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Abstract

In the problem of the attitude dynamics of a rigid body satellite in a gravity field, in the averaged
Hamiltonian the global parametric evolution of the normalized Hamiltonian is obtained. The
phase portrait is represented in a Mercator map and on a 3D sphere. Pitch-fork bifurcations and
degeneracies (a dense set of equilibria) are found.
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1. Introduction

Attitude dynamics of a rigid body is a classic problem in Mechanics that has been studied by
the most famous scientists. In this context, we find names like Newton, Euler, Lagrange, Laplace,
Poinsot, Poisson, Hamilton, Cayley, Kowaleskaya, Liapunov, etc. (see e.g. Leimanis’ textbook
(Leimanis, 1965)).

The so-called Euler-Poinsot problem (rigid body in free rotation) is one of the three integrable
problems in the rigid-body dynamics, and it is very interesting for both practical and theoretical
point of view. It is related with important astronomical problems like the rotation of planets,
satellites, asteroids, etc. and also with astrodynamics, since a good knowledge of the attitude of
spinning spacecraft is essential in designing a mission.

Gravitational torques are fundamental to the attitude dynamics of a spacecraft, and their
influence on the rotational motion of an artificial satellite have been studied in the last years (see
e.g. Hughes (1986); Arribas and Elipe (1993); Elipe and Vallejo (2001); Elipe (2002)). In order to
maintain alive a mission, it is essential the stability analysis of the rotational motion (Pavlov and
Maciejewski, 2003; Sarychev et al., 2007, 2008; de Moraes et al., 2009), since the choice of a set of
wrong initial conditions could put the spacecraft in tumbling rotation, leading to a chaotic regime
and ruining the mission.

On the other hand, some substantial progress has been made in the understanding of small
perturbations of integrable systems. After the KAM theory, it is known that invariant tori in the
unperturbed problem are slighted distorted in presence of small perturbations, with presence of
periodic orbits lying on these tori, while for larger perturbations part of the tori are destroyed, and
chaotic orbits appear filling the so-called regions of stochasticity.

To determine regular and chaotic regions, as well as periodic and quasi-periodic solutions in two
degrees of freedom, Poincaré surface of sections are widely used. The rigid body dynamics is not an
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exception, and thus, we find the work of Broucke (1993), for instance. A more modern technique like
the use of Chaos indicators have been employed to determine chaotic regions in the motion of a rigid
body under external torques (Barrio et al., 2006). However, in this work, we proceed in a different
way. Indeed, by means of averaging or normalization, the original non-integrable Hamiltonian is
replaced by an integrable approximation that is built to give a good agreement with real dynamics.
Of particular importance in this problem is the qualitative analysis of the equations of the motion,
in order to know, before integrating the equations, how the phase flow varies according to the initial
conditions, what are the stability regions, whether there are bifurcations, and for what values of
the initial conditions they occur (Lanchares and Elipe, 1995a,b). Let us remind that parametric
bifurcations are the seeds of chaos.

In the present paper, we assume that the Earth possesses a spherically symmetry mass distri-
bution, that the spacecraft is small compared to its distance from the mass center of the primary,
and that the spacecraft consists of a rigid body with three different moments of inertia. However
for the sake of simplicity, the qualitative analysis is done for the case of axial symmetry. The
Hamiltonian is formulated in polar–nodal variables to describe the orbit of the center of mass, and
in Serret–Andoyer for the attitude motion.

2. Hamiltonian of the Problem

Let us consider the problem of the rotational–translational motion of a rigid body (the space-
craft) attracted by the gravity field of the Earth (a point mass). In the literature, this problem
has been formulated in terms of Delaunay variables to describe the orbital motion and in Serret–
Andoyer for the attitude (Kinoshita, 1972; Arribas and Elipe, 1993).

The use of Delaunay variables involves developments of powers of the inverse of the radius
vector in terms of the eccentricity. However, this inconvenience may be avoided by employing the
polar–nodal variables (r, θ, ν, R, Θ, N).

First at all, we have to choose an appropriate set of reference frames, in order to obtain a
simpler formulation. We consider the following frames centered on the spacecraft:

• A fixed space frame Os1s2s3.

• The system Oℓ0m0n, where n is the unit vector in the direction of the rotational angular
momentum G and ℓ0 is the ascending node of the plane perpendicular to the vector G and
the space plane Os1s2.

• The principal body frame of inertia Ob1b2b3.

The Serret–Andoyer variables (ℓ, g, h, L, G, H) are defined as usual (Deprit, 1967; Deprit and
Elipe, 1993):
The angle h is the longitude of the ascending node ℓ0 reckoned from the axis s1; g is the longitude
of the node ℓ1 of the equatorial body plane Ob1b2 on the plane perpendicular to the angular
momentum reckoned from the axis ℓ0; ℓ is the longitude of the body axis b1 reckoned from the
node ℓ1.
The conjugate moments are: G = ‖G‖, the norm of the rotation angular momentum vector, H,the
projection of this vector on the space axis s3, (H = G cos ǫ), and finally, L is the projection of G
on the body axis b3, (L = G cos σ). The Hamiltonian function of the problem, considering only
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terms up to the third power of the inverse of the distance, and after some simplifications may be
written as Arribas and Elipe (1993)

H = HK +HE +HC (1)

where

HK =
1

2
(R2 +

Θ2

r2
)−

µ

r
,

HE =

(
sin2 ℓ

2I1
+

cos2 ℓ

2I2

)
(G2 − L2) +

1

2I3
L2,

HC = −
µ

2r3

[
(I1 − I2)(1− 3α2) + (I3 − I2)(1 − 3γ2),

]

and I1, I2, I3 are the principal moments of inertia of the satellite (which we shall assume I1 ≤ I2 ≤
I3 ), (α, β, γ) is the unit vector in the radial direction in the body frame.

The two nodes, the orbital ν and the rotational one h, are on the same plane (Os1s2), and in
the development of the potential function, they appear only as the combination h− ν. Besides, in
the problem of motion given by the Hamiltonian (1), the total angular momentum vector c, is an
integral of the motion, and this allows us to choose the space frame in such a way that the axis s3
coincides with this vector. (For more details, see Arribas (1989); Breiter and Elipe (2006)).

With this election, and Θ and G standing for the orbital and rotational angular moments
respectively, in the space frame we have

Θ+G = c = (0, 0, c) with c = constant, (2)

and the nodes satisfy the relation h − ν = π. The angles h and ν being cyclic, the problem has
four degrees of freedom in the variables (r, θ, ℓ, g, R, Θ, L, G).

Let us assume that the Hamiltonian (1) may be decomposed as

H = H0 +H1,

where the zero order term is formed by the Keplerian and Eulerian parts HK and HE , whereas
the coupled terms (HC) are of order one.

We are not interested in obtaining the solution of this Hamiltonian, but we content ourselves
with studying the qualitative analysis of an averaged Hamiltonian of (1) in order to discovered the
behavior of the phase flow and possible bifurcations for different values of the initial conditions.
Furthermore, we shall make a simplification by averaging the Hamiltonian over the Keplerian mean
anomaly.

After performing automatically this average and dropping those terms which do not contain
the variables, we obtain:

H∗ =

(
sin2 ℓ

2I1
+

cos2 ℓ

2I2

)
(G2 − L2) +

1

2I3
L2

−
µn

2Θp

[
(I1 − I2)(1− 3α∗2) + (I3 − I2)(1− 3γ∗2)

] (3)

where n is the orbital mean motion, p is the semilatus rectus, and

α∗2 = A0 +A1 cos g +A2 cos 2g +A3 cos 2ℓ+A4 cos(g + 2ℓ)

+A5 cos(g − 2ℓ) +A6 cos(2g + 2ℓ) +A7 cos(2g − 2ℓ),

γ∗2 = G0 +G1 cos g +G2 cos 2g,

(4)
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with the coefficients Ai and Gi being expressions which depend on the moments Θ, N , L, G, H
(see e.g. (Arribas, 1989)).

3. Qualitative analysis of the phase flow

3.1. Definition of variables and parameters

The zero order of the Hamiltonian (3) corresponds to the rotation of a tri-axial rigid body in free
rotation, it is one-degree of freedom problem, and is integrable in terms of elliptic functions (Deprit
and Elipe, 1993); therefore, it is possible to build a Lie-transformation in order to elliminate the
variable ℓ form the Hamiltonian (3), see (Arribas and Elipe, 1993; Elipe and Vallejo, 2001, e.g.).
However for the sake of simplicity, we shall consider the case in which the satellite has axial
symmetry of inertia, i.e., I1 = I2. Under this hypothesis, the variable ℓ becomes cyclic, and the
Hamiltonian is reduced to:

H∗ =
1

2I1
(G2 − L2) +

1

2I3
L2

−
µn

2Θa(1− e2)
(I3 − I1) [1− 3 (G0 +G1 cos g +G2 cos 2g)]

which exclusively depends on g and G and where n stands for the orbital mean motion, a is the
semi major axis and e the orbital eccentricity. The averaged problem is of one-degree of freedom
and therefore, it is integrable.

The zero-order of the above Hamiltonian corresponds to the rotation of an axis-symmetric rigid
body, and it is well known that its motion consists of rotations about the axis of symmetry, thus,
we will take into consideration only the perturbation.

The behavior of the flow corresponding to the perturbed part is the same as in

K = G0 +G1 cos g +G2 cos 2g, (5)

where G0, G1, G2 are
G0 = 1

2
sin2 ǫ cos2 σ + 1

4
(1 + cos2 ǫ) sin2 σ,

G1 = sin ǫ cos ǫ sinσ cos σ,
G2 = 1

4
(cos2 ǫ sin2 σ − sin2 ǫ),

which result after dropping constant terms and scaling the problem.
In order to make a qualitative analysis of the phase flow of this Hamiltonian, it is convenient

to choose a parameter. Having in mind that the inclination angles σ and ǫ are given in terms of
the moments L, G, H by

cos σ =
L

G
, cos ǫ =

H

G
;

they are related by cos σ = (L/H) cos ǫ, with L/H constant; so, we choose p = L/H as a parameter.
In order to handle polynomial expressions, which is easier than handling trigonometric functions,
we make the change

η = cos ǫ, where |η| ≤ η̂ = min{1, 1/p},

and thus, the Hamiltonian is expressed as

K = 1
2
p2η2(1− η2) + 1

4
(1 + η2)(1− p2η2)

+pη2
√

1− p2η2
√

1− η2 cos g + 1
4
(2η2 − 1− p2η4) cos 2g,

(6)
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with the coordinates (g, η) ∈ [0, 2π) × [−η̂, η̂].
At this point, let us note that the above expression of Hamiltonian (6) has some symmetries.

Indeed, there are two lines of symmetry, namely, the axis η = 0 since K (g, η; p) = K (g,−η; p) and
the the line g = π, since K (π− g, η; p) = K (π+ g, η; p). With this, we may restrict our analysis to
the region (g, η) ∈ [0, π]× [0, η̂]. Besides, since K (g, η; p) = K (g±π, η;−p), we reduce our analysis
to p ≥ 0.

3.2. Analytical study

Equilibria are obtained by zeroing simultaneously the derivatives dg/dt and dG/dt. That is,
by solving the system

dg

dt
=

∂K

∂G
=

∂K

∂η

∂η

∂G
=

−H

G2

(
∂G0

∂η
+

∂G1

∂η
cos g +

∂G2

∂η
cos 2g

)
= 0, (7)

dG

dt
= −

∂K

∂g
= (G1 + 4G2 cos g) sin g = 0. (8)

This system is complex enough and some numerical procedure is required to solve it. However,
there are particular cases which solution is easy to find.

First at all, let us compute the main term in (7). After some algebra, we have
(
∂G0

∂η
+

∂G1

∂η
cos g +

∂G2

∂η
cos 2g

)
=

−
1

2
η(6η2p2 − 1− p2) +

ηp(2− 3(1 + p2)η2 + 4p2η4)√
1− η2

√
1− p2η2

cos g + η(1 − p2η2) cos 2g.

The second equation (8) is

(G1 + 4G2 cos g) sin g =
(
pη2
√

1− η2
√

1− p2η2) + (−1 + 2η2 − p2η4) cos g
)
sin g.

If H = 0, because its definition, η = 0, and hence, the first equation (7) of the system is always
null. Besides, the second equation is reduced to sin 2g = 0, which satisfied for g = kπ/2 (k ∈ Z).
That is, since our analysis is reduced to the interval g ∈ [0, π], the points (0, 0), (0, π/2), and (0, π)
are equilibria.

Let us assume now that H 6= 0 (η 6= 0), then we have to cases:

1. The second equation (8) is satisfied for g = kπ (k ∈ Z). Then, the first equation (7) for
g = kπ becomes

∂G0

∂η
±

∂G1

∂η
+

∂G2

∂η
= 0,

depending on either g = 0 (+) or g = π (−), or explicitly,

η
1

2
(3 + p2 − 8p2η2)±

p(2− 3(1 + p2)η2 + 4p2η4)√
1− η2

√
1− p2η2

)
= 0.

When p = 1 and g = π, the expression ∂(G0 − G1 + G2)/∂η ≡ 0 for whatever value of
η ∈ [−1, 1]. Thus, for p = 1, the segment (π, η) is made of equilibria; hence, we are in
presence of a degeneracy.
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2. Assume now that sin g 6= 0, then the second equation (8) holds when

G1 + 4G2 cos g = 0 (9)

Besides, let us take the particular case p = 1; then the above equation (9) becomes η2 + (1−
η2) cos g = 0, that is,

η =

√
cos g

1 + cos g
. (10)

If we replace this value of η into the first equation of the system (7), it is always satisfied for
whatever value of g. Hence, we meet another degeneracy for p = 1. Every point on the curve
(10) is an equilibrium of the system.

0.25 0.5 0.75 1 1.25 1.5

0.1
0.2
0.3
0.4
0.5
0.6
0.7

Figure 1: For p = 1, all points (g, η) of this curve, Eq. (10), are of equilibria.

Let us consider now that g 6= 0, π, then the equation (8) is fulfilled for

cos g = −G1/(4G2). (11)

If we replace it into equation (7), the possible equilibria will result by solving the equation

∂G0

∂η
−

∂G1

∂η

G1

4G2

+
∂G2

∂η

(
G2

1

8G2
2

− 1

)
= 0,

which in terms of η, is

η(1− p2)(−1 + 4η2 +−4(1− p2)η4 − 4p2η6 + p4η8)

2(1− 2η2 + p2η4)2
= 0,

or equivalently,
−1 + 4η2 +−4(1− p2)η4 − 4p2η6 + p4η8 = 0, (12)

since the cases η = 0 and p = 1 have been already studied.
For each value of the parameter p we have to solve the above equation (12), to obtain η and

with it we get the angle g from Eq. (11).
The above equation can be put as

−1 + 4ξ +−4(1− p2)ξ2 − 4p2ξ3 + p4ξ4 = 0, with η2 = ξ,

easier to solve numerically, and we only need those solutions 0 < ξ < 1.

6



3.3. Stability and bifurcations

Now, we are interested in finding analytically the values of the parameter for which the bifur-
cations occur. So, we have to obtain the characteristic equation for the differential system.

By means of Liouville theorem, we have

dη

dt
= {η,K} = −

∂η

∂G

∂K

∂g

where { , } stands for the Poisson bracket.
After a time scaling t 7−→ τ given by the relation

dτ =
∂η

∂G
dt,

the variational equations of the motion in an equilibrium point are

d δg

d τ
= Aδη +B δg

d δη

d τ
= −C δη −D δg

d

d τ

(
δg
δη

)
=

(
B A

−D −C

)(
δg
δη

)

where

A =
∂2K

∂η2
, B =

∂2K

∂η∂g
= C, D =

∂2K

∂g2
.

The associated characteristic polynomial equation is λ2 + (AD − B2) = 0 and therefore, an
equilibrium point is unstable when (AD −B2) < 0.

Let us consider some of the equilibria just obtained. For the point (π, 0), the characteristic
polynomial becomes

λ2 + (AD −B2) = λ2 + 1
2
(3− 4p + p2),

thus, this point will be unstable when 3 − 4p + p2 < 0, that is, when p ∈ (1, 3). The bifurcations
(that is change of stability) occur in the extrema of it, that is to say, for p = 1 and for p = 3. In
fact, these two values are the bifurcation values of p as portrayed in the phase space graphics.

For the point (π/2, 0), the characteristic polynomial becomes

λ2 + (AD −B2) = λ2 +
1

2
(1− p2),

hence, this point is stable for p ∈ [0, 1) and unstable for p > 1. The bifurcation occurs at p = 1.
For the origin, the discriminant ∆ = (AD −B2) = (3− 4p+ p2)/2 is positive for p > 0, which

means that is always stable in the studied interval and therefore, if does not bifurcate.
The sign of the discriminant may be used to determine the stability of whatever equilibrium.

Thus, for instance, in the next section, we find that the point (1.169863462, 0.546038088) is sta-
tionary for p = 0.8. Replacing the point and the parameter in the discriminant, we find that
∆ = −0.49427, thus, is unstable.
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4. Graphical analysis. Mercator maps

In order to understand how, qualitatively speaking, the phase flow varies with the parameter p,
one should first determine the equilibria. This kind of analysis is often very ackward. But we are
greatly assisted if we can generate at will portraits of the phase flow for any value of the parameter.

In the plots of this section, we present the phase portrait on the Mercator chart (g, η). We
consider p ∈ [0, 3.1], since the qualitative behavior of the phase flow does not change for p > 3.

Let us start with p = 3.1; the phase flow is represented in Figure 2. In fact, and due to the
symmetries previously mentioned, the phase portrait is a cylinder, and because of the symmetry
about the line g = π, we only need the interval 0 ≤ g ≤ π. On the left plot, and for η = 0 we can
see three equilibria at g = 0, π/2, π. Point (π/2, 0) is unstable whereas the other two (0, 0) and
(π, 0) are stable. Besides, the point (0, 0.290432785) is an unstable equilibrium (see Fig. 2).

0 1 2 3 4 5 6

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2: Level contours for p = 3.1. Left, in the domain (g, η) ∈ [0, 2π) × (−1/p, 1/p). Right, in the domain
(g, η) ∈ [0, π)× [0, 1/p).

For p = 3 there is a pitch-fork bifurcation at the point (π, 0). Indeed, as we can observe in Fig.
2, for p ≥ 3 is stable; however, for p < 3, this point is unstable and there is one new stable point
(Fig. 3) on the vertical axis η = π, inside the homoclinic orbit that springs out from the point
(π, 0).

Let us analyze the phase flow after the pitchfork bifurcation, that is, for p < 3; for example
for p = 2 (see Fig. 3). In the phase rectangle (g, η) ∈ [0, π] × [0, 1/2), we find six equilibria, three
stable (0, 0), (1.343527124, 0.418877566) and (π, 0.29653517), and other three unstable, namely,
the points (π/2, 0), (π, 0) and (0, 0.42153516).

The flow is qualitatively the same until we reach the value p = 1, where there are two degenera-
cies, as we already proved in the above section. The first one is the line g = π, which is a dense set
of equilibria; indeed, as p → 1, the homoclinic orbit emanating at the point (π, 0), narrows until it
collapses into the straight line g = π, which is made of equilibria (Fig. 4). As soon as p < 1, the
degenerary breaks out and only two equilibrium points remain, the stable (π, 0) and another one
unstable. For p = 0.8, this unstable equilibrium is (2.413433567, 0.922181580).

Simultaneously, another degeneracy happens; the heteroclinic orbit connecting unstable points
on the axis g = 0 coalesces as p → 1 with the homoclinic orbit emanating from (π/2, 0) and the
resulting line is made of equilibria. As soon as p < 1, this degeneracy breaks out, and there are
three new equilibria, one unstable and two stable (Fig. 4). For p = 0.8, these points are: the
unstable (1.169863462, 0.546038088) and the stable (0, 0.800834940), (π/2, 0).
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Figure 3: Phase flow for p = 2.0. Left, we can see three unstable points and three stable equilibria in the rectangle
(g, η) ∈ [0, π]× [0, 1/2). Right, a magnification of the neighborhood of g = π.
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Figure 4: Evolution of the fhase flow through two simultaneous degeneracies at p = 1. Left) flow for p = 1.2; center)
flow for p = 1.; and right) flow for p = 0.8.

In sum, for 0 ≤ p < 1, in the phase rectangle (g, η) ∈ [0, π] × [0, 1/2), there are six equilibria
(Fig. 4, right), four stable and two unstable.

5. Graphical analysis. Spheres

As we just showed, the Mercator maps reveals to be very efficient for determining the equilibria
and the different bifurcations, however, as it is usual with this representation (Coffey et al., 1990),
it gives no information on the upper and lower limits of the chart, that is, on the lines |η| = η̂. To
circumvent this problem we shall use a set of spherical coordinates, since as we prove, the flow lies
on spheres.

Let us define the dimensionless quantities:

ξ1 =
L

H

√
1−

H2

G2
cos g, ξ2 =

L

H

√
1−

H2

G2
sin g, ξ3 =

L

G
; (13)

they are not algebraically independent, but they are related by

ξ21 + ξ22 + ξ23 = L2/H2 = p2, (14)

thus, the above equation represents a two-dimensional sphere of constant radius p.
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The Hamiltonian (6) expressed in these spherical variables is

K =
1

2p2
ξ23(ξ

2
1 + ξ22) +

1

p2
ξ1ξ

2
3

√
1− ξ23 +

1

4
(1− ξ23)

(
1 +

ξ23
p2

)
+

+
1

4p2
ξ21 − ξ22
ξ21 + ξ22

(
ξ23(1− ξ23)− (p2 − ξ23)

)
.

(15)

Figure 5: Phase portrait for p = 1. Left) view from the point (0,0,1), and right) view from the point (1,0,0). On the
left plot we can appreciate two lines of degeneracy, namely the hemi-meridian (ξ2 = 0, ξ1 ≥ 0) (which corresponds
to the segment g = 0 in the Mercator map, and the curve on the sphere which corresponds to the curve on the Fig.
1. In the right plot we can see the latter curve of degeneracy as well as the stable point (g = 0, η = 0).

Figure 6: Phase portrait for p = 0.8. Left) view from the point (0,0,1), and right) view from the point (1,1,0). On
the left plot, we can see how the upper line of Fig. 4,right) merges into a unique point, the north pole of the sphere.
The right plot shows two unstable and four stable points which corresponds with the one we can see in Fig. 4, right).

The equations of motion generated by this Hamiltonian flow are

ξ̇j = {ξj ,K}, (j = 1, 2, 3),

which may be easily computed taking into account that the mutual Poisson brackets of coordinates
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(13) are

{ξ1, ξ2} =
1

L
ξ33 , {ξ2, ξ3} =

1

L
ξ1 ξ

2
3 , {ξ3, ξ1} =

1

L
ξ2 ξ

2
3 .

In order to have the phase portrait of Hamiltonian (15), we could plot the trajectories by
integrating numerically the above equations of motion for several values of the energy. However,
we can proceed in a different way, with no use of the equations of motion. Indeed, we can visualize
the phase flow by painting the Hamiltonian (Coffey et al., 1990). It is based on an orthograpic
projection which maps the points on the phase space onto the screen of the computer; according to
the values of the energy, a color is assigned to each point of the projection. Although this technique
was elaborated for parallel computers to produce high resolution pictures, today can be produced
with general software (Mathematica in our case). For instance, the plots of Figs. 5 and 6 were
obtained with the simple Mathematica instruction:

ParametricPlot3D[

{p Sin[sigma] Cos[g], p Sin[sigma] Sin[g], p Cos[sigma]}, {g, 0, 2 Pi},

{sigma, 0, Pi}, Mesh -> False, ColorFunction -> Function[{x1, x2, x3},

Hue[Hamiltonian]], PlotPoints -> 200, AxesLabel -> {"x1", "x2", "x3"},

ColorFunctionScaling -> False, ViewPoint -> {10, 10, 0}]

Hence, by means of the snap shots for different values of p we have the parametric evolution of
the phase flow, with no need on integrating the equations of motion.

6. Conclusions

The use of visualization techniques in 2D and 3D revealed to be very useful to analyze integrable
Hamiltonian problems. Both techiques have been applied to the normalized Hamiltonian corre-
sponding to the attitude of an axis-symmetric rigid body under a gravity field. For this problem,
we found the bifurcations as well as two degenerate cases, that is, cases in which there are infinite
equilibria.
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