000131550 001__ 131550
000131550 005__ 20240319080951.0
000131550 0247_ $$2doi$$a10.1016/j.jbiomech.2021.110909
000131550 0248_ $$2sideral$$a128401
000131550 037__ $$aART-2022-128401
000131550 041__ $$aeng
000131550 100__ $$0(orcid)0000-0002-4268-7424$$aPeña, Juan A.$$uUniversidad de Zaragoza
000131550 245__ $$aBiomechanical characterization and constitutive modeling of the layer-dissected residual strains and mechanical properties of abdominal porcine aorta
000131550 260__ $$c2022
000131550 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131550 5203_ $$aWe analyze the residual stresses and mechanical properties of layer-dissected infrarenal abdominal aorta (IAA). We measured the axial pre-stretch and opening angle and performed uniaxial tests to study and compare the mechanical behavior of both intact and layer-dissected porcine IAA samples under physiological loads. Finally, some of the most popular anisotropic hyperelastic constitutive models (GOH and microfiber models) were proposed to estimate the mechanical properties of the abdominal aorta by least-square fitting of the recorded in-vitro uniaxial test results. The results show that the residual stresses are layer dependent. In all cases, we found that the OA in the media layer is lower than in the whole artery, the intima and the adventitia. For the axial pre-stretch, we found that the adventitia and the media were slightly stretched in the environment of the intact arterial strip, whereas the intima appears to be compressed. Regarding the mechanical properties, the media seems to be the softest layer over the whole deformation domain showing high anisotropy, while the intima and adventitia exhibit considerable stiffness and a lower anisotropy response. Finally, all the hyperelastic anisotropic models considered in this study provided a reasonable approximation of the experimental data. The GOH model showed the best fitting.
000131550 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-107517RB-I00
000131550 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000131550 590__ $$a2.4$$b2022
000131550 591__ $$aENGINEERING, BIOMEDICAL$$b67 / 96 = 0.698$$c2022$$dQ3$$eT3
000131550 591__ $$aBIOPHYSICS$$b46 / 70 = 0.657$$c2022$$dQ3$$eT2
000131550 592__ $$a0.699$$b2022
000131550 593__ $$aRehabilitation$$c2022$$dQ1
000131550 593__ $$aBiophysics$$c2022$$dQ2
000131550 593__ $$aSports Science$$c2022$$dQ2
000131550 593__ $$aBiomedical Engineering$$c2022$$dQ2
000131550 593__ $$aOrthopedics and Sports Medicine$$c2022$$dQ2
000131550 594__ $$a4.9$$b2022
000131550 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131550 700__ $$0(orcid)0000-0002-8503-9291$$aCilla, M.$$uUniversidad de Zaragoza
000131550 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, Miguel A.$$uUniversidad de Zaragoza
000131550 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefania$$uUniversidad de Zaragoza
000131550 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Expresión Gráfica en Ing.
000131550 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000131550 773__ $$g132 (2022), 110909 [9 pp.]$$pJ. biomech.$$tJournal of Biomechanics$$x0021-9290
000131550 8564_ $$s3481672$$uhttps://zaguan.unizar.es/record/131550/files/texto_completo.pdf$$yPostprint
000131550 8564_ $$s1845211$$uhttps://zaguan.unizar.es/record/131550/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131550 909CO $$ooai:zaguan.unizar.es:131550$$particulos$$pdriver
000131550 951__ $$a2024-03-18-13:04:04
000131550 980__ $$aARTICLE