reduced when a constant opening angle
was considered for the whole aorta, demonstrating that the mechanical properties should be
considered only if residual stresses are included.

Several limitations of the model presented in this paper should be noted. All the FE compu-
tations were conducted under the assumption of homogeneity, which clearly is not the case for
arteries. Another limitation is that we used an average thickness in the FE analysis. Further-
more, using a specific 3D FE model reflecting the thickness variability along the sample would
lead to a more accurate calculation of the stress values. However, the good agreement between
the experimental and computational values obtained for the uniaxial and biaxial tests appear
to show that these factors are not relevant to the outcome. The presented analysis treats the
intima as load-bearing and thick structure which would only make sense if some part of the
the media (internal elastic lamina) would be attached to the intima during layer separation
or in human aortas in which intimal hyperplasia and/or atherosclerotic disease have greatly
thickened the layer. Note that intima thickness of the sample II from Peña et al. (2015) was the
thicker sample, the mean ratio between total wall thickness to inner diameter on that paper
was 0.025 close to the ratio mentioned by other authors (Sokolis, 2015; Amabili et al., 2019).
This limitation would be considered when analyzing the transmural stress distributions. The
opening of circumferential rings was considered in the kinematic analysis while the curling
of axial strips was disregarded. So the axial residual stretches which represent the curling of
strips when cut from the intact aorta and the further curling and stretching when the entire
wall axial strip is separated to its layers have been disregarded. We consider only the axial
layer-specific stretches defined as the entire wall length divided by the layer length but no axial
opening angles were considered (Holzapfel and Ogden, 2009). Because of the axial stresses due
to λresz are high and the good results fitting the whole experiments using the partial axial
pre-stretch, we hypothesized that they are negligible. To compare the experimental results of

22



uniaxial experiments with the numerical one obtained by FE simulations, we analyze only the
force-displacement curves in the load direction and ignore the lateral response. The lateral
displacements of the specimens during the uniaxial test should be measured and compared
with the predictions using FE models. However, differences in the lateral response probably
would be related to the incompressibility and material model more than the residual stresses.
Finally, it is unclear to what extent the material properties of postmortem tissue samples differ
from their in vivo properties.

In spite of these limitations, some contributions have been presented in this paper. First, we
demonstrate that an appropriate multilayer model should include the layer- specific residual
stresses. Second, a multilayer model without residual stresses presents the similar stress distri-
bution as a monolayer model without residual stresses. Third, if layer-specific residual stresses
are not available, there is less error on the stress distribution using a monolayer model with
residual stresses than a multilayer model without residual stresses. The final aim of arterial
numerical simulations is to help clinicians to appropriately diagnose and treat arterial patholo-
gies. The contributions referred to above may be inappropriate for generalization, since they
are based on the computation of only one investigated aorta sample. However, the aim of this
paper is to discuss and verify the capability of the multilayer model to capture the whole
response of the aorta obtained by experimental data and its influence on the stress distribu-
tion along the wall. It was not intended to study a larger number of aorta samples and to
draw general conclusions on a statistical basis. In summary, existing multilayer models do not
consider residual stresses showing results which are far from the physiological domain.
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Garćıa, A., Peña, E., Mart́ınez, M. A., 2012. Influence of geometrical parameters on radial force
during self-expanding stent deployment. Application for a variable radial stiffness stent. J
Mech Behav Biomed 10, 166–175.

Gasser, T. C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., Roy, J., 2012. Spatial
orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to
wall mechanics. Acta Biomat 8, 3091–3103.

24



Gasser, T. C., Holzapfel, G. A., 2007. Finite element modeling of balloon angioplasty by
considering overstretch of remnant non-diseased tissues in lesions. Comput Mech 40, 47–60.

Gasser, T. C., Ogden, R. W., Holzapfel, G. A., 2006. Hyperelastic modelling of arterial layers
with distributed collagen fibre orientations. J R Soc Interface 3, 15–35.

Gundiah, N., Ratcliffe, M. B., Pruitt, L. A., 2009. The biomechanics of arterial elastin. J Mech
Behav Biomed Mater 2, 288–296.

Heo, S., Xu, Y., 2001. em[Heo and Xu(2001)] , 2001. constructing fully symmetric cubature
formulae for the sphere. Math Comput 70, 269–279.

Holzapfel, G. A., Gasser, C. T., Sommer, G., Regitnig, P., 2005a. Determination of the layer-
specific mechanical properties of human coronary arteries with non-atherosclerotic intimal
thickening, and related constitutive modelling. Am J Physiol Heart Circ Physiol 289, H2048–
H2058.

Holzapfel, G. A., Gasser, T. C., Ogden, R. W., 2000. A new constitutive framework for arterial
wall mechanics and a comparative study of material models. J Elasticity 61, 1–48.

Holzapfel, G. A., Gasser, T. C., Ogden, R. W., 2004. Comparison of a multi-layer structural
model for arterial walls with a fung-type model, and issues of material stability. ASME J
Biomech Eng 126, 264–275.

Holzapfel, G. A., Ogden, R. W., 2009. Constitutive modelling of passive myocardium: a struc-
turally based framework for material characterization. Phil Trans R Soc A 367, 3445–3475.

Holzapfel, G. A., Ogden, R. W., 2010. Modelling the layer-specific 3d residual stresses in
arteries, with an application to the human aorta. J R Soc Interface 7, 787–799.

Holzapfel, G. A., Sommer, G., Auer, M., Regitnig, P., Ogden, R. W., 2007. Layer-specific
3d residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann
Biomed Eng 35, 530–545.

Holzapfel, G. A., Stadler, M., Gasser, T. C., 2005b. Changes in the mechanical environment
of stenotic arteries during interaction with stents: computational assessment of parametric
stent designs. ASME J Biomech Eng 127, 166–180.

Holzapfel, G. A., Stadler, M., Schulze-Bauer, C. A. J., 2002. A layer specific three-dimensional
model for the simulation of balloon angioplasty using magnetic resonance imaging and me-
chanical testing. Ann Biomed Eng 30, 753–767.

Humphrey, J. D., 2002. Continuum biomechanics of soft biological tissues. Proc R Soc Lond
A 175, 1–44.

Lillie, M. A., Shadwick, R. E., Gosline, J. M., 2010. Mechanical anisotropy of inflated elastic
tissue from the pig aorta. J Biomech 43, 2070–2078.

Lu, X., Yang, J., Zhao, J. B., Gregersen, H., Kassab, G. S., 2003. Shear modulus of porcine
coronary artery: contributions of media and adventitia. Am J Physiol Heart Circ Physiol
285, H1966–H1975.

Maes, L., Fehervary, H., Vastmans, J., Mousavi, J., Avril, S., Famaey, N., 2019. Constrained
mixture modeling affects material parameter identification from planar biaxial tests. J Mech
Behav Biomed 95, 124–135.

Migliavacca, F., Petrini, L., Montanari, V., Quagliana, I., Auricchio, F., Dubini., G., 2005.
A predictive study of the mechanical behaviour of coronary stents by computer modelling.
Med Eng Phys 27, 13–18.

Mousavi, J., Avril, S., 2017. Patient-specific stress analyses in the ascending thoracic aorta
using a finite-element implementation of the constrained mixture theory. Biomechan Model

25



Mechanobiol 16, 1765–1777.
Nelder, J. A., Mead, R., 1965. A simplex method for function minimization. Computer J 7,

308–313.
Pandit, A., Lu, X., Wang, C., Kassab, G. S., 2005. Biaxial elastic material properties of porcine

coronary media and adventitia. Am J Physiol Heart Circ Physiol 288, H2581–H2587.
Peña, J. A., Corral, V., Mart́ınez, M. A., Peña, E., 2018. Over length quantification of the

multiaxial mechanical properties of the ascending, descending and abdominal aorta using
Digital Image Correlation. J Mech Behav Biomed 77, 434–445.

Peña, J. A., Mart́ınez, M. A., Peña, E., 2015. Layer-specific residual deformations and uniaxial
and biaxial mechanical properties of thoracic porcine aorta. J Mech Behav Biomed 50, 55–69.

Peterson, S. J., Okamoto, R. J., 2000. Effect of residual stress and heterogeneity on circunfer-
encial stress in the arterial wall. ASME J Biomech Eng 122, 454–456.

Rhodin, J. A. G., 1980. Architecture of the vessel wall, Handbook of Physiology, The Cardio-
vascular System, vol. 2. American Physiological Society, Bethesda, MD.

Sassani, S. G., Kakisis, J., Tsangaris, S., Sokolis, D. P., 2015a. Layer-dependent wall properties
of abdominal aortic aneurysms: Experimental study and material characterization. J Mech
Behav Biomed 49, 141–161.

Sassani, S. G., Tsangaris, S., Sokolis, D. P., 2015b. Layer- and region-specific material charac-
terization of ascending thoracic aortic aneurysms by microstructure-based models. J Biomech
48, 3757–3765.
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