000131566 001__ 131566
000131566 005__ 20241125101124.0
000131566 0247_ $$2doi$$a10.1007/s00009-023-02511-1
000131566 0248_ $$2sideral$$a136960
000131566 037__ $$aART-2023-136960
000131566 041__ $$aeng
000131566 100__ $$0(orcid)0000-0001-8331-5160$$aAdell, José A.$$uUniversidad de Zaragoza
000131566 245__ $$aSeries acceleration via negative binomial probabilities
000131566 260__ $$c2023
000131566 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131566 5203_ $$aMany special functions and analytic constants allow for a probabilistic representation in terms of inverse moments of [0, 1]-valued random variables. Under this assumption, we give fast computations of them with an explicit upper bound for the remainder term. One of the main features of the method is that the coefficients of the main term of the approximation always contain negative binomial probabilities which, in turn, can be precomputed and stored. Applications to the arctangent function, Dirichlet functions and their nth derivatives, and the Catalan, Gompertz, and Stieltjes constants are provided.
000131566 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131566 590__ $$a1.1$$b2023
000131566 592__ $$a0.604$$b2023
000131566 591__ $$aMATHEMATICS$$b98 / 490 = 0.2$$c2023$$dQ1$$eT1
000131566 593__ $$aMathematics (miscellaneous)$$c2023$$dQ2
000131566 591__ $$aMATHEMATICS, APPLIED$$b163 / 332 = 0.491$$c2023$$dQ2$$eT2
000131566 594__ $$a1.8$$b2023
000131566 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131566 7102_ $$12007$$2265$$aUniversidad de Zaragoza$$bDpto. Métodos Estadísticos$$cÁrea Estadís. Investig. Opera.
000131566 773__ $$g20, 317 (2023), 1-14$$pMediterranean Journal of Mathematics$$tMediterranean Journal of Mathematics$$x1660-5446
000131566 8564_ $$s373619$$uhttps://zaguan.unizar.es/record/131566/files/texto_completo.pdf$$yVersión publicada
000131566 8564_ $$s1199799$$uhttps://zaguan.unizar.es/record/131566/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131566 909CO $$ooai:zaguan.unizar.es:131566$$particulos$$pdriver
000131566 951__ $$a2024-11-22-11:57:15
000131566 980__ $$aARTICLE