000131613 001__ 131613
000131613 005__ 20241125101139.0
000131613 0247_ $$2doi$$a10.1063/5.0169493
000131613 0248_ $$2sideral$$a136983
000131613 037__ $$aART-2023-136983
000131613 041__ $$aeng
000131613 100__ $$0(orcid)0000-0001-8221-523X$$aEcheverribar, I.
000131613 245__ $$aA fully Eulerian two-layer model for the simulation of oil spills spreading over coastal flows
000131613 260__ $$c2023
000131613 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131613 5203_ $$aNowadays, the vast majority of coastal oil spill simulation models are based on Lagrangian methods focused on particle tracking algorithms to represent the oil slick fate. In this work, a fully Eulerian numerical model for the simulation of such environmentally significant disaster is implemented by means of a two-dimensional two-layer shallow water model. A very thin oil layer over a thicker water layer is considered in order to neglect the pressure term that the oil layer exerts over the water. Friction terms between layers are responsible for the layers coupling so that the oil layer flows over a moving water volume. To complete this dynamic model, the temperature transport and evolution under heat exchange for the oil upper layer is considered and the weathering process of evaporation is included. The numerical solution adopted is based on a finite volume upwind scheme with a Roe solver for both oil and water layers. Special care has been taken on the numerical treatment of the two-layer wet-dry boundaries (oil–water–land) and friction terms, since the objective of the model is to compute the oil slick front advancing near the coast.
000131613 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131613 590__ $$a4.1$$b2023
000131613 592__ $$a1.05$$b2023
000131613 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b2 / 40 = 0.05$$c2023$$dQ1$$eT1
000131613 593__ $$aComputational Mechanics$$c2023$$dQ1
000131613 591__ $$aMECHANICS$$b29 / 170 = 0.171$$c2023$$dQ1$$eT1
000131613 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000131613 593__ $$aMechanics of Materials$$c2023$$dQ1
000131613 593__ $$aMechanical Engineering$$c2023$$dQ1
000131613 593__ $$aFluid Flow and Transfer Processes$$c2023$$dQ1
000131613 594__ $$a6.5$$b2023
000131613 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131613 700__ $$aBrufau, P.
000131613 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000131613 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000131613 773__ $$g35, 11 (2023), [24 pp.]$$pPhys. fluids$$tPhysics of Fluids$$x1070-6631
000131613 8564_ $$s13148173$$uhttps://zaguan.unizar.es/record/131613/files/texto_completo.pdf$$yVersión publicada$$zinfo:eu-repo/semantics/openAccess
000131613 8564_ $$s847093$$uhttps://zaguan.unizar.es/record/131613/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada$$zinfo:eu-repo/semantics/openAccess
000131613 909CO $$ooai:zaguan.unizar.es:131613$$particulos$$pdriver
000131613 951__ $$a2024-11-22-12:01:50
000131613 980__ $$aARTICLE