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Abstract

Cancer is a major global health challenge that requires the development of inno-
vative tools to improve our understanding and treatment of the disease. Patient-
specific modeling has emerged as one of the key techniques in this quest. The
field of in silico medicine holds great promise for predicting patient-specific can-
cer progression, treatment response and overall prognosis. However, the devel-
opment of accurate patient-specific models requires the availability of precise
data and an efficient, streamlined process for transforming image data into these
models.

This dissertation presents several contributions that improve patient-specific
cancer modeling. Primarily, a novel pharmacokinetic model is presented that ef-
fectively incorporates diffusion phenomena and allows for the extraction of more
accurate data from dynamic contrast-enhanced magnetic resonance sequences.
Two innovative methods are proposed to fit this model to the acquired data.
The first method, a gradient-based approach, uses the Finite Element Method to
compute the gradient semi-analytically, significantly reducing the computational
cost compared to other approaches. The proposed alternative method employs
Physics Informed Neural Networks to overcome the limitations of the previous
method and improve the accuracy of the retrieved parameters.

In addition to the aforementioned model and fitting methods, this research
also includes the development of a comprehensive Python library specifically de-
signed to automate the generation of input data for patient-specific models. This
library introduces a streamlined workflow that significantly reduces the man-
ual effort required to create patient-specific models from imaging data. By using
this Python library, researchers are provided with a straightforward and efficient
means of generating the necessary input data, thereby accelerating the modeling
process.

In summary, this dissertation provides a significant contribution to the ad-
vancement of patient-specific cancer modeling through the introduction of novel
tools and methods. The proposed pharmacokinetic model and fitting methods
serve as key components in this effort, enabling the extraction of more precise
data from dynamic contrast-enhanced magnetic resonance imaging sequences.
In addition, the development of a dedicated Python library streamlines and auto-
mates the creation of patient-specific input models, simplifying the overall pro-
cess. Taken together, these contributions provide valuable resources for the field
of in silico medicine and can help accelerate cancer research efforts.
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Resumen

El cáncer es un importante desafío global en salud que requiere el desarrollo de
herramientas innovadoras para entender mejor esta enfermedad y mejorar los
tratamientos. El modelado de paciente-específico es una de las herramientas clave
en esta tarea. El campo de lamedicina in silico es una de las grandes promesas para
predecir la progresión del cáncer en cada paciente, la respuesta al tratamiento y el
pronóstico de la enfermedad. Sin embargo, el desarrollo de modelos de paciente-
específico necesita de datos precisos y un proceso eficiente y simplificado para
incluir los datos obtenidos de imagen médica en estos modelos.

Esta tesis presenta varias aportaciones que contribuyen al desarrollo de mo-
delos de paciente-específico aplicados al cáncer. En primer lugar, se presenta un
nuevo modelo farmacocinético que incorpora el proceso de difusión del agente de
contraste y permite extraer datos de la vascularización de los tumores más pre-
cisos a partir de las secuencias de resonancia magnética dinámica con contraste
(DCE, por sus siglas en inglés). Se proponen dos nuevos métodos para ajustar este
modelo a los datos adquiridos. El primero de ellos se basa en el método del gra-
diente y utiliza el método de los elementos finitos para calcular dicho gradiente
de manera semianalítica, lo que reduce significativamente el coste computacional
del algoritmo. El método alternativo propuesto utiliza redes neuronales informa-
das por la física (PINNs, por sus siglas en inglés) para superar las limitaciones
del método anterior y mejorar la precisión de los parámetros obtenidos con el
modelo.

Además del modelo y los algoritmos de ajuste mencionados anteriormente,
esta tesis también incluye el desarrollo de una biblioteca en Python diseñada
para automatizar la generación de datos de entrada para modelos de paciente-
específico. En esta biblioteca se ha desarrollado un flujo de trabajo simplificado
que reduce significativamente el trabajo manual necesario para crear este tipo de
modelos. El objetivo de esta biblioteca es que los investigadores cuenten con un
medio sencillo y eficiente para generar los datos de entrada necesarios para sus
modelos, facilitando así la creación y desarrollo de nuevas metodologías.

En resumen, esta tesis contribuye al avance delmodelado de paciente-específi-
co en el campo del cáncer mediante la introducción de nuevas herramientas y
métodos usados en el desarrollo de estos modelos. El modelo farmacocinético
propuesto y los métodos de ajuste implementados permiten la extracción de da-
tos más precisos de secuencias de resonancia magnética dinámica con contraste.
Además, la biblioteca de Python desarrollada agiliza y automatiza la creación de
estos modelos. En conjunto, estas contribuciones ofrecen nuevos recursos más
eficientes para el campo de la medicina in silico y contribuyen a mejorar y acele-
rar los esfuerzos de investigación del cáncer.
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Chapter 1

Introduction

In silico medicine has emerged as a promising tool for developing personalized
treatments that can be customized to the specific needs of individual patients
[1, 2]. This approach involves using computer simulations to model biological
processes and predict how drugs and treatments will interact with the body. By
creating virtual models of the human body and its various systems, researchers
can test hypotheses and predict outcomes in a virtual environment before con-
ducting clinical trials. This can reduce the cost and time required to bring new
treatments to market and enable researchers to optimize existing treatments by
identifying patient-specific factors that may affect drug efficacy and toxicity [3,
4].

In silico medicine has emerged as a powerful tool for advancing personalized
healthcare. By tailoring medical treatments to the unique genetic, environmental,
and lifestyle factors of individual patients, this innovative approach represents a
significant departure from the traditional "one-size-fits-all" model of healthcare
that assumes all patients with a given condition will respond similarly to the same
treatment.

One of the key advantages of in silico medicine is its ability to simulate com-
plex biological processes that are difficult or impossible to study in vivo. For exam-
ple, computer simulations can be used to model the interactions between drugs
and their molecular targets, as well as the physiological responses of different
organs and systems in the body [5]. This can provide valuable insights into the
mechanisms of disease and drug action, and can help researchers identify targets
for the development of new drugs. In silicomedicine has already demonstrated its
potential in a wide range of applications, from drug development and optimiza-

1



Chapter 1

tion [6] to the design of medical devices [7].

Patient-specific modeling is a key aspect of in silico medicine, and involves
creating virtual models of individual patients based on their unique anatomy,
physiology, and medical history. By using data from medical imaging, genetic
testing, and other sources, researchers can create detailed models of individual
organs, tissues, and systems, and simulate how these structures and processes
interact in response to different treatments and interventions.

Patient-specific modeling has multiple applications in personalized medicine.
For example, clinicians can design personalized radiation therapy plans that are
optimized for each patient’s tumor geometry and radiation sensitivity [8, 9]. Simi-
larly, patient-specificmodels can be used to design and optimize medical implants
and prosthetics, based on the individual anatomy and biomechanics of each pa-
tient [10, 11].

One of the most important applications of patient-specific modeling is the
study of cancer. Despite the advances achieved in both the diagnosis and treat-
ment of cancer, it remains the second leading cause of death globally, accounting
for roughly one-sixth of all deaths [12]. This is due to the intricate and heteroge-
neous nature of the disease, which is influenced by a wide array of biological and
mechanical factors that govern tumor growth, treatment efficacy, and metasta-
sis, among other processes. Thanks to the advances in computational modeling,
there has been a significant progress in providing new insights into the complex
mechanisms of cancer [13]. These computational models can simulate different
processes, from cellular scale to the progression and response to treatments of
the whole tumor. Through the analysis of these models, patterns in cancer pro-
gression can be identified and risk factors can be better understood. Additionally,
computational models can be used to evaluate the effectiveness of current treat-
ments and predict the outcomes of future treatments [14].

Medical imaging plays a crucial role in the development of patient-specific
models for cancer, as well as in the diagnosis and monitoring of the disease [15].
These imaging techniques enable clinicians and researchers to visualize the in-
ternal structures of the body and identify abnormalities that may indicate the
presence of cancer. There are several types of medical imaging modalities, each
with its own strengths and limitations. X-ray imaging, for example, is widely
used for the detection of bone metastases [16], but in general is not very effec-
tive for imaging soft tissues. However, computed tomography (CT) scans provide
high-resolution images of both soft and hard tissues, making it an important tool
for cancer diagnosis and staging [17].
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Introduction

Magnetic resonance imaging (MRI) is another imaging modality that is com-
monly used in cancer diagnosis and research. MRI uses a strong magnetic field
and radio waves to generate detailed images of internal structures, including or-
gans and tissues. This non-invasive imaging technique is particularly useful for
imaging soft tissues, such as the brain [18], liver [19], and prostate [20], among
others. There are some advanced modalities that can provide further information
about the tissue, such as cell density and blood perfusion. Among these tech-
niques, diffusion weighted (DW) and dynamic contrast-enhanced (DCE) MRI are
the most commonly employed to measure tumor properties and to evaluate its
response to treatments. In addition, these two methods are used in combina-
tion with T1- and T2-weighted sequences in the so-called multiparametric MRI
(mpMRI). This imaging modality was first introduced in the 1980s and, thanks to
advances in imaging accuracy, has been steadily gaining attention, becoming one
of the most commonly used tools in the diagnosis of prostate cancer [21, 22].

DW-MRI measures the Brownian motion of water molecules in a given tissue
through the apparent diffusion coefficient (ADC). ADC maps are created by ac-
quiring DWI images at multiple magnetic gradient strengths (known as b-values),
which allow for the calculation of ADC values throughout the tissue. This tech-
nique can help to accurately identify cancerous lesions and guide treatment plan-
ning. In the context of patient-specific modeling, this type of sequence can be
used to provide a quantitative measurement of the cellularity of the tumor, which
is then used to initialize the mathematical model with patient-specific data.

Dynamic contrast-enhanced MRI (DCE-MRI) is a specialized type of MRI that
is used to visualize the blood flow in tissues and organs. Given the importance of
this sequence in this dissertation, the next section covers the fundamental aspects
of this technique.

1.1 DCE-MRI: Fundamentals and limitations

DCE-MRI studies the way a tissue reacts over time to the introduction of a para-
magnetic contrast agent (CA) into the vascular system. To accomplish this, a
baseline image is taken before contrast is introduced, followed by a series of im-
ages taken over a few minutes during and after the CA arrives in the tissue being
studied. These images create a time intensity curve that represents the tissue’s
response to the CA in terms of enhancement values. Analyzing this curve allows
for the extraction of physiological properties such as vessel permeability, vessel
surface area, and tissue volume fractions that relate to microvascular blood flow.
The basic principle of DCE-MRI is straightforward: as the CA moves through

3
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the tissue, it changes the MR signal intensity (SI) of the tissue based on its local
concentration, although this relationship is not linear [23].

To study a region of interest (ROI), MR images are taken every few seconds be-
fore, during, and after intravenous injection of the CA. Each image corresponds to
one time point, and each pixel generates its own intensity value curve. The vari-
ation in SI after injection is determined by tissue vascularization, vessel perme-
ability, vessel surface area, extraction fraction, blood flow, and other factors. This
information is used to create parametric maps of specific microvascular biomark-
ers. Using appropriatemathematical models, absolute values for these parameters
can be extracted.

Figure 1.1: Diagram illustrating the morphologic and semi-quantitative analysis of DCE-
MRI curves. A represents the insights of morphologic analysis. Different parts of the
curve are associated with distinct physiological and anatomical features. B shows the
main parameters extracted from a semi-quantitative analysis. In clinical practice, these
variables are used to measure changes in vascularization between different patients (as
a diagnostic tool) or between two temporal points for a certain patient (as a prognostic
tool to evaluate the efficacy of treatments). Figure adapted from Questions and answers

in MRI, by A. D. Elster, 2023, www.mriquestions.com

The analysis of DCE data can provide valuable information concerning the
vascular status and perfusion. Analysis of the data can be performed using either:
simple semi-quantitative methods, analysis of curve morphology or quantitative
methods (Figure 1.1). Depending on the analysis method selected, the number
of needed measurements vary. If one wants to perform a morphological analysis
or a semi-quantitative analysis of the SI curves, it is only necessary to acquire a
series of T1-weighted images during the injection of the CA [24, 25]. In case the
curves to be analized are the CA concentration versus time curves, a pre-contrast
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native T1 image should be acquired before any injection so the SI values can
be converted to CA concentration [26]. Finally, for quantitative analysis of the
curves it is necessary to perform the steps listed above (with a greater number of
images acquired during CA injection) in addition to estimating the arterial input
function (AIF).

The AIF represents the concentration of CA in the arterial blood that supplies
the tissue of interest. Although in ideal conditions this function should be ap-
proximately an impulse function, in reality it differs greatly from this theoretical
form. Therefore, it is necessary to estimate somehow this function, either using
invasive techniques [27], acquiring it directly from the DCE-MRI dataset [28, 29]
or computing an average AIF based on previous studies. Alternative methods
that do not require AIF estimation have been also proposed, such as the reference
region model [30, 31] or the step input method [32].

As stated below, three main approaches can be followed to analyse DCE-MRI
data:

• Morphologic analysis: This method is based on a qualitative analysis of
the SI curve, classifying it into different types according to the enhance-
ment and relaxation patterns of the curve. This type of analysis is quite
limited since it does not give any quantitative estimate of the perfusion
parameters [26].

• Semi-quantitative analysis: This approach extracts quantitative metrics
directly from SI or CA concentration curves. Although these metrics are
quite difficult to correlate with physical parameters and are more sensi-
tive than model-based metrics to differences in the acquisition protocols
(such as sequence parameters or injection protocols), they have proved
their value for assessing tumor angiogenesis [33].

• Quantitative analysis: In this case, mathematical models that aim to de-
scribe the physical phenomena governing the transport of CA in the tissue
are used to fit the CA concentration curves, obtaining quantitative mea-
surements directly related to physical parameters that describe the vascu-
larization of the tissue.

Given its importance, this work will focus on the quantitative analysis of DCE-
MRI curves. These mathematical models, known as pharmacokinetic (PK) mod-
els, are mostly linear compartmental models. They define a compartment as a
theoretical volume in a tissue where CA distributes. The main assumption of
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these models is the hypothesis of well-mixed compartments: the concentration
of CA is considered homogeneous within each compartment; that is, there are
no spatial gradients of CA inside a compartment, there is only a concentration
gradient between each compartment.

Although there is a wide variety of compartmental models formulated for
DCE-MRI analysis, this dissertation will focus on the most employed models in
clinical practice: the standard Tofts model (STM) [34] and the extended Tofts
model (ETM) [35]. Both are two-compartment models consisting of a intravascu-
lar compartment and an extravascular-extracellular space (EES). They consider
that CA can only reach the tissue through blood perfusion, extravasating from
the intravascular space to the EES due to the permeability of blood vessels, the
vessel surface area, the blood flow, the CA concentration gradient across the ves-
sel endothelium and the volume fractions of each of the compartments. The only
difference between the STM and the ETM is that, although both consider the ex-
istence of the intravascular compartment, the STM disregards the fraction of vol-
ume occupied by this space in relation to the total volume of the voxel, whereas
the ETM takes this contribution into account (Figure 1.2). This implies that, while
the STM is only accurate in tissues where this hypothesis is valid (poorly vascu-
larized tissues), the ETM increases its range of application, being accurate also in
highly vascularized tissues.

Figure 1.2: Schematic representation of the STM (A) and the ETM (B). The only difference
between both models is the inclusion of the blood volume within the reference volume
in the case of the ETM.

A complete review of these models (including their formulation and the defi-
nition of their parameters) will be presented in Chapter 2. For now it is sufficient
to know that the parameters of these models are the volume fraction occupied by
the EES (and that of the intravascular space in the ETM) and the extravasation
ratio, known as KTrans, which represents the combination of the permeability of
blood vessels, the vessel surface area and the blood flow [36].

While they may appear to be oversimplified models, it should be kept in mind
that (for any model in general, but especially in the case of DCE-MRI) increasing
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model complexity leads to a detriment in model accuracy. The more parame-
ters that need to be fitted in a model, the more inaccurate and sensitive to noise
the model becomes. To compensate for these disadvantages, more sophisticated
models require higher quality DCE-MRI data: greater signal to noise ratio, shorter
image acquisition interval, etc. Therefore, although these more complex models
are capable, for example, of separating the contribution of each of the variables
represented by K

Trans, their greater complexity significantly reduces their use in
clinical practice, where acquisition protocols cannot meet the quality require-
ments of these models.

Such simplifications and assumptions present certain limitations. Apart from
the inherent limitations of quantitative analyses, such as the need to estimate the
AIF or the accuracy in converting SI to CA concentration, thesemodels aremainly
limited by their considerations regarding CA transport. Recalling the essential
parameters of the STM and ETM, it can be seen that KTrans regulates the arrival
of CA to the tissue. In other words, these models only consider active transport
phenomena by perfusion, neglecting passive phenomena such as diffusion or con-
vection of CA between adjacent voxels (inter-voxel transport). Aditionally, the
hypothesis of well-mixed compartments upon which compartmental models are
based implies that CA instantenously equilibrates within each compartment, ne-
glecting intra-voxel diffusion of CA. Although this hypothesis may be considered
valid for the case of the intravascular compartment, this is not the case for the
EES compartment. With an estimated diffusivity coefficient of around 2.6 mm2/s
for gadopentetate dimeglumine (Gd-DTPA) CA [37] and an average voxel size of
around 0.5 mm (even larger in clinical studies), it is clear that the time needed
to achieve a homogeneous CA concentration is larger than the typical DCE-MRI
acquisition scale, around 2 s [38].

The effects of disregarding intra-voxel transport of CA have been studied
thoroughly previously in literature [38, 39]. However, since there are no clear
solutions to quantify the heterogeneity of CA distribution within a voxel with
current protocols and models, this dissertation will focus on inter-voxel trans-
port. Several authors have proposed different formulations and mathematical
methods to account for this phenomena. The following section presents a review
of all these studies, which constitutes the state of the art in PKmodels that include
passive transport phenomena.

7



Chapter 1

1.1.1 Including passive transport phenomena into PK models

Although both convective and diffusive phenomena can influence the distribu-
tion of CA in a tumor, the latter have received notably more attention. Pellerin et

al. [40] were the first to point out this limitation of conventional PK models and
formulated the diffusion-perfusion (DP) model, in which they included a term
describing CA diffusion in the STM formulation. In their work, the authors high-
lighted the limitations of the STMwhen fitting tumor regions where CA diffusion
played an important role, such as the necrotic core observed in some tumors. The
main limitations of this model were related to its high computational cost and its
formulation of the diffusive term. Later on, Fluckiger et al. [41] developed the dif-
fusion compensated Tofts model, which was based on the DP model. They mod-
ified the initial formulation to implement a voxel-wise approach to compute the
diffusive term. This modification was based on certain assumptions and simpli-
fications, such as homogeneity in cellularity and diffusivity among neighboring
voxels, that might not apply to many types of tissues.

Other models proposed by Jia et al. [42] and Koh et al. [43] accounted for
inter-voxel CA diffusion, but lacked information about other physiological prop-
erties, such as the extravasation rate or the volume fraction of each compartment.

Cantrell et al. [44] proposed a diffusion compensated Tofts model and ap-
plied it to intracranial aneurysms. This approach considered a known diffusivity
coefficient and handled separately the contributions due to diffusion and to ex-
travasation to reduce the computational cost. Since their method is based on the
results obtained from the ETM, which may differ from true values in some tu-
mors where there is significant CA diffusion, the accuracy of this model would
be greatly affected in areas where diffusion is relevant.

All these previous approaches understimate the influence of interstitial trans-
port of CA through convection, although this phenomenon may be relevant in
some type of tissues [45]. Sourbron [46] developed the theoretical groundwork
for a field theory of tracer kinetics by proposing mathematical models that ac-
count for various effects, such as convection, diffusion, decay, absorption, and
leakage. This theoretical framework is probably the most comprehensive work
developed to date for the study of CA transport through mathematical models.
This formulation modelled each voxel as a system of multiple interacting tissue
compartments, each with its own set of transport parameters, such as velocity
and diffusivity, avoiding the well-mixed compartments hypothesis introduced by
Tofts. Nevertheless, the high complexity of themodel and the inherent limitations
of DCE-MRI prevented from using this model on real data. Based on this work,
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Sinno et al. [47] developed a new model, called the cross-voxel exchange model
(CVXM), which includes both diffusive and convective phenomena into the for-
mulation of the STM. In their work, they quantified the error in the parameters
retrieved by the STM due to ignoring passive transport mechanisms, showing the
importance of convective and diffusive processes in DCE-MRI data. They tested
the model both on in silico and experimental xenograft data, considering only
one-dimensional (1D) geometries.

It should be noted, however, that including convective phenomena increases
the complexity of the model. This, as it was previously discussed, negatively af-
fects the accuracy of themodel. Despite the good results obtainedwith the CVXM
in 1D geometries, it is to be expected that when moving to two-dimensional (2D)
geometries similar to the real ones, the accuracy of the model will decrease and
its computational cost will significantly increase.

Since most of the above mentioned models have focused on including diffu-
sive phenomena in the PK models, this dissertation will also focus on that chal-
lenge, ignoring possible convective effects due to gradients in interstitial fluid
pressure that may affect CA transport.

1.2 Including clinical data in patient-specific models

As it was previously discussed, the importance and necessity of patient-specific
models in the study of cancer is becoming increasingly apparent. Despite its
many advantages, patient-specific modeling of cancer also has some challenges
and limitations that need to be addressed. One of the biggest challenges is the
need for precise and reliable data to develop computer simulations. In order to
build accurate models of individual patients and predict treatment outcomes, re-
searchers need access to high-quality data from a variety of sources, including
medical imaging, genetic testing, and clinical trials. In the specific case of cancer
modeling, there is often no genetic information about the patient in their medical
history. Typically, medical imaging data are the only data available to build math-
ematical models of tumor growth. It is clear then, the need to create new models
and methods, such as those described in the previous section, that are capable of
obtaining quantitative data from the images with much greater precision.

Usually, the task of building mathematical models from clinical data is often
tedious and time-consuming. Researchers have to deal with imaging data that
may come in different formats. Even when the tumor is already segmented (the
ideal situation, although this is frequently not the case), geometry preparation,
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Figure 1.3: Workflow followed to build a patient-specific model of tumor growth fromMR
imaging data. This workflow assumes that the tumor is already segmented. If it is not the
case, a previous segmentation step would be necessary before reconstructing the three-
dimensional (3D) geometry. The process of reconstruction and meshing of the geometry
often requires the use of different programs and tools, making it very time-consuming to
perform this task. Besides, it is common for the tumor segmentation mask and the other
sequences (DCE and DW) to have different image formats (DICOM, NIfTI, etc.), which
complicates data integration.

finite element (FE) mesh generation and interpolation of the image data to this
mesh are rather manual processes that consume considerable resources (Figure
1.3). Chapter 5 introduces a new tool implemented in Python that automates the
development of patient-specific models from imaging data.

1.3 Motivation and objectives

The use of DCE-MRI in clinical practice and patient-specificmodeling has become
increasingly important in recent years. Patient-specific modeling is a powerful
tool that enables clinicians to obtain a better understanding of the dynamics of
cancer progression and how different therapies affect tumor response. However,
the accuracy of patient-specific models heavily relies on the input data used to
build them, and inaccurate data can lead to unreliable models.
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Previous studies have shown that the commonly used PK models, such as
the Standard Tofts Model (STM) and Extended Tofts Model (ETM), may not be
accurate when applied to solid tumors where necrotic regions are present. As
a result, there is a clear need for new models that incorporate passive transport
phenomena and newmethods to fit these models to real data. These newmethods
must be very efficient, minimizing the computational resources needed, while
maximizing the accuracy of the model predictions.

In addition to high-quality data, the process of building a patient-specific
model that incorporates clinical data is time-consuming and complex. However,
the benefits of using patient-specific models in cancer research and treatment
make this process necessary. These models provide clinicians with personalized
information that can guide treatment decisions and improve patient outcomes.

To facilitate the creation of patient-specific models, new automated tools that
deal with the preprocessing and preparation of clinical data are needed. These
tools would minimize the time and effort required to develop a model, making
patient-specific modeling a more feasible approach for clinical practice.

This dissertation has been developed within the context of the European
PRIMAGE (PRedictive In-silico Multiscale Analytics to support cancer personal-
ized diaGnosis and prognosis, Empowered by imaging biomarkers) Project [48].
PRIMAGE is currently one of the largest and more ambitious European research
projects in medical imaging, artificial intelligence and childhood cancer, in par-
ticular, Neuroblastoma (NB) and the Diffuse Intrinsic Pontine Glioma (DIPG). Its
main goal is to develop a decision support system combining retrospective clin-
ical information and incorporating it into the diagnostic pipeline using AI and
computational models.

Within this project, several patient-specific models have been developed to
simulate the evolution of the tumor and predict its outcome [14, 49–51]. These
models have been based primarily on the available MR images, which included
tumor segmentations and DCE and DW sequences for each tumor. During the
process of generating these models, the previously mentioned needs were identi-
fied (higher data quality and tools to automate the creation of the models), so we
focused our efforts on solving these needs.

The first objective of this dissertation is, therefore, to develop new models
that incorporate passive transport phenomena and to implement new methods
to fit these models to DCE-MRI data accurately, obtaining high quality data that
can be used in the tumor growth models. To this end, the formulation of a new
PK model was first developed. Then, two different strategies have been devel-
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oped to fit this new model to DCE-MRI sequences: the first one is based on the
gradient descent method and the Finite Element Method (FEM), computing the
Jacobian matrix through a semi-analytical approach. To overcome the limitations
of this first method, an alternative approach based on Deep Learning (DL) was
developed.

Additionally, the second goal of this dissertation is to create an automated
tool to facilitate the creation of patient-specific models from clinical data, thereby
improving the efficiency and accuracy of the modeling process.

By developing these new methods, this work aims to contribute to the field
of patient-specific modeling and ultimately improve our understanding of tumor
physiology, leading to better treatment outcomes for cancer patients.

1.4 Outline

This chapter presents some of the challenges faced in patient-specific modeling,
including data quality and automatization of model development. More specifi-
cally, this chapter presents some key concepts and the state of the art that will
serve as the basis for the next chapters.

• Chapter 2 presents the formulation of a new PK model based on the ETM
that includes the phenomenon of CA diffusion based on the concept of ef-
fective diffusivity. This new model, named diffusion-corrected ETM (D-
ETM), is the basis for the work presented in Chapters 3 and 4.

• In Chapter 3, a new inverse method based on the FE method (FEM) is de-
veloped to fit the D-ETM to the curves obtained from DCE-MRI sequences.
This new method is tested on in silico cases that resemble clinical data.

• Chapter 4 describes a new alternativemethod to the one developed in Chap-
ter 3. This approach makes use of a type of neural networks (NNs), called
Physics-Informed Neural Networks (PINNs), to solve the inverse problem
posed in the previous chapter, overcoming the limitations of the previous
FE-based method on the 1D synthetic cases tested.

• Chapter 5 introduces a new Python library that automates the process of
generating patient-specific models based on medical imaging data. Fur-
thermore, an example of use is shown based on one of the cases of the
PRIMAGE project in which this dissertation is framed.
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• Finally, Chapter 6 summarizes the main results of this dissertation and de-
scribes the future lines of research that arise from this work.
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2.1 Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has long
been used as a clinical tool to study the vasculature of different tissues, especially
tumors. Recently, it has been employed to assess the efficacy of antiangiogenic
treatments in tumors [53–55]. In summary, this technique consists on the acqui-
sition of a series of T1-weighted images before, during, and after the intravenous
injection of a CA. As the CA reaches the tissue of interest via arterial inflow, it
decreases the native T1 relaxation time, producing an increase in the measured
SI. The following removal of CA through venous blood flow results in a decrease
in SI, returning to its baseline value. For each voxel, the outcome is a SI versus
time curve. [56]. To fit any PK model it is necessary, as we have seen previously,
to first convert these SI curves to CA concentration. This conversion can be done
considering either linear or non-linear equations [57].

As we previously discussed, we will focus on the compartmental models de-
veloped by Tofts et al. [34, 35], given their importance in clinical practice [58].
These models assume that CA can only reach the ROI through blood perfusion,
neglecting passive delivery. As several authors have pointed out [40–44, 46, 47],
assuming no inter-voxel CA diffusion can lead to errors in the quantities esti-
mated by the model, especially in weakly vascularized zones, such as necrotic
regions in a tumor. Even though convective effects due to gradients in the inter-
stitial fluid pressure may be relevant in some tissues, they will not be considered
to reduce the complexity of the model.

These authors have proposed different models and fitting algorithms to in-
clude diffusive phenomena in Toft’s compartmental models. Nonetheless, all of
them present certain limitations: some did not obtain parameters describing vas-
cularization [42, 43]; others assumed some hypotheses that limited the applica-
bility of the model [41, 44] and the most complex and yet more accurate DP and
CVXM models [40, 47], entailed an excessive computational cost.

Except Cantrell et al. [44], other authors based their works on the STM, which
is only accurate in poorly vascularized tissues [59]. In order to extend the range
of application of the diffusion-corrected models, we present a new formulation
of diffusion-corrected CA transport based on the ETM, which is accurate on both
weakly and highly vascularized regions.
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2.2 Diffusion-corrected extendedToftsmodel (D-ETM)

The transport mechanisms in biological tissues have long been of interest among
physicians and researchers. Nicholson and collaborators [60–65] studied thor-
oughly this process, establishing a general formulation for the diffusion of parti-
cles in the brain [62]. In this work, they compared the densely packed cells of the
brain and their interstitial spaces to a porous medium with two phases, an intra-
and extracellular phase. They then formulated the equations of the diffusive pro-
cess in brain based on the general equation of diffusion in porous media, which
is a process that has also been widely studied by many authors [66–68].

In the present work, this diffusion formulation is added to the general form
of the ETM. There is a distinction between two different scales: a macro-scale,
where the extravasation contribution to the concentration averaged in the repre-
sentative volume element (RVE) as well as the diffusion of CA between adjacent
RVEs are studied (Figure 2.1B); and the micro-scale, which is defined within the
RVE and consists of a heterogeneous distribution of cells, vessels and EES (Figure
2.1A). The size of the RVE must be large enough to achieve length scale separa-
tion, containing sufficient number of cells and, at the same time, it must be small
enough so that CA concentration can be averaged in it without adding signifi-
cant error. Therefore, equation 2.1 describes the main transport mechanisms for
a RVE:

∂Ct(x, t)

∂t
= ∇ ·

(
Deff (x)∇Ct(x, t)

)
(2.1)

+KTrans(x)
(
Cp(t)− Ce(x, t)

)
+ vp(x)

dCp(t)

dt

where:

• Ct(x,t) is the total CA concentration, averaged in the RVE (VT)

Ct(x, t) =
1

VT

∫
VT

Ct(X,x, t)dV (2.2)

From now on, we will refer to Ct(x,t) as Ct(x,t) in order to facilitate the
formulation

• x is the coordinates vector in the macroscopic domain of the tissue
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Figure 2.1: A. Insight on the different scales considered in the model. The RVE consists of
a certain volume occupied by cells, another region which corresponds to the microvas-
culature and the rest of the volume (colored in light yellow), which is the EES (VE). The
concentration of CA within the EES volume of the RVE is averaged (equation 2.3). The
two different coordinate systems (x and X ) are detailed.
B. Different processes taking place in the RVE (VT) that are considered in the proposed
model. Apart from the perfusion process (solid green arrows) and the contribution of mi-
crovasculature to the total concentration, diffusion between adjacent RVEs (dotted blue
arrows) is included.
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• X is the coordinates vector in the microscopic domain of the RVE

The relation between the macroscopic (x) and the microscopic (X ) coor-
dinate systems is defined through the homogenization process defined in
equations 2.2 and 2.3

• Deff(x) is the effective diffusion coefficient for that RVE. Considering that
each RVE contains a heterogeneous distribution of cells and vessels, we can
compare the diffusive process of CA to the diffusion in a porous medium,
as stated previously [62, 65–69]. A further detailed study of this variable is
included below (section 2.2.1)

• K
Trans

(x) is the extravasation rate for that RVE

• vp (x) is the volume fraction of blood plasma in the RVE

• Cp(t) is the CA concentration in the blood plasma volume, which follows
the same temporal function in every RVE and only varies with time

• Ce(x,t) is the averagedCA concentration in the extracellular subvolume (VE)
of the RVE. Considering that the microscopic scale is unknown (we have no
information about the subvolume VE of the RVE), we assume the hypoth-
esis of well-mixed compartments presented by Tofts [35]. This hypothesis
considers an infinite diffusivity coefficient of CA in the subvolume VE, what
implies that there cannot be any spatial gradient of Ce in the subvolume VE.
Therefore:

Ce(x, t) =
1

VE

∫
VE

Ce(X,x, t)dV (2.3)

From now on, we will refer to Ce(x,t) as Ce(x,t) in order to facilitate the
understanding of the equations

This well-mixed compartments hypothesis validates the Tofts equation for
the compartmental model:

Ct(x, t) = ve(x)Ce(x, t) + vp(x)Cp(t) (2.4)

where ve(x) is the volume fraction of the EES in the RVE, defined as ve = VE
VT

.

Substituting equation 2.4 in equation 2.1, we obtain equation 2.5, which is the
general form of the diffusion-corrected ETM (D-ETM), formulated in terms of the
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total concentration in the RVE:
∂Ct(x, t)

∂t
= ∇ · (Deff (x)∇Ct(x, t))

+
KTrans

ve
(x) (Cp(t)(ve(x) + vp(x))− Ct(x, t)) + vp(x)

dCp(t)

dt
(2.5)

Table 2.1 summarizes all model parameters, their definition and units. Note that
although K

Trans is measured in s-1 in the model, results presented in Chapter 3
and Chapter 4 are shown in min-1 to facilitate its comparison with the literature
[34, 40, 41, 44, 47].

Table 2.1: List of model parameters and their units.

Parameter Definition Units

Ct Total CA concentration in the RVE mM/mm3

Ce CA concentration in the EES volume within the RVE mM/mm3

Cp CA concentration in blood plasma mM/mm3

K
Trans Extravasation rate of CA from blood plasma to the EES 1/s

ve Volume fraction of EES within the RVE 1

vp Volume fraction of plasma within the RVE 1

Deff Effective diffusion coefficient mm2/s

D Diffusion coefficient in free medium mm2/s

2.2.1 Effective diffusivity

Different authors have formulated equations that relate the effective diffusivity
to different geometrical characteristics of the porous material [69–71]. Given that
the geometrical structure of the solid phase (cells and vessels) is unknown, we as-
sume that the equivalent diffusivity is related to the tortuosity [62]. Tortuosity (λ)
quantifies the increase in path-length of a diffusing particle due to the existence
of obstacles in its way [72], as shown in Figure 2.2. It is defined as:

λ =

√
D

Deff
(2.6)

Tao andNicholson [65] used theMonte Carlomethod to simulate the diffusion
of particles on different porous structures and different cell geometries and fitted
the simulated data to obtain the value of Deff for each case. Applying equation 2.6
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Figure 2.2: Diffusion path of a CA molecule within the tissue. Shapes in blue represent
clusters of cells, while the red line corresponds to the path followed by the CA molecule.
Tortuosity can be defined as the ratio of the actual distance (∆l) travelled by the species
per unit length of the medium (∆x).

to these values, they obtained a value of tortuosity (λ) for each simulated structure
and cell geometry and found that tortuosity was independent on the considered
cell geometry and was only dependent on the porosity (ε) of the structure:

λ =

√
3− E
2

(2.7)

Substituting equation 2.7 in equation 2.6 we obtain the definition of the equiv-
alent diffusivity (Deff). Considering that porosity (ε) is defined as the volume frac-
tion of "empty" space in the material, its equivalence to ve is straightforward:

Deff =
2D

3− ve
(2.8)

Where D is the diffusion coefficient of CA in free medium, which is known.
Using this formulation, we can consider different effective diffusion coefficients
per element without adding more unknowns to the model.
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2.3 Conclusion

All the previous works mentioned above follow the same formulation of the dif-
fusive term (revised thoroughly in [40]). This formulation assumes that CA can
diffuse freely through each of the voxel faces (this means that no obstacles, such
as cells, are present in that faces). Depending on the cellularity level and the
voxel size, this assumption may not be valid. The latest contribution by Sinno et

al. [47] proposes a modified formulation of the diffusive term that, as well as the
formulation presented in this work, avoids this simplification. In their work, the
diffusivity coefficient is considered unknown but constant through the domain.
As stated previously, this hypothesis may not be valid for some tissues, especially
in tumor tissues, which are characterized by their strong heterogeneity.

The formulation of the diffusion process here proposed avoids this assump-
tion by embracing the concept of effective diffusivity [62]. This concept implies
that the diffusion of agents within biological tissues is similar to the diffusion of
an agent in a porous medium [66–68]. Apart from providing a more accurate de-
scription of the diffusive process, this hypothesis links the effective diffusivity to
the volume fraction of the EES (ve), avoiding the generation of a new parameter
(D) that needs to be fitted or extracted from data or literature, as it is the case in
previous works [40, 41, 43, 44, 47].

22



Chapter 3

AFinite Element-based optimiza-
tion algorithm for fitting the
D-ETM to DCE-MRI data

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Forward FE model . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Solving the inverse problem . . . . . . . . . . . . . . . . 27
3.4 In silico simulations . . . . . . . . . . . . . . . . . . . . . 31
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

This chapter is based on:

D. Sainz-DeMena et al. “A finite element based optimization algorithm to include
diffusion into the analysis of DCE-MRI”. in: Engineering with Computers 38.5 (Oct.
2022), pp. 3849–3865

23



Chapter 3

3.1 Introduction

In the previous chapter, the D-ETM was introduced as a new PK model for an-
alyzing DCE-MRI data that takes into account the effects of passive transport
on the diffusion of CA within the tumor tissue. Fitting the D-ETM to DCE-MRI
data requires solving an inverse problem that involves fitting a partial differen-
tial equation (PDE) to the data from all voxels in an image simultaneously. This
presents a significant computational challenge due to the large number of param-
eters and the complexity of the PDE.

Various optimization methods are available to tackle this problem, includ-
ing gradient-based, genetic algorithms [73], Bayesian optimization [74] or the
simulated annealing algorithm presented in [40], among others. Gradient-based
methods are particularly attractive due to their efficiency and effectiveness, re-
lying on the calculation of the gradient of the objective function with respect
to the model parameters. The gradient provides information on the direction of
steepest descent and can be used to iteratively update the model parameters until
convergence to a local minimum is achieved.

Although gradient-based methods present some limitations that should be
considered, such as convergence to local minima, they can outperform other
stochastic approaches in terms of speed if an efficient algorithm for computing
the gradient is chosen. Given the complexity and non-linearity of the PDE in Eq.
2.5, we cannot obtain the gradient analytically, so we must use numerical meth-
ods, such as the finite difference method. This method, although being suitable
for complex equations, requires a forward simulation of the problem for each pa-
rameter in each RVE. The computational cost associated with this method is unaf-
fordable. To overcome these limitations, we describe here an alternative method
for the gradient computation based on the FEM that retrieves the exact gradient
and performs well on complex equations.

In this chapter we propose a FE-based implementation of the D-ETM to solve
the inverse problem that arises when fitting any PK model to DCE-MRI curves.
To achieve this aim, we first describe the implementation of the D-ETM using
the FEM. Second, we develop a gradient-based optimization method to fit this
model to the clinical imaging data to extract vascular properties. And third, we
test the performance and accuracy of this inverse method in different simulated
theoretical cases. Hence, this approach aims to benefit from the computational
efficiency of the FEM to fit all analyzed volumes simultaneously while keeping
an affordable computational cost. Thus, the modeling approach here proposed
can be applied to analyze the heterogeneous behavior characteristic of tumors,

24



A Finite Element-based optimization algorithm for fitting the D-ETM
to DCE-MRI data

avoiding simplifications and approximations that reduce the range of application
of the model.

3.2 Forward FE model

Equation 2.5 is implemented into ANSYS (Ansys Inc., TX, USA) diffusion module
[75], including the extravasation term and the contribution of the blood plasma
fraction as non-linear generation terms.

The numerical formulation obtained for equation 2.5 is defined as:

Cd
e ċe +Kd

e ce = rge (3.1)

Where, for an element e:

• ce is the nodal concentration vector and ċe is its temporal derivative

• Cd
e is the element diffusion damping matrix and it is defined as:

Cd
e =

∫
Ωe

nnT d(Ωe) (3.2)

• n are the element shape functions

• Kd
e is the element diffusion conductivity matrix and it is defined as:

Kd
e =

∫
Ωe

(
∇nT

)T
D∇nT d(Ωe) (3.3)

where D is the diffusion coefficient matrix, further defined

• rge is the element diffusing substance generation load vector and it is de-
fined as:

rge =

∫
Ωe

gnT d(Ωe) (3.4)

where g is the generation load vector

The integration volumeΩe corresponds to the volume of the finite element
e.
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The time discretization scheme is derived from the backward Euler implicit
method and is defined as:

un+1 = un + θ∆t u̇n+1 + (1− θ)∆t u̇n (3.5)

Where:

• un is the nodal degree of freedom (DOF) values at time tn

• θ is the transient integration parameter. If θ = 0 an explicit algorithm is
used, whereas if θ = 1 an implicit algorithm is employed

• ∆t = tn+1 − tn is the time step size

• u̇n is the time rate of the nodal DOF values at time tn, computed at previous
time point

Implementing this time discretization scheme on equation 3.1 leads to equa-
tion 3.6:

Cd c
t+1 − ct

∆t
= −Kdct+1 +R

(
(kTrans ⊘ ve)⊙ (ve + vp)c

t+1
p

)
−R

(
(kTrans ⊘ ve)⊙ ct+1

)
+Rvpċp

t+1 (3.6)

Where R is the substance generation matrix and Kd is the assembled dif-
fusion conductivity matrix. The terms ct+1 and ct are the nodal concentration
vectors resulting from evaluating the nodal concentration matrix (C) at given
time points. kTrans, ve and vp are the nodal variables vectors. Finally, ct+1

p

and ċpt+1 are the scalars resulting of evaluating the AIF and the derivative of the
AIF vectors (cp and ċp) at given time points. To distinguish between the regular
dot product and the Hadamard operations, we employ a specific notation for the
pointwise product (⊙) and division (⊘). The diffusion coefficients matrix D for
each element is:


2Dxx

3−veleme
0 0

0
2Dyy

3−veleme
0

0 0 2Dzz

3−veleme


Where veelem is the element average of the nodal ve variable. Considering as

a first approach isotropic diffusion, Dxx = Dyy = Dzz = D.
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Due to the dynamic nature of the physical process, transient effects were in-
cluded. Although the transient integration parameter was set to θ = 1, which
makes the solution unconditionally stable, the influence of the transient effects
still affected the accuracy of the solution depending on the time step (∆t). We
conducted several experimental error analyses and concluded that a time step of
1s ensured the consistency of the solution, while keeping an affordable computa-
tional cost.

Initial values were provided to initialize the transient simulations. Both the
nodal concentration and its time derivative were set to zero for t=0s (C(t0) =
Ċ(t0) = 0).

The AIF is interpolated to match this time resolution. Since both generated
curves and fitted curves are obtained using the same FE model, no interpolation
is needed to perform the fitting process.

Regarding the boundary conditions, we assumed that no CA could diffuse
across the boundaries of the geometry, considering the tumor as an "isolated"
entitywith respect to adjacent tissues. Although it may not be biologically correct
for tissues that are not surrounded by physical barriers, this condition facilitates
the formulation and is consistent with literature [34, 35, 40, 41].

3.3 Solving the inverse problem

Imaging data is usually processed as a voxelized geometry. However, the method
proposed here can be applied to any complex geometry, like those obtained from
imaging segmentation. Converting the data from a voxelized discretization to a
FE mesh involves an approximation of this data. However, since the spatial reso-
lution of the latter is expected to be equal to or higher than the spatial resolution
of the former, the error added to the data due to this approximation is small.

After implementing the D-ETM equation in ANSYS, we can simulate the CA
transport for a certain tissue. Therefore, the next step is fitting the model to the
concentration-time curves obtained from imaging. This inverse problem of curve
fitting is solved using an iterative method based on the non-linear least squares
method [76].

Being a gradient based method, it needs to compute the derivative of the total
concentration C(t) with respect to each nodal parameter, known as the Jacobian
matrix.

Typically, this matrix is obtained by using the numerical methods such as the
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finite differences method. This option leads to an excessively high computational
cost, since the number of simulations (Nsim) needed to compute this matrix in-
creases linearly with the number of time points and nodal variables and quadrat-
ically with the number of nodes.

Nsim = Nnodes
2NtimeNparameters (3.7)

where Nnodes is the number of nodes in the model, Ntime is the number of time
points and Nparameters is the number of unknowns to be fitted per node. Even for
small cases, this numerical analysis requires an excessive computational cost that
cannot be considered.

Therefore, we propose an alternative semi-analytical computation of the Ja-
cobian matrix. We can re-write equation 3.6 as:

Act+1 = ∆tR
(
(kTrans ⊘ ve)⊙ (ve + vp)c

t+1
p + vpċp

t+1
)
+Cdct (3.8)

where:

A = Cd +∆tKd +∆tR(kTrans ⊘ ve) (3.9)

The derivative ofC with respect to the different parameters can be obtained from
equation 3.8 by applying the product rule on the left hand side of the equation:

• For KTrans:

A
∂ct+1

∂kTrans
= ∆tR⊙

(
ct+1
p (ve + vp)⊘ ve − ct+1 ⊘ ve

)
+Cd ∂ct

∂kTrans
(3.10)

• For ve:

A
∂ct+1

∂ve
= −∆tKd(ve)⊙ ct+1

+∆t
(
R⊙ (kTrans ⊘ v2

e)⊙ ct+1 − vpc
t+1
p

)
+Cd ∂c

t

∂ve
(3.11)

whereKd(ve) =
∂Kd

∂ve
. Kd is the assembled matrix of elemental diffusion

conductivity matrices, which are defined by equation 3.3. To build these
matrices, we define D as:
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2D

(3−vee)
0 0

0 2D
(3−vee)

0

0 0 2D
(3−vee)


Where, for an element e, vee = 1

N

∑N
i=0 ve

i. N is the number of nodes
in the element and ve

i are the nodal values of ve. The derivative of Kd
e

with respect to nodal ve (Kd
e (ve)) is exported from ANSYS by deriving the

components ofD with respect to the nodal ve values, obtaining:
−2D

N(3− 1
N

∑N
i=0 ve

i)2
0 0

0 −2D
N(3− 1

N

∑N
i=0 ve

i)2
0

0 0 −2D
N(3− 1

N

∑N
i=0 ve

i)2


Each elemental matrix Kd

e (ve) is generated introducing this matrix in
equation 3.3. Finally, these elemental matrices are assembled to build the
global matrixKd(ve).

• For vp:

A
∂ct+1

∂vp
= ∆tR⊙

(
(kTrans ⊘ ve)c

t+1
p

)
+RI ċp

t+1 +Cd ∂ct

∂vp
(3.12)

To compute equations 3.10-3.12, matrices Cd and R are exported from ANSYS

along with Kd(ve). After solving these equations, the Jacobian matrix is ob-
tained by concatenating the matrices computed in equations 3.10-3.12:

∂c11
∂kTrans

1
. . .

∂c1nnode

∂kTrans
nnode

∂c11
∂ve1

. . .
∂c1nnode
∂vennode

∂c11
∂vp1

. . .
∂c1nnode
∂vpnnode

...

∂cntime
1

∂kTrans
1

. . .
∂cntime

nnode

∂kTrans
nnode

∂cntime
1
∂ve1

. . .
∂cntime

nnode
∂vennode

∂cntime
1
∂vp1

. . .
∂cntime

nnode
∂vpnnode


Thismatrix is included in the least-squaresmethod to fit the CA concentration-

time curves to equation 2.5. We tested this semi-analytical computation in small-
sized models, comparing it to the numerically computed Jacobian. Results were
promising, as both matrix and convergence were similar between the two meth-
ods. Further information about these results can be found in Appendix A.1.
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The optimization algorithm developed takes as inputs an initial set of values
of the unknowns, as well as the curves to be fitted. The model proposed defines a
set of three parameters (KTrans, ve and vp) per node. This implies that the algorithm
needs to fit three times the number of nodes simultaneously. Starting from the
initial seed provided, a forward simulation of the D-ETM is executed, obtaining
a first set of curves that are then used to initialize the cost function. Then, the
numerical matrices needed for the Jacobian computation (Cd, R and Kd(ve))
are exported by running several scripts on ANSYS. Once the Jacobian is obtained,
the minimization solver computes the updated set of parameters, finishing the
first iteration. A schematic pseudocode of this process is presented in Algorithm
1.

The cost function (CF) defined for themethod is a standard sum of squared dif-
ferences (equation 3.13), which has proven to be effective in the simulated cases:

CF =

Ntime∑
i=0

(yi − fi(xj))
2 (3.13)

Where Ntime is the total number of time points, yi is the value of the reference
concentration at time point i and fi(xj) is the value at time point i of the curve
obtained from running a simulation of D-ETM with given xj vector of parame-
ters.

Other cost functions that only consider a fraction of the time points, like those
proposed in [40], were tested. Nevertheless, they showed convergence problems,
leading to the algorithm getting caught in local minima distant from the global
optimum.

The solver method chosen to perform the minimization was the Trust Re-
gion Reflective (TRF) algorithm [77]. Although the commonly used Levenberg-
Marquardt (LM) [78] is also suitable for our purposes, the TRF algorithm (in its
Scipy [79] implementation) handles sparse matrix. Given the nature of our prob-
lem, working with matrices in sparse format for the Jacobian computation dra-
matically reduced the use of system memory (around 98% reduction). We com-
pared the performance of the LM algorithm against the TRF (converting the ma-
trices to dense format for the LMmethod). Both methods retrieved accurately the
reference values and the number of iterations needed was similar in both cases.

The proposed curve generation and curve fitting processes were executed in
a cluster composed of 480 CPUs and 1088 GB of RAM. Specifically, the resources
employed for the benchmark problem and the real tumor geometrywere: 16 CPUs
and 16GB RAM and 24 CPUs and 32GB RAM, respectively. The optimization time
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of the benchmark problem was 1.5h on average (fitting 360 time points on 339
nodes) and for the tumor geometry was around 10h on average (fitting 360 time
points on 955 nodes). The optimization algorithm was developed in Python and
APDL and the forward simulations were generated on ANSYS 2019R2.

Algorithm 1 Pseudocode of the optimization process
1: Generate an initial set of parameters (P0) ▷ Initial seed
2: while (CF > Threshold 1) or (δ >Threshold 2) do ▷ Convergence criteria. δ

is the increment to the parameter vector
3: Run forward FE model with the current set of parameters (Pi) ▷ Obtain

fitted curves
4: Evaluate CF
5: Export numerical matrices from ANSYS ▷ Export Cd,R andKd(ve)

6: Compute Jacobian matrix
7: Define new set of parameters Pi+1 = Pi + δ ▷ where δ is computed by

the TRF [77] via the gradient
8: end while

3.4 In silico simulations

In order to test the performance of the optimization algorithm proposed and to
compare the D-ETM to the ETM, two different sets of simulated tissue concentra-
tion time courses have been generated from the forward FE model of the D-ETM
and some sets of known parameters (KTrans, ve, vp and D).

The first case corresponds to a simple 2D geometry, where the distribution of
parameters generates a CA distribution that is completely dependent on diffusion.
The second case, on the other hand, is based on amore complex geometry inspired
in clinical data of tumors [48].

Although the proposed method can be applied to both 2D and 3D cases, given
the common resolution of imaging data (slice thickness is usually several times
the pixel size), we focused on 2D geometries to keep the computational cost af-
fordable. Due to this size difference, the effects of out-of-plane diffusion are ex-
pected to be negligible in comparison with the in-plane diffusion [41]. In terms
of computation, it is dramatically faster (up to two orders of magnitude) to par-
allelize several 2D simulations rather than studying all of them as a 3D case.

The geometries correspondent to both cases weremeshed using linear quadri-
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lateral diffusion elements (PLANE238 in ANSYS manuals [80]) of size 0.15 mm,
which generates a mesh of higher density than of most of the clinical and exper-
imental imaging data.

Similarly to previous works [38], the diffusion coefficient D was given a value
of 2.6E-04 mm2/s, which is consistent with experimental measurements [37, 43].
Considering the formulation of the diffusive term of the model proposed here
(equation 2.5), the diffusion coefficient was constant in both cases.

The AIF used in the simulations (Figure 3.1) was inspired on the clinical data
collected within the European research Project PRIMAGE [48].

Figure 3.1: AIF used for the simulations.

3.4.1 Benchmark problem

This case is based on the one proposed by Pellerin et al. [40], which was also
included in the work of Fluckiger et al. [41]. Given the importance of these
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contributions into the study of CA diffusion process, we consider this case as
a benchmark problem for PK models that incorporate diffusion.

Hence, we simulated a slice of a circular, radially symmetric, tissue. The def-
inition of both the geometry and the distribution of parameters aims to generate
an extreme case of a distribution of CA that is diffusion-limited. To do so, the
circle is divided into two different regions: a highly perfused rim and a necrotic
core.

Initially, the parameters values chosenwere similar to those used by Fluckiger
et al. [41]: KTrans = 0.2 min-1 in the rim and 0.05 min-1 in the core; a constant value
of ve equal to 0.5 in the whole model; and, finally vp = 0.05 in the rim and 0.005
in the core.

When running the optimization algorithm on this case, we observed that,
although the cost function was reduced to values close to zero, the parameters
returned were different from the true ones. Upon closer examination, we noticed
the existence of several local minima close to the global optimum. Figure 3.2
shows two different nodes where the true values of the model parameters were
the same, and so were the generated CA curves. However, although the fitted
curve is almost identical to the reference one, the two sets of fitted parameters
are different between them and both differ from the true values. It must be noted
that some of the parameters retrieved are unphysical: KTrans and vp below zero in
the second case of Figure 3.2. Even when applying bounds to keep the parameters
within physical ranges (KTrans greater than zero and ve and vp between zero and
one), the optimization algorithm still got caught in a local minimum.

This meant that the success of the optimization process was dependent on the
initial seed. The curves shown in Figure 3.2 were obtained using as initial seed a
set of values that was a random distribution of values between 0.4 min-1 and 0, for
K
Trans; between 0.2 and 0.8 for ve; and between 0 and 0.1 for vp. In this case, the

optimization method retrieved accurate results only if the initial seed was very
close to the true values.

We attribute this problem to the numerical instability produced by the radial
symmetry, both in geometry and parameters, which produces a set of identical
curves at nodes with similar values. To prove this hypothesis, we created two ad-
ditional simulations. In the first one, the parameters were kept constant for each
region, while the geometry was modified to suppress the axial symmetry. The re-
sults obtained from these simulations are detailed in Appendix A.2. In the second
simulation, the geometry was preserved, while the parameters were changed by
random distributions of values within a range. Such, KTrans was assigned values
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Figure 3.2: Two of the sets of curves (simulated and fitted) correspondent to some of the
nodes within the necrotic region of the first simulation of the benchmark problem. The
true values for both nodes are: KTrans=0.05 min-1, ve=0.5 and vp=0.005. The fitted values
are: in the first case, KTrans=0.15 min-1, ve=0.41 and vp=0.01; and, in the second case:
K
Trans=-0.09 min-1, ve=0.25 and vp=-0.001. These results demonstrate the convergence of

the inverse method to a local minima.

between 0.25 min-1 and 0.15 min-1 in the rim and between 0.05 min-1 and 0 min-1
in the core. vp, on the other hand, was given values between 0.08 and 0.03 in the
rim, and between 0.01 and 0 in the core. ve maintained its original values. The
initial seed was the same as in the previous simulation.
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Figure 3.3: Second simulation of the benchmark problem. Comparison between the ref-
erence values and the parameters returned by the D-ETM and the ETM. Results show
that the D-ETM accurate retrieves the distribution of KTrans and vp, while the ETM shows
an averaging pattern, especially for KTrans. Although not as accurate as the other param-
eters, the ve map returned by the D-ETM is within the physiological range [0,1], while
the distribution obtained from the ETM reaches values close to infinity in the necrotic
core.

Results obtained with the ETM on this simulation are consistent with previ-
ous works [40, 41]. The KTrans, mainly, and the vp maps, to a lesser extent, show
an averaging pattern with respect to the reference values. Besides, the ve map re-
turns unphysical values (ve>1 and ve<0) in the necrotic region (Figure 3.3). Even
if the KTrans and vp in the necrotic region are not exactly zero, the enhancement
curve of these nodes is completely dependent on diffusion. Thus, these curves
cannot be accurately fitted to the Tofts formulation. Besides, the vascularized re-
gions adjacent to the necrotic ones are also influenced by these values, since there
is diffusion of CA from the former to the latter. This diffusive process results in
a lower CA concentration, which is then fitted to K

Trans values below the true
ones. vp is not as affected by this effect as KTrans is, resulting in a better fit for
this parameter. The distributions obtained with the D-ETM are very accurate for
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Table 3.1: Comparison of error metrics between the D-ETM and the ETM for the bench-
mark problem. KTrans absolute error is measured in min-1. Results were computed from
ten simulations.

D-ETM ETM
Absolute
error

Fraction of nodes
error <threshold

Absolute
error

Fraction of nodes
error <threshold

Mean SD Mean SD Mean SD Mean SD
K
Trans 8.14E-03 1.18E-03 71.54% 6.03% 3.71E-02 6.93E-04 19.03% 2.19%
ve 9.53E-02 4.42E-03 77.58% 1.42% 7.78E+06 5.46E+05 54.57% 0.53%
vp 3.79E-04 7.45E-05 94.13% 3.02% 7.08E-03 2.71E-04 74.93% 1.35%

K
Trans and vp, while the fitted ve map shows higher error, especially in the necrotic

region. This error is related to the influence of the variable in the global solution.
If we take a look at equation 3.11, we can see that the value of this derivative
is dependent on the value of KTrans and vp. Therefore, in those necrotic regions,
where these parameters present values close to zero, the derivative depends only
on the diffusive term. Due to the definition of this term (equation 2.6), the influ-
ence of ve is limited. Thus, because of its low effect on the global solution, the
optimization algorithm is not able to retrieve accurate results for ve, especially on
necrotic regions.

A quantitative comparison between the outcome of both models is presented
in Table 3.1. Since both the true and initial values for the simulations are a func-
tion of randomness, ten cases with different true and initial sets of parameters
were tested to validate the robustness of the method. Considering that reference
values for KTrans and vp reached zero in the necrotic region, the use of relative er-
ror metrics is unfeasible. The absolute error, measured as the absolute difference
between the fitted and the reference value, was selected to compare the perfor-
mance of both models.

Different error thresholds were defined to compare the performance of both
models. Threshold for KTrans was set to 0.01 min-1, which is the maximum preci-
sion of the DP model [40]. Similarly, the threshold for vp was set at 0.001, a value
that can be considered as sufficient precision for this kind of models. Due to the
slight impact of ve maps on the global solution, its threshold was set to 0.15.

The D-ETM clearly outperforms the ETM, especially on K
Trans maps. While

only 19% of nodes fitted by the ETM are within a 0.01 range from the reference
value, 72% of those retrieved by the D-ETM fall into that range. Besides, the
K
Trans mean absolute error in the ETM is around four times higher than the one
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correspondent to the D-ETM.

Due to the great effect of the unphysiological values of ve returned by the
ETM on the absolute error, this metric will not be used to compare the models.
The fraction of nodes whose error is below 0.15, however, is not affected by these
values. While only 55% of the values obtained using the ETM are within the error
range, almost 78% of the ones retrieved by the D-ETM fall into this range. Despite
experiencing difficulties retrieving the correct ve maps, the D-ETM shows a great
improvement with respect to the ETM. Besides, all of the ve values fitted using
the D-ETM were within the physiological range [0,1].

The mean absolute error of D-ETM vp maps is around half the error obtained
by the ETM. Nevertheless, this parameter does not seem to be as affected by dif-
fusion as the other two.

Although the error retrieved by suppressing the homogeneity in the distribu-
tions of parameters (Figure 3.3) was lower than the error obtained by removing
the axial symmetry in geometry (Appendix A.2), these results demonstrate that
the combination of both factors was causing the convergence of the algorithm to
local minima.

Analysis of the mesh effect

The influence of mesh size on the convergence of both the forward and the in-
verse models was tested using the benchmark problem geometry. Two different
meshes were generated: the first one discretized the geometry using 0.15 mm
size elements, while the element size on the second one was half that value. The
number of nodes on the two simulations were 339 and 777, respectively. The same
type of elements (linear quadrilateral diffusion elements) was used on both mod-
els. On both cases, the sets of true and initial values were random distributions
between the ranges defined previously. Just as in the benchmark problem, ten dif-
ferent simulations were generated for the finer mesh, to eliminate the influence
of randomness on the result.

The results presented in Table 3.2 show that the method reduces the error
when refining the mesh. Nevertheless, the slight increase in accuracy does not
justify the greater computational cost associated to the finermesh. The finermesh
model needed twice the time of the original model to fit the curves. Therefore,
the element size selected for the simulations was 0.15 mm, a tradeoff between
accuracy and computational cost.
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Table 3.2: Comparison of error metrics between two different meshes. K
Trans absolute

error is measured in min-1. Results were computed from ten simulations.

0.15 mm element 0.075 mm element
Absolute
error

Fraction of nodes
error <threshold

Absolute
error

Fraction of nodes
error <threshold

Mean SD Mean SD Mean SD Mean SD
K
Trans 8.14E-03 1.18E-03 71.54% 6.03% 7.65E-03 7.43E-04 72.5% 4.12%
ve 9.53E-02 4.42E-03 77.58% 1.42% 9.11E-02 3.96E-03 80.35% 1.41%
vp 3.79E-04 7.45E-05 94.13% 3.02% 3.24E-04 3.78E-05 97.03% 1.85%

3.4.2 Real tumor geometry

A second set of simulations was generated to test the performance of the D-ETM
in real geometries and vascular properties with a heterogeneous distribution. The
geometry corresponded to a tumor slice of around 20 mm2, while the vascular
properties were inspired by clinical data [48].

The vascular properties distribution is divided into three different zones: a
highly perfused region, an intermediate region and a necrotic region. Depending
on the zone, the assigned parameters were: for KTrans, random values between
0.4 and 0.3 min-1, between 0.25 and 0.1 min-1 and between 0.05 and 0 min-1, for
the three respective regions. ve values were randomly selected within a range
between 0.85 and 0.75 for the necrotic region and 0.6 and 0.4 for the other two.
Finally, vp random distribution ranged from 0.08 to 0.03 for the highly perfused
nodes, between 0.05 and 0.03 in the intermediate region and between 0.01 and
0.005 in the necrotic one.

The convergence of the inverse method was tested by providing random dis-
tributions of parameters as initial values. The ranges for KTrans, ve and vp were
the same as in the previous case: [0,0.4] min-1, [0.2,0.8] and [0,0.1], respectively.
Following the procedure described in the previous case, ten simulations with dif-
ferent reference and initial values were generated. The heterogeneous reference
maps generated clearly expose the limitations of the ETM in accurately capturing
the KTrans distributions (Figure 3.4). While the D-ETM provides an almost exact
distribution for KTrans and vp and an acceptable ve map, the ETM tends to ho-
mogenize the KTrans, failing to depict the highly perfused regions, as well as the
necrotic ones. This effect is particularly visible in those zones where two of these
regions are adjacent.

The error metric employed in this case was the absolute relative difference
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Figure 3.4: Real tumor geometry. Reference values and results of the D-ETM and the
ETM for each of the parameters. Result show that the D-ETM accurate captures the het-
erogeneity of the distribution of parameters, while the ETM tends to average the values.
The maps of vp are the least sensitive to this phenomenon. The ve distribution obtained
from the D-ETM shows a more accurate fit than the one obtained in the benchmark case.

Table 3.3: Error metrics comparison between the D-ETM and the ETM for the second
case. Results were computed from ten simulations.

D-ETM ETM

ARD Fraction of nodes
ARD <20% ARD Fraction of nodes

ARD <20%
Mean SD Mean SD Mean SD Mean SD

K
Trans 16.37% 3.67% 87.21% 2.67% 148.42% 47.37% 39.85% 1.6%
ve 15.54% 1.02% 76.87% 2.69% 11.36% 0.22% 85.71% 1.07%
vp 8.59% 4.45% 95.56% 3.02% 194.85% 101.26% 40.13% 1.53%

(ARD), calculated between true and fitted parameters. Table 3.3 shows the met-
rics correspondent to the average of ten different simulations of the real geometry
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case. In this case, where necrotic zones were not as large as in the previous case,
the ETM accurately retrieves the ve map (mean ARD is 11% and 86% percent of
nodes have an ARD below 20%), depicting the increase in ve correspondent to
these necrotic regions (Figure 3.4). The D-ETM, on the other hand, gives a good
fit for the ve map (mean ARD is 16% and the ARD is below 20% in 77% of the
nodes), although it is not as accurate as the ETM in fitting the ve values in necrotic
nodes (Figure 3.4). KTrans and vp distributions obtained from the D-ETM are al-
most an exact representation of the reference maps (Figure 3.4), as evidenced by
the metrics obtained (Table 3.3). The mean ARD is 16% and 9% for KTrans and vp,
respectively. The ETM, nonetheless, show higher error for these two parameters
(mean ARD of 148% and 195% for KTrans and vp, correspondingly, and for both
maps only 40% of nodes have an ARD below 20%).

In their work, Pellerin et al. [40] tested the performance of their model in a
simulated case similar to the real geometry case presented in here. The DP model
obtained a mean ARD of 16% for KTrans and 17% for ve, with 73% of the K

Trans

values and 77% of the ve values within 20% of the true values. The D-ETM has
obtained identical values for ve and a similar mean ARD for KTrans, improving the
fraction of values whose ARD is below 20%.

Influence of noise

To test the robustness of the D-ETM to the addition of noise, several simulations
were conducted. Starting from a set of reference values similar to those generated
in the last case, experimental levels of noise were added to the generated curves.
These levels were defined using a gaussian distribution with a standard deviation
(SD) equal to a fraction (1%, 2.5% and 5%) of the highest concentration reached in
the curve.

The results of these simulations presented in Figure 3.5 show the effect of
noise on both the D-ETM and the ETM. Despite showing higher error for noise-
free simulations, the parameters returned by the ETM seem to be unaffected by
noise, since the histograms show almost no difference in the distribution of ARD
between the cases with different levels of noise. The added noise shows greater
influence on the parameters obtained fitting the D-ETM. Noise seems to have the
greater effect on vp and the slighter effect on ve. KTrans, for its part, shows a slight
disturbance when the noise level is low (1% and 2.5%), having more than 70% of
its values within a 20% range from the true values. When the added noise reaches
the maximum value, this percentage drops dramatically to 30%.
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Figure 3.5: Influence of noise on the accuracy of the D-ETM (left) and the ETM (right).
Results show that noise has greater influence on the D-ETM, particularly on vp. Although
the ETM seems to be unaffected by noise, for noise values below or equal to 2.5% the D-
ETM still performs better. Even for the maximum levels of noise (5%), the error in the
D-ETM solution is similar to the one in the ETM.
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These results are consistent with those obtained by Pellerin et al. [40]. In their
work, the authors attributed this different effect of noise on parameters depending
on the influence of each parameter on the different parts of the CA curve. Thus,
ve regulates the last part of the curve, where the concentration is close to the
maximum and, therefore, it is less sensitive to noise. KTrans, and even more vp,
affect the initial part of the curve. Consequently, the influence of added noise is
greater on these parameters.

The great number of variables to be fitted simultaneously makes this model,
as well as the model developed by Pellerin et al. [40], more sensitive to noise.
Therefore, when fitting the model to experimental data it must be ensured that
the signal-to-noise ratio (SNR) of the data meets the model requirements.

3.5 Discussion

The use of DCE-MRI sequences to assess the efficacy of antiangiogenic therapies
in tumors [53–55] increases the need for PK models that retrieve vascular prop-
erties as accurate as possible. Several authors have pointed out the limitations of
the widely used standard and extended Tofts models when the CA reaches the
ROI through passive delivery [40–44, 46, 47]. These models return an inaccurate
estimation of KTrans as well as unphysical values for ve in those regions within the
ROI where the active delivery of CA is low or non-existent (necrotic zones). Dif-
ferent models and methods have been developed to assess the effect of diffusion
and to develop PK that accounted for this process [40, 41, 44, 47]. These works
exposed the mentioned limitations and proposed different approaches to include
the effects of diffusion into the STM and the ETM. Pellerin et al. [40] were the
first to include a diffusive term into the STM. The DP model proposed showed
an improvement in parameter accuracy with respect to the original STM in those
regions where passive delivery of CAwas significant. One of its major limitations
was the high computational cost associated to the simulated annealing algorithm,
since the model had to fit all voxels simultaneously. Fluckiger et al [41] added
some hypotheses to the DP model (homogeneity in the diffusive coefficient and
ve between neighboring voxels) that allowed them to compute the effects of dif-
fusion while fitting each voxel separately and, therefore, reducing substantially
the computational cost. However, this homogeneity hypothesis may not be suit-
able for some kind of tumors (such as neuroblastoma, which is a type of cancer
characterized by its high heterogeneity [81]). Cantrell et al. [44] based their for-
mulation of the diffusive term on the one proposed by Pellerin et al. [40] and
proposed a diffusion-compensated Tofts model (DC-Tofts). Their work consisted
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on obtaining the ETM parameters from CA curves, then computing the diffusion
contribution from these fitted parameters to generate a new set of curves and,
finally, fit again these last curves with the ETM. Although this model was suit-
able for intracranial aneurysms, the approach used may not be appropriate for
other type of lessions where necrotic zones are present, since the initial fit of the
ETM would retrieve unphysical values of ve that would condition the following
diffusion computation.

The performance of the D-ETM and the FE-based method here proposed was
tested using two different in silico cases. The first one, a benchmark problem de-
rived from literature [40, 41], exposed the limitations of the ETM in those regions
were passive delivery of CA is the main transport mechanism. Results showed
the improved accuracy of the model parameters returned by the D-ETM, which
were very close to the reference values (mean absolute error for KTrans, ve and
vp were 0.008 min-1, 0.095 and 0.0004, respectively). A second case inspired in
real tumor geometries and parameters was analysed. Again, the ETM performed
poorly, returning an incorrect estimation of KTrans. In both simulations, the KTrans

distribution obtained by the ETM appeared averaged with respect to the refer-
ence maps, adding significant error to the parameters. D-ETM parameters were
almost identical to the true values, accurately depicting the heterogeneous distri-
bution of values. Besides, Figure 3.5 shows that the error obtained by the D-ETM
follows a Pareto-like distribution for noise levels below 2.5%, what means that the
smallest errors are obtained for most of nodes, while the ETM does not follow this
pattern (except for ve), even for noise-free simulations.

The results obtained from the D-ETM in both cases show lower accuracy in
ve maps with respect to the other variables, especially on necrotic regions, where
K
Trans values are very close to zero. This is due to themodest influence of ve on the

global solution in these regions. To solve this issue, future works could develop
an alternative expression for the effective diffusivity where ve would have more
influence. Nevertheless, the accuracy of the ve maps obtained from the D-ETM is
acceptable, keeping all of their values within the physiological range. Moreover,
the vemaps retrieved by theD-ETMon the real tumor geometry show an accuracy
similar to the DP model [40].

Due to the additional variable included in the ETM with respect to the STM
(the volume fraction of blood plasma, vp), the convergence of the optimization
algorithm can be affected by the presence of local minima within the solution
space. This means that the solution is dependent on the initial seed. Although
our model seems to overcome this issue on the simulated cases, the values ob-
tained from the ETM could be used as an initial seed in those cases where the
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minimization convergence is severely affected by this issue.

This new formulation is limited by the computational cost associated to the
optimization algorithm. Although the method benefits from the computational
efficiency of the FEM, the optimization time for the two simulated cases was 1.5h
and 10h on average (fitting 360 time points on 339 nodes and 955 nodes, respec-
tively). Despite being faster than the DP model (average of 72h to fit 484 vox-
els), the execution time cannot be compared to the ETM, which took an aver-
age of 5s and 12s, respectively. Future works can be applied to migrate the code
from Python to more efficient languages, such as C. One of the bottlenecks of
this method is the Jacobian matrix computation, which executes operations on
large sparse matrix. This computation could be parallelized to reduce the execu-
tion time. Alternatively, the gradient could be computed using the adjoint-based
method [82], which has proven to be very efficient when computing the gradient
of an objetive function with respect to a large number of parameters, as it is our
case.

The described D-ETM is the first diffusion-corrected PK model to be imple-
mented using the FEM. It proposes a new formulation for the diffusive term, based
on the concept of effective diffusivity, that simplifies the computation of this term
and avoids the inclusion of additional variables to the model. The semi-analytical
method formulated to compute the Jacobian matrix opens the door for further
gradient-based optimization methods for FE-based PK models. Although previ-
ous works [38] have developed a FE implementation of the extended Tofts model,
their objectivewas to expose the effect of intra-voxel CA diffusion on PK analyses.
To the best of our knowledge, this is the first FE-based optimization algorithm for
the ETM. The results obtained with this model are promising, since it accurately
retrieves the reference values, outperforming the ETM. Future works should test
this model on real clinical or experimental data.
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4.1 Introduction

In the previous chapter, we demonstrated the importance of CA diffusion, espe-
cially in necrotic regions in tumors, and showed the increased accuracy of the
D-ETM model with respect to the ETM when retrieving the model parameters
in the presence of CA diffusion. Nevertheless, due to the ill-posed nature of the
problem, the FE-based algorithm faced convergence problems, getting caught in
local minima in some cases.

Thanks to the great advances in Machine Learning (ML), and more precisely
in DL, in the last years several authors have developed different DL-based meth-
ods to retrieve PK model’s parameters from DCE-MRI data. Such works mainly
focus on the use of convolutional neural networks (CNN) [83–85] and recurrent
neural networks (RNN), such as long short-term memory (LSTM) networks [86].
The main drawback of these architectures is that both are purely data-driven ap-
proaches. This means that these networks need to be trained on a sufficiently
large dataset that includes different patients from distinct clinical centers where
diverse protocols may have been applied. Besides, they do not only need the raw
clinical data, but also the "ground-truth" for the parameters of the model being
fitted. Although in the case of the STM or the ETM these parameter values can
be extracted using a fast algorithm such as non-linear least-squares (NLLS) [76]
fitting, if we want to include the diffusive term we need to incorporate other op-
timization algorithms, such as those proposed in [40, 41, 44, 47, 52]. This poses a
major challenge, since those algorithms that are fast enough for this taskmake as-
sumptions that limit their applicability to certain tissues [41, 44] and those which
can be widely applied to different tissues are too computationally expensive to
fit such a large dataset and struggle to converge to the exact solution in some
situations [40, 47, 52]. Thus, it appears that the problem we are addressing re-
quires that the known physical laws that govern the processes of CA transport
are included in the network architecture, steering away from purely data-driven
approaches.

Recently, PINNs [87–89] have emerged as a promising alternative for solving
PDEs and other inverse problems. PINNs combine the flexibility and scalability of
neural networks with the physical constraints imposed by the underlying equa-
tions, allowing for efficient and accurate solutions even for highly nonlinear and
ill-posed problems. Other authors have used this type of NN to fit tracer-kinetic
models to DCE-MRI data [90, 91], outperforming current NLLS method. Zapf et
al. [92] used PINNs to estimate the diffusion coefficient governing the long term
spread of molecules in the human brain from diffusion tensor imaging (DTI) MR
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data, showing its potential for this task. The results obtained in these works show
that PINNs can successfully retrieve PK parameters and solve inverse problems
of CA diffusion in biological tissues.

In this chapter, we investigate the potential of using PINNs to fit diffusion-
corrected PK models to synthetic DCE-MRI data, with the aim of establishing a
robust framework for future analysis. To facilitate our exploration, we focus on
1D spatial domains while highlighting the broader implications of this approach
for advancing DCE-MRI data analysis.

With this physics-driven NN architecture we aim to overcome the limitations
of traditional solvers and achieve more robust parameter estimation for DCE-MRI
analysis, showing the potential of PINNs to extract more accurate vascularization
data from this type of MR sequences, even when faced with noisy and incomplete
data.

4.2 Methods

This section begins with a brief explanation of the fundamentals of PINNs, fol-
lowed by a description of the PINN implementation chosen for the specific D-
ETM problem.

4.2.1 Physics-Informed Neural Networks

In recent years, the field of biomedical engineering has significantly increased in
the use of DL techniques for a wide range of applications, from medical image
analysis [93] to drug discovery [94]. DL algorithms have shown great promise in
improving the accuracy and efficiency of tasks such as disease diagnosis, prognos-
tication, and treatment planning [95]. However, many of these approaches rely
on large amounts of labeled data, which can be challenging to obtain in biomed-
ical settings [96]. This is where PINNs have emerged as a promising alternative,
leveraging the underlying physics of the problem to reduce the reliance on labeled
data and improve model generalization [97].

PINNs incorporate prior physical knowledge of the problem into the neural
network architecture, making them more efficient and accurate than traditional
data-driven DL approaches. PINNs can include PDEs to encode the governing
physics of the problem, and then use neural networks to approximate the solution
to the PDEs.
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This combination of physics-based constraints and data-driven learningmakes
PINNs particularly effective for problems with limited data and complex physi-
cal phenomena. In the following sections, we will explain the basic concepts of
PINNs and how we used them to solve our specific problem.

Fundamentals

PINNs are based on two main concepts: the Universal Approximation Theorem
[98] and Automatic Differentiation (AD) [99].

The Universal Approximation Theorem states that any arbitrary function, no
matter its complexity, can be approximated by a NN with only one hidden layer
and a finite number of neurons.

Automatic differentiation is a technique for efficiently computing the deriva-
tives of a function specified by a computer program. It works by recursively ap-
plying the chain rule of calculus to elementary operations such as addition, mul-
tiplication, and elementary functions like exponentials and trigonometric func-
tions. This allows us to compute exact derivatives to machine precision without
the need for symbolicmanipulation or numerical approximations. In other words,
we can obtain the derivatives of a functionwith the same precision as the function
itself.

Therefore, one can train a NN to express solutions of time-dependent linear
and non-linear PDEs from a set of inputs. Given a PDE of the form:

∂u

∂t
+N [u;P ] = 0, x ∈ Ω ⊂ RD, t ∈ [0, T ] (4.1)

whereN [u;P ] is a differential operator with parameters P acting on the hid-
den solution u(x, t). We can approximate the solution of the PDE u(x, t) with a
NN such that u(x, t) ≈ NN(x, t; θ), being θ the NN parameters and (x, t) the
input variables.

The process of NN training comprises a set of training data, a loss function
L that measures the fitness performance of the NN with respect to the objective,
and an optimizer that adjusts the NN parameters to minimize L. In the case of
PINNs, we incorporate the PDE as a constraint in L to ensure that the solution
obtained by the NN satisfies the physical laws described by the PDE on a certain
set of collocation points {xi, ti}

Nf

i=1 ∈ Ω× [0, T ]. In the case of inverse problems,
where u(x, t) is known on some set of training points {xi, ti, ui}Nu

i=1 ∈ Ω×[0, T ],
this loss function is composed by two main terms:
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L(θ, P ) = wdLd + wrLr (4.2)

where:

Ld =
1

Nu

Nu∑
i=1

(u(xi, ti)−NN(xi, ti; θ))
2 (4.3)

Lr =
1

Nf

Nf∑
i=1

(
∂NN(x, t; θ)

∂t
+N [NN(x, t; θ);P ]

)2

(4.4)

and Nu and Nf are the number of training points and collocation points, re-
spectively. The first term of the loss function (Equation 4.3) is the mean squared
error (MSE) between the predicted solution and the ground truth solution at the
sampled training points. The second term (Equation 4.4) is the MSE of the PDE
residual at the collocation points. To compute this term, the derivatives included
in the PDE are computed using automatic differentiation. Both terms are scaled
by different weighting factors, wd and wr that control the relative importance of
the data and PDE losses. Additionally, one may add other terms to the loss func-
tion related to boundary or initial conditions with their correspondent weighting
factors, although they are not mandatory for inverse problems [100].
By minimizing this loss function, the NN learns to approximate the solution of
the PDE at the training points while it satisfies the physical laws described by the
PDE at the collocation points. For inverse problems this minimization process
not only updates the NN weights and biases but also retrieves the unknown PDE
parameters P.

Fitting the D-ETM using PINNs

After presenting the general concepts of PINNs, we now shift our focus to the
specific implementation used to fit the D-ETM to synthetic DCE-MRI data.
Our implementation is based on previous works [87, 91, 101] that solved similar
problems. Therefore we opted for a densely connected forward neural network
(FNN) architecture consisting of 8 hidden layers and 100 neurons per layer and
the hyperbolic tangent (tanh) as the activation function. A normalization layer
was included before the hidden layers to normalize the spatial and temporal co-
ordinates to the [-1,1] range, as it is recognized as a safeguard against vanishing
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or exploding gradients, as well as a stabilizing factor for the training procedure
[87]. The network parameters θ were initialized using Glorot initalization [102]
while the D-ETM parameters P were given random values within the physio-
logical range (KTrans between 0.05 and 0.5 min-1; ve between 0.3 and 1.0 and vp

between 0.01 and 0.3). The original formulation of the loss function presented in
Equation 4.2 is modified to include two additional terms:

L(θ, P ) = wdLd + wrLr + wICLIC + wCLC (4.5)

where LIC represents the initial conditions and LC is a soft constraint for the
PDE parameters and wIC and wC are their respective weighting factors. These
additional terms are defined as:

LIC =
1

NIC

NIC∑
i=1

(NN(xi, 0; θ))
2 (4.6)

LC =

Np∑
i=1

(
g(KTrans

i , vei, vpi)
)

(4.7)

where NIC is the number of points used to evaluate the initial condition, de-
fined as Ct(x, t) = 0, and Np is the number of points where the PDE parameters
are evaluated. Given that the three D-ETM parameters (KTrans, ve and vp) are spa-
tial distributions, Np should be equal or greater than the spatial discretization of
the data points to achieve sufficient precision. The soft constraint presented in
Equation 4.7 is defined as:

g(KTrans
i , vei, vpi) = max(KTrans

i , 0)−KTrans
i +max(vei, 0)− vei

+max(vpi, 0)− vpi +max(vei + vpi, 1)− 1 (4.8)

Equation 4.8 sets the lower bound for all three PDE parameters to 0, while the
upper bound for the sum of ve + vp is set to 1. This constraint ensures that the sum
of the intravascular space and the EES does not exceed the total voxel volume.
These limits ensure that the parameters obtained are physically plausible. The
weighting factors were all set to 1 except wr, which was given a value of 1000.
Based on the different tests conducted, this combination of weights lead to the
best results. The loss function defined in Equation 4.5 is minimized using the
Adam optimizer [103] with a constant learning rate of 0.001 during 80.000 epochs.
A schematic overview of this PINN implementation is presented in Figure 4.1.

The number of training points was obtained from the resolution of the syn-
thetic data, with a total of 360 points in the temporal domain (1 s resolution) and
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60 points in the spatial domain (0.1 mm resolution) (Chapter 3). That resulted in
a total of 21.600 training points. NIC and NC were set to 100 and 120, respectively.
We found empirically that enhancing the spatial discretization of PDE parameters
(Np) with a factor of 2 with respect to the data resolution increased the accuracy.
Finally, 50.000 collocation points were distributed over the whole domain using
the Latin Hypercube Sampling (LHS) method [104].

Figure 4.1: Schematic representation of the PINN implementation developed to fit the D-
ETM. PINNs take advantage of the computational efficiency of automatic differentiation
to get the derivatives of Ct needed for the computation of Lr. As in any other inverse
problem, the optimizer not only updates the NN parameters (θ∗) but also the PDE pa-
rameters (P∗).

The implementation shown so far includes most of the features described in
the original work that laid the foundations for PINNs [87]. However, the results
obtained with this implementation showed that, although the network was able
to fit the data curves accurately, the error in the PDE parameters, particularly
ve, was too high. To retrieve more accurate PDE parameters, we introduced the
residual based adaptive refinement (RAR) method [105]. The idea behind this
method is to improve the distribution of collocation points during training. After
a certain number of epochs (ERAR), the collocation points are ranked by their mean
Lr value. Then the top k points are appended to the list of collocation points. This
technique helps the NN focus on those regions where the PDE residual is higher,
enhancing the gradients corresponding to the PDE parameters in that regions.
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Furthermore, our tests showed that modifying only the temporal coordinate of
the collocation point with a randomnoise of 1% of its value increased the accuracy
of the results. This is probably related to the higher spatial resolution of the initial
collocation points obtained with the LHS method with respect to their temporal
resolution. Therefore, slightly modifying the temporal coordinate enhanced this
temporal resolution. Through successive tests, the RAR parameters were set to
ERAR = 500 and k = 500.

It is important to note that all these hyperparameters were manually cali-
brated until we obtained satisfactory results. Moreover, it should be emphasized
that before applying our methodology to more complex 2D cases, a proper tun-
ing of the hyperparameters is necessary to understand and measure how each
hyperparameter affect the results.

4.3 Examples of application

To assess the effectiveness of PINNs in accurately determining the D-ETMparam-
eters in comparison to previous optimization algorithms described in Chapter 3,
two distinct in silico cases were devised. Both cases were based on a 1D spatial
domain that corresponds to a cross-section of a circular tumor with two different
regions: a necrotic core and a highly vascularized rim, similar to the benchmark
case used in Chapter 3 and also in previous studies [40, 41, 52]. The objective
of this benchmark case was to highlight the effect of diffusion in CA transport,
therefore pointing out the limitations of the ETM. The different sets of synthetic
CA concentration time courses were generated using the forward implementa-
tion of the D-ETM in ANSYS, as described in Chapter 3. In all cases the diffusion
coefficient for CA in free medium, D, was set to 2.6E-04 mm2/s [37, 43]; while the
AIF was the same as the one used in the previous chapter.

In the first case the distribution of KTrans and vp is homogeneous through
each of the regions, taking values of 0.3 min-1 and 0.1 in the vascularized rim and
0.05 min-1 and 0.01 along the necrotic core, respectively. The second case, on the
other hand, is based on a heterogeneous distribution of these two vascularization
parameters: KTrans and vp defined in the ranges [0.2, 0.3] min-1 and [0.07, 0.13],
respectively, along the vascularized rim andKTrans taking values between 0.02 and
0.07 min-1 and vp ranging between 0.0 and 0.05 in the necrotic core. In both cases,
ve was set to 0.5 through the whole domain, as in previous works [40, 41, 52]. We
employed the ARD metric to quantify the error in the fitted parameters for each
model.
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Additionally, each case was fitted with the two original models: the ETM [35]
and the D-ETM. The latter was fitted using two different optimization methods:
the FE-based algorithm presented in Chapter 3 (D-ETM FE) and the PINN ap-
proach presented in this work (D-ETM PINN).

4.3.1 Homogenoeus distribution of parameters

As stated before, in the D-ETM PINN the D-ETM parameters were initialized
using random values within their physiological ranges. In the case of the D-ETM
FE the output from the ETM fitting was used as initial seed. This was done to
reduce the complexity of the minimization process, trying to avoid local minima.
Nevertheless, as Figure 4.2 and Table 4.1 show, this initial seed was not sufficient
to prevent the D-ETM FE to converge to a local minimum in the homogeneous
case. In fact, it shows a greater error than the ETM for the K

Trans distribution
(87% of nodes fitted by the ETM have an ARD error lower than 20%, while the
D-ETM has only 73% below that threshold). This outcome was expected, since
the limitations of this D-ETM FE when dealing with homogeneous distributions
were first discovered in the previous chapter.

Table 4.1: Error metrics comparison between the D-ETM (FE and PINN methods) and the
ETM for the homogeneous case. The two metrics computed are the mean ARD and the
fraction of nodes whose ARD is below the defined threshold of 20%.

D-ETM PINN D-ETM FE ETM

ARD (%) Fraction of nodes
ARD <20% ARD (%) Fraction of nodes

ARD <20% ARD (%) Fraction of nodes
ARD <20%

K
Trans 1.48 99.18 20.66 73.77 14.96 86.88
ve 1.15 100 11.86 83.61 15.07 83.61
vp 5.63 97.54 11.06 86.88 15.6 86.88

In comparison, this test proved the robustness of the D-ETM PINN when fac-
ing ill-posed problems, getting 99% of the nodes below the ARD threshold with a
mean ARD of only 1.5%, 10 times lower than the ETM.

A key point of these results is the ability of PINNs to accurately adjust ve val-
ues in necrotic zones, where K

Trans takes values close to zero. Previous models
and algorithms [40, 52] failed to retrieve accurately the distribution of ve in those
regions. This was caused by the vanishing effect observed in the gradient of Ct

with respect to ve, since this gradient was dependent on the KTrans value. There-
fore, when K

Trans tends to zero, the gradient does the same, causing the algorithm
to converge to a local minimum. Thanks to the RAR method, PINNs are able to
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Figure 4.2: Homogeneous case, location values expressed inmm. Reference values and re-
sults of the D-ETM (with both methods, FE and PINN) and the ETM fitting. Results high-
light the limitation of the ETM when faced with significant diffusion gradients, tending
to average the KTrans along that region. They also show the improved accuracy of the D-
ETM PINNwith respect to the D-ETM FE.While the latter converges to a local minimum,
as described in the previous chapter, the former retrieves accurately the distribution of
parameters.

reduce this vanishing effect, overcoming the convergence issues and achieving
great accuracy for ve in necrotic regions.

4.3.2 Heterogeneous distribution of parameters

The second set of simulations corresponded to the same 1D domain of a circular
tumor, but defining heterogeneous distributions of parameters. This case aims
to resemble more closely to a real tumor where some degree of heterogeneity is
present.

Results obtained are consistent with previous works [40, 41, 52]: the ETM
tends to average the parameters distribution, failing to capture the heterogeneity
shown in Figure 4.3, while the two implementations of the D-ETM (FE and PINN)
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accurately depict this heterogeneity (Table 4.2).

Figure 4.3: Heterogeneous case, location values expressed in mm. Reference values and
results of the D-ETM (with both methods, FE and PINN) and the ETM fitting.

This effect is of particular significance in the case of the vp, where only 46% of
nodes fitted by the ETM show an ARD lower than 20%. This metric raises to 84%
and 91% in the case of the PINN and FE implementations of the D-ETM. While
the PINN method shows a slightly greater error for vp, it outperforms the D-ETM
FE in the case of KTrans, with 94% of nodes below the ARD threshold versus 78%
in the case of the D-ETM FE. The averaging effect shown by the ETM has a clear
impact on the KTrans error metrics, having only 52% of nodes with and ARD below
20%.

Regarding ve, results are similar to the homogeneous case: both the ETM
and the D-ETM FE fail to retrieve the ve distribution. Although around three
quarters of nodes are below the ARD threshold, Figure 4.3 shows that in some
nodes the ARD value is close to 100%. This can be explained by the vanishing
effect explained previously, which prevents the D-ETM FE to converge to the
solution. Again, the D-ETM PINN overcomes this issue and gets more than 98%
of values below the ARD threshold, keeping the maximumARD value below 25%.

It is worth noting that despite this good errormetrics, the D-ETMPINN shows
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Table 4.2: Error metrics comparison between the D-ETM (FE and PINN methods) and
the ETM for the heterogeneous case. The two metrics computed are the mean ARD and
the fraction of nodes whose ARD is below the defined threshold of 20%. These metrics
were computed from a set of 10 simulations with different heterogeneous distributions
of parameters.

D-ETM PINN D-ETM FE ETM

ARD (%) Fraction of nodes
ARD <20% ARD (%) Fraction of nodes

ARD <20% ARD (%) Fraction of nodes
ARD <20%

K
Trans 6.68 94.26 13.53 78.33 25.5 52.46
ve 3.52 98.36 18.74 72.13 22.04 77.05
vp 11.20 84.43 5.76 91.8 34.02 45.9

some kind of smoothing or averaging patterns in some regions of the spatial do-
main, especially for vp. This is probably due to the different effect these param-
eters have on the cost function depending on the algorithm. While in the case
of the D-ETM FE the Ct curves depended on the parameters value through a for-
ward FE simulation (see Chapter 3 for further details), therefore increasing the
impact of PDE parameters (mainly vp) on the cost function; in the case of the D-
ETM PINN the PDE parameters only impact part of the loss function (Lr and LC).
Therefore, there can be small errors on the PDE parameters distribution while
the total loss value L is minimized, since the data loss (Ld) is being reduced by
updating the NN parameters (θ).

4.4 Testing the robustness of the PINNmethod against

noisy and incomplete data

After demonstrating the increased accuracy of the D-ETM PINN with respect
to the D-ETM FE, we test its robustness when faced with noise and incomplete
temporal data.

4.4.1 Influence of noise

Initially, a set of 1D heterogeneous distributions of parameters similar to those
presented in Figure 4.3 were generated. Next, experimental noise was added to
the generated Ct data curves using a Gaussian distribution with an SD equal to a
fraction (2.5%, and 5%) of the highest concentration value reached in the whole
domain, as in the previous chapter. [40, 52].
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Figure 4.4: Violin plots comparing the ARD probability density function (PDF) of each
of the parameters for each of the models and three different level of noise: 0%, 2.5% and
5%. Vertical lines correspond to the median of the ARD distributions. The D-ETM PINN
is much more robust to noise compared to the D-ETM FE, while the ETM does not seem
affected by noise.

The ARD distributions for each of the parameters and each model are shown
in Figure 4.4. These results show that the D-ETM PINN is much more robust to
noise than the D-ETM FE, even in the case of vp. When faced with medium levels
of noise, both methods show similar ARD for this variable. However, when the
noise level reaches 5%, the D-ETM PINN is more accurate than the D-ETM FE.

The results of the other two variables follow this same trend: the influence of
noise is much lower in the case of the D-ETM PINN compared to the D-ETM FE.
The ETM, however, seems to be unaffected by noise, reaching a similar accuracy
to the D-ETM FE for high noise levels (5%).
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4.4.2 Temporal undersampling

In this final subsection, we investigated the impact of incomplete data on the
accuracy of the ETM, the D-ETM FE, and D-ETM PINN. To achieve this, we con-
ducted a temporal undersampling analysis on both the concentration data curves
and the AIF. Specifically, we considered two scenarios where the temporal res-
olution was reduced to 5 seconds and 10 seconds, respectively. The aim of this
analysis was to simulate realistic situations in which the temporal resolution may
deviate from the ideal resolution of 1 second used in our previous tests.

Table 4.3: Error metrics comparison between the D-ETM (FE and PINN methods) and the
ETM for the case with a temporal resolution of 10s. The two metrics computed are the
mean ARD and the fraction of nodes whose ARD is below the defined threshold of 20%.
distributions of parameters.

D-ETM PINN D-ETM FE ETM

ARD (%) Fraction of nodes
ARD <20% ARD (%) Fraction of nodes

ARD <20% ARD (%) Fraction of nodes
ARD <20%

K
Trans 8.02 93.44 44.34 40.98 46.23 52.46
ve 8.44 89.34 35.22 50.82 17.07 80.32
vp 18.56 67.20 55.52 18.03 46.23 14.75

Our results, presented in Figure 4.5, revealed that the ETM was almost unaf-
fected by the undersampling, except for the vp variable, which was more sensitive
to it. Conversely, the D-ETM FE performed well at a temporal resolution of 5s,
but its performance degraded when the temporal resolution was further reduced
to 10s, resulting in higher errors than the ETM.

Interestingly, the D-ETMPINN demonstrated superior performance, even un-
der the worst-case scenario of a 10s temporal resolution. As shown in Table 4.3,
the D-ETM PINN outperformed both the D-ETM FE and the ETM, with 93% and
89% of nodes having an ARD lower than the 20% threshold for KTrans and ve, re-
spectively. This was almost twice the proportion observed for the ETM and the
D-ETM FE. Even in the case of the sensitive vp variable, the D-ETM PINN main-
tained a relatively high proportion (67%) of values below the ARD threshold, in
comparison to the D-ETM FE (18%) and the ETM (15%).

In summary, our findings suggest that the D-ETM PINN is more robust to
incomplete data and performs better than both the ETM and D-ETM FE under
these conditions. The ETM performs reasonably well except for the vp variable,
while the D-ETM FE shows good performance at a 5s temporal resolution but
underperforms with further undersampling.
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Figure 4.5: Violin plots comparing the ARD probability density function (PDF) of each of
the parameters for each of the models over three different time resolutions: 1s (No un-
dersampling), 5s (1/5) and 10s (1/10). Vertical lines correspond to the median of the ARD
distributions. The D-ETM PINN outperforms the other two, showing great robustness
even in the worst scenario.

4.5 Discussion

DCE-MRI is a powerful imaging technique widely used in clinical practice, par-
ticularly in oncology, to assess the vascular properties of tissues. The ability to
obtain functional information about tumors using DCE-MRI has been proven to
be useful for diagnosing, staging, and monitoring tumors’ response to antiangio-
genic therapies [53–55]. However, accurately retrieving physiological parameters
from DCE-MRI is a challenging task due to the complex and nonlinear nature of
the underlying pharmacokinetic models. Traditional models, such as the STM
and the ETM, have been widely used to estimate these parameters but are known
to produce inaccurate results in regions where passive delivery of CA plays an
important role [40–44, 46, 47, 52]. Other authors have proposed different ap-
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proaches that include the diffusion of CA and have developed several methods
to fit their models to DCE-MRI data. Nevertheless, these models and methods
either have a limited applicability due to the hypothesis and assumptions consid-
ered or due the convergence issues and the computational cost of the algorithms.
Therefore, there is a critical need for newmethods that can retrievemore accurate
parameters from DCE-MRI data.

The main objective of this chapter was to explore the use of PINNs as an
alternative to other traditional algorithms to fit one of the models that include
the diffusion term: the D-ETM. To do so, we tested the performance of this PINN
approach versus the FE-based optimization algorithm presented in the previous
chapter. Both methods were compared to the ETM to highlight the importance
of diffusion in CA delivery.

These three approaches were tested on a 1D domain that was inspired in lit-
erature and whose design resembles a slice-cut of a circular tumor with a highly
vascularized rim and a necrotic core. This geometry aims to highlight the effects
of CA diffusion, creating large spatial gradients of CA concentration between the
two regions.

Our results indicate that PINNs are a promising tool to solve the ill-posed
inverse problems associated with the fitting of the D-ETM to DCE-MRI data. The
PINN-based approach kept almost all nodes in the domain below the acceptable
error threshold. Previous algorithms, such as the FE-based presented in Chapter
3, failed to retrieve the ve distribution in necrotic regions, due to a low influence
of this parameter on the global solution. However, the use of PINNs along with
the RAR method overcome this limitation, keeping almost all the nodes within
the acceptable error range, outperforming traditional algorithms. Even in the
homogeneous case, where the FE algorithm converged to a local minimum, the
PINN approach depicted accurately the distribution of all the parameters.

To further demonstrate the robustness of PINNs to solve this ill-posed inverse
problem, we tested its performance in the presence of noisy and incomplete data.
The results obtained show that the PINNwas affected to amuch lower extent than
the FE algorithm, retrieving very accurate distributions of D-ETM parameters.
Taking a look at the error distribution for each of the three approaches tested we
could conclude that PINNs combine (and even increase) the precision of the FE
algorithm with the robustness of the ETM against noisy and incomplete data.

Despite the promising results obtained with the PINN approach, there is still
room for improvement. First, in this study we did not perform a comprehensive
hyperparameter tuning, which may have resulted in suboptimal performance.
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Future studies should focus on optimizing the PINN hyperparameters to further
improve its performance [106]. Second, there are other additional features of
PINNs that have been described in the literature that were not included in our
study. These may include the use of gradient-enhanced PINNs [105], the inclu-
sion of annealing algorithms to update each loss weight (wi) or new NN architec-
tures optimized for PINNs [107]. Incorporating these features in future studies
may further enhance the accuracy and robustness of the PINN approach while
reducing the training time.

The main limitation of our methodology is the lengthy training time required
for the PINN. Our simulations were conducted on a PC equipped with a NVIDIA
RTX 3070 GPU, 32 GB RAM, and an Intel i7-11700K CPU, with an average training
time of approximately 1 hour. This is much slower than the current FE algorithm,
which only took an average of 20 minutes on the same PC. Meanwhile, the NLLS
algorithm used for the ETM required only a few seconds to fit all nodes in the
domain, so it cannot be directly compared to either of our methods. To address
this limitation, proper calibration of the PINN may help to reduce the training
time. Additionally, transfer-learning techniques [108, 109] can be applied to fur-
ther lower the computational cost.

This study demonstrates the capability of PINNs to overcome convergence
issues when fitting the D-ETM to DCE-MRI data, outperforming previous algo-
rithms. This work lays the foundation for further research that improves our
implementation and optimizes it for its application to 2D cases.
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5.1 Introduction

Personalized medicine [111] is based on the idea that inter-individual variability
conditions define how a certain disease affects each person and that specific ac-
tions can be tailored to the patients based on their predicted response or risks. In
recent years, there has been a continuous growth in this field thanks in part to
the improvements on medical imaging techniques, genetic data acquisition and
clinical tools for disease diagnosis and prognosis [112–114].

In parallel, there has also been a notable development in in silico medicine,
also known as “computational medicine”, due to the huge technical advances and
the availability of improved software and hardware that allows the simulation
of increasingly complex and demanding problems. In the biomedical field, these
simulations aim to provide additional information that helps to understand the in-
tricacies of biological processes, which may be useful to develop tools to support
clinical decisions [115]. Given the importance of personalized medicine, in par-
ticular for the treatment of cancer, researchers keep developing new in silico tools
that account for individualized data, a field of expertise known as patient-specific
modeling. These models simulate biological processes, often related to disease,
using particular data from the patient. This combination of mathematical mod-
els and individualized parameters holds the key to a future, where digital twins
might be used to improve the diagnosis and select the best possible treatment for
a specific condition [49, 116, 117].

Despite the aforementioned advances made in its diagnosis and treatment,
cancer is still the second most common cause of death in the world, being re-
sponsible for about one sixth of the total deaths [12]. It is a very complex and
heterogeneous disease, due to the great number of biological and mechanical fac-
tors that control tumor growth, treatment efficacy and metastasis, among other
processes. Differences arise not only between different types of cancer, but also
among individuals afflicted by the same type.

Within this context of heterogeneity, patient-specificmodels constitute a great
option to support decision making in the clinical management of the disease.
There are several examples of tumor growth models that incorporate personal-
ized data, often derived from imaging sequences, which can be MRI, computed
tomography (CT), etc. [118–120]. Examples of these sequences include DWI and
DCE in the case of MRI or dual energy computed tomography (DECT) for CT.
They can be used to obtain insightful knowledge of the cellularity level (DWI)
and vascularization (DCE and DECT) of the tissue, which are the main inputs for
most of these tumor growth models.
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To include this imaging data into a model, the first step is to incorporate the
geometry of the tumor and, if available, of surrounding organs. Therefore, one
should start by segmenting the ROI in one of the imaging series and then regis-
tering the other sequences to this segmented series, which is critical to have all
imaging data (geometry, cellularity and vascularization data) in the same coor-
dinate system. Regarding the segmentation task, there are several ways to seg-
ment the different tissues [121]. The first and most traditional way is manual
or partially-assisted segmentation, where a professional (a radiologist in clinical
practice) delineates the ROIs and generates the masks in every individual slice.
Although very accurate, the process is time consuming and often infeasible when
the number of cases is too large, which often leads to partial segmentations, where
particular slices are skipped (i.e., when the object of interest presents no abrupt
changes with respect to the previous segmented slice and the mask would be
almost identical). This can be alleviated to some extent via semi-automatic seg-
mentation, which applies statistical and ML methods to propose masks that need
to be revised and manually corrected by an experienced professional [122, 123].
In recent years, the boom of artificial intelligence for image applications has laid
the foundation for the development of algorithms that apply the power of DL to
automate the task of segmentation with very promising results [124].

Regardless of the segmentation method used, the next step is reconstructing
the original 3D geometry from the stack of segmented slices. This volume gener-
ation might be included in the own architecture of the DL network (such as U-Net
[125]. Otherwise, a subsequent step of 3D reconstruction is needed. There is a
wide range of methods to perform volume generation from a set of 2D slices [126,
127], some of them already included as features of popular software such as 3D
Slicer [128]. This process of segmentation and volume reconstruction culminates
with the interpolation of the different image sequence data to the generated volu-
metric mesh. These interpolated maps together with the geometry constitute the
necessary inputs for the construction of the patient-specific models previously
described.

To illustrate this methodology, we present a practical use case within the
PRIMAGE project (PRedictive In-silico Multiscale Analytics to support cancer
personalized diaGnosis and prognosis, Empowered by imaging biomarkers) [129,
130], where the described workflow was used to generate patient-specific models
in a large number of clinical cases

To put it into context, PRIMAGE is currently one of the largest and more
ambitious European research projects in medical imaging, artificial intelligence
and childhood cancer, in particular, Neuroblastoma (NB) and the Diffuse Intrin-
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sic Pontine Glioma (DIPG). Its main goal is to develop a decision support system
combining retrospective clinical information and incorporating it into the diag-
nostic pipeline using AI and computational models. One of the peculiarities of
this project is the availability of tumor segmentations from hundreds of patients,
which need to be processed and incorporated into an automatized workflow to
simulate the tumor progression with patient-specific data. This decision sup-
port system will be integrated in an online platform and used by clinicians in
their day-to-day practice, hence the necessity of self-contained tools (i.e., no ex-
tra software or technical parameter handling needed) that can be used via regular
browsers. With this idea in mind, we developed im2mesh, which has no particular
requirements other than an environment supporting Python 3.9 and can be exe-
cuted both in bash mode (therefore integrated, for example, into an automatized
cloud-based platform) and with a minimal user interface when used for research
purposes. We would like to emphasize that im2mesh aims to be a tool for a very
specific task: transforming segmented slices into 3D meshes (with or without
interpolated data), that can be used as a connecting component between image
data and simulations. Certainly, there are other well-established tools, such as 3D
Slicer (open software) orMimics (Materialise, Leuven, Belgium), with big commu-
nities and a wide range of functionalities and versatility, but which are designed
to be used as visual user-interactive tools rather than “black box” functions for
automatization.

In this chapter, we describe in detail the proposed methodology. Then, we
compare our 3D reconstruction with that obtained with 3D Slicer, we analyse
mesh quality, and we study the effect of downsampling (decreased number of
slices) on geometry details. Finally, we analyse a clinical example taken from the
PRIMAGE platform, corresponding to a NB tumor.

5.2 Materials and methods

In this section, we provide a summary of the developed workflow, describing
in detail the algorithms and methods used for surface and volume generation.
Finally, we provide the sources for the code, its documentation, and the data pre-
sented in this chapter.

5.2.1 Workflow

Our library acceptsmultiple image formats and input parameters that are prompt-
ed to the user either via command (bash-mode) or via visual interfaces. In par-
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ticular, typical medical image formats such as NIfTI (.nii), DICOM and DICOM-
SEG (.dcm), as well as regular image formats supported by OpenCV [131] can be
used. The input stack, composed of any number (N) of slices or layers (previ-
ously segmented), is processed from bottom to top, interpolating shapes between
every pair of layers. The contours of the original layers, plus the interpolated
(virtual) ones, are stored for the surface mesh generation. Note that the inside
points of the top and bottom layers of the whole stack are also included to obtain
a closed surface, which is used later to obtain a 3D tetrahedral mesh. Optionally,
a cloud of values (position coordinates plus scalar value) can be extracted from
the medical files, or provided by the user, to be interpolated to the elements of
this mesh. We include a last step that allows exporting the generated mesh to
different formats appropriate for commercial Finite Element software commonly
used in engineering such as ABAQUS (Dassault Systèmes, France) or ANSYS. A
schematic representation of the workflow is shown in Figure 5.1.

Figure 5.1: im2mesh workflow. Image files of multiple formats containing the segmen-
tation masks are accepted as input for the mesh generation. For every pair of layers,
starting from the bottom, shapes are interpolated using any number of intermediate po-
sitions. Afterwards, the contours of these shapes are computed and stored for later stages.
When the interpolation is complete, a surface mesh with the desired number of faces is
created (.stl) and further processed to obtain a volumetric 3D mesh in which scalar data
is automatically interpolated if available (optional). Useful information (e.g., element la-
bels, connectivity, coordinates, etc.) and already formatted mesh files are exported for
further analysis.
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5.2.2 Shape interpolation

Shape interpolation is performed by following the steps illustrated in the bench-
mark example shown in Figure 5.2, using themethodology described in [132]. The
necessary inputs to interpolate between two layers are just the binarized repre-
sentations (BW) of each layer. Firstly, the contour or perimeter of each layer is
computed (BWper), and the signed Euclidean distance (Sedist) between each pixel
and the perimeter is calculated. This distance is equivalent to the regular Eu-
clidean distance, but considered negative for pixels outside the perimeter, and
positive for those inside (Figure 5.2A). Once the signed distances are computed
for both layers, their values are linearly interpolated to any number of intermedi-
ate layers (Figure 5.2B left). The new layers are converted back to a binary image
by thresholding negative values (Figure 5.2B right). This procedure is repeated
between every pair of consecutive layers until the whole stack has been processed
(Figure 5.2C). Finally, the contours of each of the binary layers are extracted us-
ing the OpenCV library [131] and their coordinates stored to form the superficial
point cloud.

5.2.3 Mesh generation

Surface meshes (Figure 5.2D left) are generated via the Python library PyMesh-

Lab, that in turn interfaces to the popular open-source applicationMeshLab [133],
using as input a cloud of 3D points coming from the contours computed by the
shape interpolation algorithm. To enhance the robustness of the algorithm (e.g.,
avoiding over-sensitivity of convergence due to a wrong ratio of the number of
pixels per layer and number of intermediate interpolations), the cloud points are
randomly sampled following the Poisson Disk sampling method [134], ensuring
homogeneous spatial distribution. This algorithm takes as inputs an estimation
of the number of points sampled, which is defined as a fraction of the number
of points in the original cloud. Then, the algorithm computes the normals for
the sampled point cloud and finally generates a closed surface based on these
normals using the Screened Poisson surface reconstruction method [135]. To
improve the quality of the volumetric mesh to be generated afterwards, a dec-
imating filter is added after the surface reconstruction. This filter is based on
the quadric based edge-collapsed strategy [136]. Additionally, the generated sur-
face can be smoothed (user-defined option) to simplify complex geometries that
could be problematic for the subsequent volumetric meshing. We employ the
HC Laplacian Smoothing [137] algorithm for this purpose. Three-dimensional
meshes (Figure 5.2D middle) are then generated from the surface files (.stl) using

68



im2mesh: A Python library to reconstruct 3D meshes from scattered
data and 2D segmentations

Figure 5.2: A whole-process demonstration example with an input of three binary layers
representing the X, Y, Z letters. A. Signed Euclidean Distance map of the first two masks
(X and Y shapes). Pixels inside the perimeter (red line) present positive distances, whereas
exterior pixels are assigned negative values. B. Distance maps are interpolated in any
number of intermediate layers (left vertical cut) and thresholded to return a binarized
volume (1 if distance > 0; 0 otherwise). C. Interpolation of 10 intermediate positions
(equally distributed) between input and output layers. D. Surface mesh reconstruction
(.stl format) (left panel), and 3D tetrahedral mesh generated with a transversal cut (middle
panel). Insets 1 and 2 show the smoothness and good quality of the elements (right panel).
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the open-source library Gmsh [138] which provides a great flexibility.

5.2.4 Evaluation metrics

To prove the robustness and accuracy of our algorithmwith respect to other well-
established software [128], we compare the surface meshes generated. Themetric
used for this comparison is the Intersection over Union (IoU), defined as:

IoU = (A ∩B)/(A ∪B) (5.1)

Where A and B are two different volumes enclosed by the generated surface
meshes. The IoU is 1 when both objects are equal and overlap totally. It should
be noted that, unlike in the computer vision field, the registration step can be
skipped since our volumes are aligned in the 3 spatial axes, which simplifies the
computation of the IoU considerably. We also perform an analysis of the quality
of the volumetric mesh obtained from Gmsh. For this purpose, we have chosen
two arbitrary metrics: the Aspect Ratio (AR) and the Aspect Frobenius (AF) [139],
which compute how far the analysed mesh is from an ideal mesh. The AR is de-
fined as the ratio of the maximum edge with respect to the radius of the element’s
inscribed sphere:

AR = max(x1, x2, ..., x6)/2 ∗
√
6 ∗ r (5.2)

Where x1 to x6 are the length of the edges in a tetrahedron and r is the radius of
the sphere inscribed in the tetrahedral element. The AF of an element is the nor-
malized Frobenius condition number of matrix A0. The mathematical expression
for the Frobenius condition number of an element is:

|A0|F =
√

(tr(AT
0 A0)) (5.3)

Where A0 = T0W
−1. T0 is the edge matrix of the tetrahedral element and

W is the edge matrix of the reference regular tetrahedron. Both metrics are nor-
malized, i.e., they equal to one when the element analysed is the ideal regular
element. According to other authors [139], acceptable ranges are [1,3] and [1,1.3]
for the AR and AF, respectively.

5.2.5 Data interpolation

Once the FE mesh is generated, the additional imaging data that may be available
must be interpolated to this mesh. Most patient-specific models, especially tu-
mor growth models, need as inputs not only the geometry, but also other spatial
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distributions of properties that describe the heterogeneous characteristics of tu-
mors. In the case of PRIMAGE, this additional data was obtained from DWI and
DCE sequences, respectively. TheseMRI sequences are commonly used in clinical
practice to evaluate the cellularity and vascularization of the tumors. The cellu-
larity values are derived from the Apparent Diffusion Coefficient maps generated
from DWI sequences [140], while the vascularization is obtained from the anal-
ysis of DCE sequences, as we have explained in previous chapters. Apart from
these sequences, there are many other techniques to obtain different imaging data
that might be included in the FE mesh. Therefore, our code includes a script to
read any kind of data derived from imaging that is stored in NIfTI and DICOM
formats and interpolate it to any FE mesh given. The interpolation process be-
gins by transforming the imaging data to be interpolated from voxel coordinates
to global coordinates using the affine matrix of each imaging sequence. Then, we
use the Scipy [141] python library to interpolate the spatial data to the elemental
centroids of the mesh generated previously, exporting this interpolated data to
an additional file that can be used as input for subsequent computational models.

5.3 Results

This section is divided into three different parts. In the first one, we compare our
library to 3D Slicer software by reconstructing a human pelvis using bothmethods
and measuring the differences. The next part covers the effects of reducing the
number of available slices in the segmentation (what we define as downsampling)
using the same example. Finally, we show the application of the workflow sum-
marized in Figure 5.1 on one of the NB cases available in the PRIMAGE project
dataset.

5.3.1 Volume reconstruction

In this section, our library is used to reconstruct a pelvis (plus part of the femurs)
from a partial segmentation obtained from the Cancer Imaging Archive public
repository and compare it to that obtained using the software 3D Slicer. Figure
5.3 shows the surface volume reconstructed after processing a 512x512x300 vol-
umetric image both with im2mesh (Fig 5.3A orange, left) and 3D Slicer (Fig 5.3A
blue, right). Visual differences between both surfaces are minimal (Fig 5.3B), as
confirmed by a IoU score of 98.6%. Note that the overlap is not perfect due to
slight differences in triangulation and surface smoothing. In fact, our library uses
a decimation filter that decreases the number of surface triangles to reduce the
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computational cost of the volumetric meshing algorithm applied afterwards. Fig-
ure 5.3C shows the visual effect of decimation: 5M triangles (left) vs 50k (right).
The IoU score attained between the enclosed volumes was 97.3%.

Figure 5.3: Reconstruction of the partial segmentation of a human pelvis. A. Reconstruc-
tion of the pelvis using im2mesh (left, orange) and 3D Slicer (right, blue). B. Volumetric
overlap of the two reconstructions with decreased opacity for better visualization (same
colors). Insets highlight the zones where differences are more noticeable, corresponding
with rough areas where the smoothing and triangulation algorithms play a bigger role.
Nonetheless, the IoU score attainedwas 98.6%. C. Effect of decimating on the triangulated
surface mesh: 5M triangles (left) vs 50K (right). Despite visually reducing the smooth-
ness, the IoU score attained (50k vs 5M) was 97.8%. D. Volumetric mesh generated with
5 mm objective element size (total number of elements: 72694), colored by AR, showing
very high quality (>90% of the elements in the 1-2 range). E. Value distribution of the
AR and AF metrics for mesh quality assessment. Vertical red lines mark the 50, 90, 95
and 99 percentiles respectively. Additional mesh quality metrics of the pelvis mesh are
presented in Table 5.1.

Finally, the closed surface obtained from im2mesh is meshed using linear
tetrahedrons with 5 mm objective element size (Figure 5.3D). The mesh qual-
ity was evaluated using the Verdict geometric quality library [139], obtaining the
results presented in Table 5.1. The analysis shows that most of the elements are
within the recommended range for the metrics. Note that the suggested range is
indicative and does not mean that elements out of the range would prevent the
use of the mesh for FE simulations. Only 1% of elements show an AF more than
50% above the maximum recommended value and 10% are less than 50% above
this limit. These results are acceptable, given the complexity and coarseness of
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the mesh. Besides, the metrics were proven consistent over different parameteri-
zations of the algorithm and different geometries.

Table 5.1: Mesh quality metrics of the pelvis mesh shown in Figure 5.3D obtained using
the Verdict library. The first three columns correspond to the mean, standard deviation
and median of each metric over the whole mesh. The next three columns are the 90%,
95% and 99% percentiles of each metric, respectively. Finally, the last two columns show
the minimum and maximum limits of the recommended intervals for each metric.

Metric Mean Std. Dev. Median p90 p95 p99 Rec. Min Rec. Max.

Aspect Frobenius 1.289 0.2338 1.225 1.566 1.76 2.216 1 1.3
Aspect Gamma 1.48 0.4319 1.356 1.96 2.335 3.298 1 3
Aspect Ratio 1.616 0.42 1.514 2.054 2.434 3.3397 1 3
Condition 1.323 0.3268 1.226 1.65 1.985 2.785 1 3
Edge Ratio 1.712 0.3086 1.647 2.141 2.293 2.595 1 3
Jacobian 131.8 53.75 125.4 205.1 230.4 279.6 1E-30 1E30
Min. Dihedral Angle 49.11 12.12 50.36 63.63 67.04 73.56 40 70.53
Aspect Beta 1.381 0.3495 1.28 1.759 2.065 2.888 1 3
Scaled Jacobian 0.5656 0.1535 0.5736 0.7632 0.8064 0.8777 0.5 0.7071
Shape 0.7962 0.1156 0.8161 0.9273 0.9477 0.9744 0.3 1

The distributions of AR and AF metrics on this mesh (Figure 5.3E) show that
more than 95% of the elements are within the acceptable range for AR and about
65% of them fall inside the acceptable range of AF. Given the complexity of the ge-
ometry and the size of the elements, these metrics confirm the good performance
of the Gmsh mesher on the reconstructed volume. Additional mesh quality met-
rics of the pelvis mesh are presented in Table 5.1.

5.3.2 Effect of downsampling

The main advantage of slice interpolation is the lower number of segmentations
required to reasonably reconstruct a volume, at the price of losing detail at spe-
cific zones that might be important in the post-processing. We reconstructed the
same geometry described in the previous section but using just 10% and 5% of the
available slices (that is, 30 and 15 slices from 300 respectively, equally spaced).
Despite significantly reducing the number of slices, our algorithm could recon-
struct the bone structures with reasonable accuracy (Figure 5.4A). Note that a
certain degree of detail loss due to downsampling is unavoidable, since the fea-
tures defined in the removed slices cannot be reconstructed (Figures 4B to 4D).
We computed the IoU metric over the original and downsampled reconstructions
of the pelvis to measure the accuracy of our algorithm when the number of slices
is reduced. The IoUs obtained were 97.4% and 96% for the 10% and 5% downsam-
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Figure 5.4: Effects of downsampling on the human pelvis example. A. A visual compari-
son of the reconstruction using all the slices (top, orange) versus a downsampling of 10%
(30/300 slices used) (bottom right, pink) and a downsampling of 5% (15/300 slices used)
(bottom left, blue). The dotted white square marks the region where we extract the de-
tail for B to D after flipping the view for better visualization. B. Reconstruction of the
coccyx without downsampling, downsampling of 10% (C) and 5% (D). Arrows on C and
D highlight the loss of features with respect to B due to downsampling.

pling, respectively. This shows both the power and limitations of slice interpo-
lation when dealing with cases with a reduced number of segmented slices or a
very coarse slicing, which will ultimately depend on the practical case.

5.3.3 Application case

In this section, we apply the full workflow followed to prepare a real patient
of NB tumor taken from the PRIMAGE platform to be used as input for a FE
simulation. The patient presented a tumoral mass surrounding the mesenteric
artery (Figure 5.5A) that was diagnosed via MRI. Additionally, the cellularity and
vascularization maps for the tumor growth models subsequently developed were
provided via DW- and DCE-MRI, respectively.

The tumor segmentation was firstly retrieved from the platform in a common
medical image format, in this particular case, a NIfTI (.nii) file with 50 slices.
Specifically, the size of the image volume was 512x512x50 voxels with a pixel
size of 0.49x0.49 mm and a slice thickness of 5.5 mm. It is worth noting that the
tumor was contained within 17 slices out of the 50, further restricting the geo-
metric information available. The segmented stack was automatically processed
to transform the slices into a cloud of points defining the surface of the tumor,
using 10 intermediate positions to interpolate between slices.

This was enough to obtain smooth transitions and preserve fine details, such
as the interior vases when obtaining the surface mesh (Figure 5.5B). It is worth
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Figure 5.5: Application of the im2mesh library to one of the cases from the PRIMAGE
dataset. A. Reconstruction of the tumor and the abdominal region of the patient using
3D Slicer (whole stack of 50 slices). B. Surface mesh of the tumor generated using our
library from the 17 slices containing the tumor. Through the semi-transparent surface,
the mesenteric artery and some of its branches can be seen passing through the tumor.
C. Volumetric mesh of the tumor with the aforementioned vessels highlighted in red. D.
Normalized cellularity (left) and vascularization (right) maps interpolated from DWI and
DCE sequences to the volumetric mesh presented in C.

noting that the reconstruction of the surface via 3D Slicer in this particular case
was suboptimal using the default values (see Figure 5.5A and Figure 5.6), as op-
posed to im2mesh which generated a smoother surface. The 3D mesh was subse-
quently computed (Figure 5.5C), and the cellularity and perfusion maps interpo-
lated to its elements (Figure 5.5D), closing the process and readying the necessary
files to be further processed by any FE software.

We evaluated the performance of the algorithm and workflow proposed us-
ing different combinations of parameters on the neuroblastoma geometry. The
code was executed in a workstation with the following technical specifications:
Intel(R) Core(TM) i7-5820K CPU @3.30GHz, 32GB RAM. We selected three main
parameters to analyse their influence: mesh element size, number of interpola-
tion steps between slices (number of intermediate virtual slices) and number of
faces on the STL surface mesh (Table 5.2). The higher these values, the more re-
fined mesh and smooth geometry it is achieved, at a cost of longer processing
times (Figure 5.7).
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Figure 5.6: NB tumor reconstruction from 17 slices using 3D Slicer (default values, no
filters applied) and im2mesh. Note that without any user intervention (i.e. mask cor-
rection, filter application) 3D Slicer produces a more staggered geometry (black arrows).
This is due to the morphological contour interpolation algorithm used by the software
which was developed to avoid over-smoothing and preserve the exact topological details
of the geometry. This algorithm works therefore very well when the slice thickness is
low (higher density of slices) but is less suitable when the number of slices is scarce, as
it is the case of most of the data available within the PRIMAGE dataset.

Table 5.2: Combinations of parameters used for the eight test cases generated for the
timing analysis of the proposed workflow. The third column is not an input but the
number of elements contained in the mesh automatically generated using the goal size
specified by the second column. The fourth column is the goal number of faces specified
(the final number of faces may deviate slightly from this number).

Test Case Element Size No. of Elements STL Faces No. of Interpolation Steps

Test 1 1.5 mm 422,699 50,000 15
Test 2 1.5 mm 432,399 100,000 15
Test 3 1.5 mm 438,848 50,000 25
Test 4 1.5 mm 434,337 100,000 25
Test 5 3 mm 64,324 50,000 15
Test 6 3 mm 65,667 100,000 15
Test 7 3 mm 68,665 50,000 25
Test 8 3 mm 69,002 100,000 25
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In summary, the results obtained show that the bottleneck occurs at the ex-
traction of mesh element centroids in those cases where the number of elements
is higher (cases 1-4). This is due to the fact that element (connectivity) and nodal
data (coordinates) must be combined in an inefficient iterative process that does
not scale linearly. It must be noted, however, that centroid extraction is optional
and only needed if the user wants to interpolate data to the mesh. If the user only
needs to retrieve the meshed geometry from the images, they can skip this step
and complete the whole execution in less than 2 minutes.

Figure 5.7: Analysis of the computation time for each test case separated by each of the
processes. First four cases correspond to the finer mesh (around 430,000 elements) and
the last four correspond to the coarser mesh (around 65,000 elements). These results
clearly show that the extraction of the centroids of the elements is the bottleneck in the
case of the finer meshes, accounting for more than 75% of the total computational time.

5.4 Discussion

The increasing importance of patient-specific models in the study of different
pathologies reveals the need of simple and effective methods to generate inputs
appropriate for these models. There is a wide range of software, both commer-
cial and open-source, that can reconstruct surface meshes from segmentations,
some of them providing tools to perform semi-automatic or automatic segmen-
tations of a given set of images [128, 142, 143]. These programs and libraries,
although powerful, cannot be easily included in automatic pipelines that aim to
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process large sets of cases to generate inputs for computational models, most of
them lacking the modules needed to generate volumetric meshes. To the best of
our knowledge, there is only one open-source library that performs the full re-
construction from imaging data to volumetric mesh: the dicom2fem library [144,
145].

It includes semi-automatic segmentation prior to reconstruction, however, it
is limited to DICOM files, lacking the option to use other formats or already-
segmented sets of images. Our library does not include a segmentation module
as we consider that such a problem-specific task (e.g. hard vs soft tissue, different
image acquisition techniques, etc.) can be performed using more powerful tools
(i.e. AI based), nowadays in constant improvement and development. We believe
that being able to easily blend with these tools as a piece of a grander scheme
may be very useful in the near future of personalized medicine. For this reason,
we have developed im2mesh putting together different functionalities based on
open-source libraries with the aim of facilitating the process of input generation
for computational models from segmented images. This out-of-the-box solution
automatically creates the desired files without user intervention, making it ideal
for its integration into complex workflows.

We have shown the robustness of the tool as well as the potential and limita-
tions of volume reconstruction from segmented slices. In fact, our methodology
is able to reconstruct volumes almost identical to those obtained with the well-
established and powerful tool 3D Slicer. For now, im2mesh is limited to interpo-
lation in the z-direction, which is the most common case in biomedical imaging,
although interpolation in the other directions could be easily added in a future
release. It is worth mentioning that slice interpolation is an ill-posed problem,
firstly because there is no unique solution to it and secondly because there is no
metric to quantify the accuracy of an interpolated sequence unless the objective
volume is known beforehand, which would make the interpolation unnecessary.
Nonetheless, the technique is very effective especially when the anatomy change
vs slice density ratio is low (i.e., when adjacent slices are similar). In some in-
stances where the geometry is extremely heterogeneous and the image resolution
is limited (such as the NB tumor cases available within the PRIMAGE project),
slice interpolation is just the simplest and most practical solution. In sum, our
method has proved to be effective for automating the generation of inputs for tu-
mor growth computational models, facilitating the integration of patient-specific
simulations on the PRIMAGE web-based platform, in which im2mesh acts as a
“black box” function that connects the patient’s data with the simulation frame-
work without user intervention. However, the proposed workflow can be easily
generalized to other datasets, since the basic input needed by our library is the
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path to the folder containing the image files. In fact, im2mesh is being used in an-
other ongoing project, ProCanAid (PLEC2021-007709), which aims to create dig-
ital twins for the in silico study of prostate cancer. In this project, the tumor zone
and different parts of the prostate are segmented using both automatic and semi-
automatic methods. This difference in the input format (multiple masks within
the image file) is easily overcome by tweaking some of the library parameters.

Our library is oriented and limited to work with already segmented images
but its modularity allows a straightforward connection, for example, to a pre-
processing pipeline of automatic segmentation based on DL or any other sophis-
ticated and problem-tailored methodology.

5.5 Conclusions

It is clear that the future of personalized medicine lies in the development of in-
creasingly sophisticated digital twins, where the patient-specific data can be used
to assess not only the current state of a disease, but also its possible progression
via predictive computational models. Although there are plenty of great avail-
able tools to curate and manipulate medical image data that serves as input of
such models, the reality of this research field is that final users, the clinicians,
don’t have nor access nor the time to deal with complex workflows that rely on
multiple software. Hence, all-in-one approaches serving as connectors in broader
pipelines, such as the library presented in this chapter, will be a necessity for fu-
ture platforms that aim to be integrated in the day-to-day clinical practice. In
particular, im2mesh is currently integrated within the PRIMAGE web-based plat-
form, but a standalone ready to use version is available, both in our GitHub and
the community Python distribution repository (callable via pip) for public use and
straightforward connection to any pre-existing pipeline.
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Conclusions

6.1 General conclusions

This chapter presents the key findings that have emerged from the development
of this dissertation and outlines the possible future directions that could build
upon the work carried out in this study.

The main objectives of this dissertation have been the development of new
models and methods to improve the precision of vascularization data extracted
from DCE-MRI sequences and the implementation of a new tool that automates
the creation of patient-specific models from imaging data. With this purpose,
we have first proposed a new formulation for a PK model that includes CA dif-
fusion into the analysis of DCE-MRI sequences. Then, two different approaches
have been developed to solve the inverse problem of fitting this new model to
DCE-MRI data. The first of them proposes a gradient-based method that uses the
FEM to calculate the gradient semi-analytically, surpassing by far the efficiency
of numerical methods for the calculation of the gradient. The second approach
studies the potential of DL techniques to solve this inverse problem. More specif-
ically, the use of PINNs was evaluated, obtaining promising results. Finally, a
new Python library was developed to automate the process of generating 3D FE
meshes for patient-specific modeling and the integration of clinical imaging data
in them.

The main conclusions are grouped by chapters and can be summarized as
follows:
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• Chapter 2: The diffusion-corrected Extended Tofts Model

– As opposed tomost of previousmodels, this new formulation does not
assume that CA diffuses freely through the RVE face. In this model we
consider that depending on cellularity, this diffusion may be limited
to a fraction of this face.

– By using the concept of effective diffusivity to define the diffusive
term of the model, we pose diffusivity as an unknown and hetero-
geneous coefficient, which can take a different value in each RVE.
Thanks to this approach, we can define the coefficient as a function
of another variables already existing in the model, so we do not in-
crease the number of unknown parameters.

• Chapter 3: A FE-based optimization algorithm

– Dynamic contrast-enhancedMRI (DCE-MRI) is a useful imaging tech-
nique for assessing the vascular properties of tissues, particularly in
oncology. Accurately retrieving physiological parameters from DCE-
MRI is challenging due to the complex nature of PK models.

– The simulations confirmed that the STM and ETM have limitations in
estimating KTrans and ve accurately when CA reaches the ROI through
passive delivery, and in regions where the active delivery of CA is low
or non-existent.

– The D-ETM used in this study shows improved accuracy in estimat-
ing K

Trans and ve parameters, accurately depicting the heterogeneous
distribution of values, and with smaller errors obtained for most of
the nodes compared to the ETM model.

– In comparison with previous works that used stochastic algorithms
to solve the inverse problem [40], this method is several times faster,
avoiding any additional simplification that reduce its range of appli-
cation.

– Despite its good results, this model shows a lower accuracy in the
ve maps, as in the case of the DP model [40]. This effect is particu-
larly visible in necrotic areas, where there is hardly any vasculariza-
tion. This means that ve has almost no influence on the solution, and
therefore on the gradient, causing it to fit poorly.

• Chapter 4: Exploring the potential of PINNs

– The PINN approach outperformed the FE-based algorithm proposed
in Chapter 3 in retrieving accurate parameter distributions. This new
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approach showed an increased robustness in the presence of noisy
and incomplete data with respect to the FE-based method.

– The PINN approachwas able to accurately fit the ve distributionwithin
the necrotic regions, overcoming the limitations of previous methods,
both stochastic and gradient-based.

– The initial formulation of PINNs proposed by Raisi et al. [87] was
insufficient for this inverse problem. Additional features, such as loss
weighting and residual based adaptive refinement (RAR) had to be
included to improve its accuracy.

• Chapter 5: A Python library to reconstruct 3D meshes from clinical data

– Patient-specificmodels are becoming increasingly important in study-
ing different pathologies, requiring simple and effective methods to
generate appropriate inputs for these models.

– im2mesh is an out-of-the-box solution that automates the process of
input generation for computational models from segmented images
and creates the desired files without user intervention, making it ideal
for integration into complex workflows.

– All-in-one approaches serving as connectors in broader pipelines will
be necessary for future platforms that aim to be integrated into day-
to-day clinical practice. Although im2mesh is currently integrated
within the PRIMAGEweb-based platform, it is also available as a stan-
dalone ready-to-use version for public use and straightforward con-
nection to any pre-existing pipeline.

6.2 Future lines of work

The findings presented in thiswork highlight the increasing importance of patient-
specific models and the need for simple and effective methods to generate accu-
rate inputs for these models. With this in mind, there are several potential model
extensions and future avenues of research that could be explored. The possible
lines of research are grouped in two sections: the first one is related to extract-
ing more accurate parameters from DCE-MRI and the second one deals with the
development of new tools for the generation of patient-specific models.

• Including CA diffusion into the analysis of DCE-MRI
Regarding the formulation of the model, the definition of the diffusion co-
efficient should be revised to enhance the influence of ve on the gradient.
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Thus, the gradient-based approach will be able to compensate for the fad-
ing effect observed in necrotic areas that limited the accuracy when fitting
this variable. Besides, in order to extend the range of application of the
model and improve its accuracy, a convective term should be incorporated
into the formulation in the future. To reduce the complexity of the model
and facilitate the convergence of curve fitting methods, it would be possi-
ble to start from an estimated value of interstitial fluid velocity, avoiding
the adjustment of this additional variable.

To further reduce the computational cost associated with the gradient com-
putation, alternative methods could be implemented instead of the semi-
analytical approach presented in Chapter 3. The best alternative is most
likely the adjoint-state method to efficiently perform the inversion of the
D-ETM equation. This method is particularly suitable for those cases where
the gradient has to be calculatedwith respect to a large number of variables.

As an alternative to gradient-based methods, we have proposed a new ap-
proach based on PINNs. Despite the good results obtained on the synthetic
cases tested, further work needs to be done to optimize the method and
scale it to 2D in silico and clinical cases. Firstly, proper hyperparameter
tuning is necessary to accurately calibrate the NN parameters, using either
grid search methods, Bayesian optimization, or evolutionary algorithms.
To minimize the computational cost of the training step, transfer learning
techniques could be used to make this step more efficient by leveraging
pre-existing knowledge from similar physics problems.

• Automated tools to inform patient-specific models

The generated library is very useful for handling large datasets of seg-
mented cases, but it currently lacks an option for including raw data that
is not annotated. Therefore, future work should focus on integrating our
library with other automatic or semi-automatic segmentation tools.

6.3 Contributions

As a result of the research work carried out in this dissertation, several journal
publications have been published and others are under review or in preparation.
Additionally, this work has also resulted in three podium presentations at inter-
national congresses and another one at a local conference:
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6.3.1 Publications in peer-reviewed journals

1. Sainz-DeMena D., Ye W., Pérez M. A., García-Aznar J. M. A finite element

based optimization algorithm to include diffusion into the analysis of DCE-

MRI. Engineering with Computers 38, 3849–3865 (2022) https://doi.org/10.
1007/s00366-022-01667-w

2. Sainz-DeMena D., García-Aznar J. M., Pérez M. A., Borau C. Im2mesh: A

Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Seg-

mentations, Application to Patient-Specific Neuroblastoma Tumour Image Se-

quences. Applied Sciences 12 (2022) https://doi.org/10.3390/app122211557

Submitted:

1. Sainz-DeMena D., Pérez, M. A., García-Aznar J. M. Exploring the poten-

tial of Physics-Informed Neural Networks to extract vascularization data from

DCE-MRI in the presence of diffusion

Submitted to Medical Engineering and Physics

2. Juma V., Sainz-DeMena D., Sánchez, M. T., García-Aznar J. M. Effects of
tumour heterogeneous properties on modelling the transport of radiative par-

ticles

Submitted to International Journal of Numerical Methods in Biomedical En-

gineering

3. Borau C., Wertheim, K. Y., Hervás-Raluy S., Sainz-DeMena D., Walker D.,
Chisholm R., Richmond P., Varella V., Viceconti M., Montero A., Gregori-
Puigjané E., Mestres J., Kasztelnik M., García-Aznar J. M. A multiscale or-

chestrated computational framework to reveal emergent phenomena in neu-

roblastoma

Submitted to Computer Methods and Programs in Biomedicine

In preparation:

1. Hervás-Raluy S., Sainz-DeMena D., Gómez-Benito, M. J., García-Aznar J.
M. Image-based biomarkers for engineering neuroblastoma patient specific

computational models
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6.3.2 Congress and conference contributions

The following communications have been presented during the development of
this dissertation:

1. 17th International Symposium on Computer Methods in Biomechanics and
Biomedical Engineering. A continuum approach for the diffusion compen-

sated ETM model and its application on Neuroblastoma clinical data. Bonn
(Germany), hybrid (in the context of the COVID-19 pandemic), September
7-9, 2021.

2. 8th EuropeanCongress onComputationalMethods inApplied Sciences and
Engineering. A Finite Element method to incorporate the effects of diffusion

to the Extended Tofts Model. Oslo (Norway), June 5-9, 2022.

3. 11th Conference of Young Researchers of the Engineering Research Insti-
tute of Aragon. A Finite Element Based Optimization Algorithm to Include

Diffusion into the Analysis of DCE-MRI. Zaragoza (Spain), June 16, 2022.

4. 7th Conference onVirtual Physiological Human (VPH). Patient-specificmod-

els in tumor growth: integrating organoids and image-based biomarkers. Porto
(Portugal), September 6-9, 2022.

5. 17thU. S. National Congress onComputationalMechanics. Physics-Informed

Neural Networks for incorporating contrast agent diffusion in the Extended

Tofts Model. Albuquerque, NM (USA), July 23-27, 2023.

6.3.3 Teaching

The author has co-supervised one Bachelor’s thesis in Mechanical Engineering,
entitled Computational simulation of solid tumor vascularization of solid tumors

using the Finite Element Method by Sergio Ibor Castel.

The author has also taught practical courses inMechanical Engineering Bach-
elor (Continuum Mechanics) and Chemical Engineering Bachelor (Strength of
Materials).
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Chapter 7

Conclusiones

7.1 Conclusiones finales

En este capítulo se presentan las principales conclusiones extraídas de esta tesis
doctoral y las futuras líneas de investigación que se abren a partir del trabajo
realizado.

El principal objetivo de esta tesis ha sido, por un lado, el desarrollo de nue-
vos modelos y métodos para mejorar la precisión de los datos de vascularización
obtenidos a partir de las secuencias DCE-MRI y, por otro, la creación de una he-
rramienta que automatice la creación de modelos de paciente-específico a partir
de datos de imagen. Para el primer objetivo, se ha planteado la formulación de
un nuevo modelo farmacocinético en el que se incluye el proceso de difusión de
agente de contraste. Para resolver el problema inverso que surge al tratar de ajus-
tar estemodelo a los datos obtenidos de las secuencias DCE-MRI, se han empleado
dos enfoques distintos. El primero de ellos se ha basado en el método del descen-
so del gradiente, usando el método de los elementos finitos para obtener dicho
gradiente de una forma mucho más eficiente que las alternativas numéricas, co-
mo el método de las diferencias finitas. En el segundo enfoque se ha explorado el
potencial de los métodos de aprendizaje profundo para resolver este problema in-
verso. En concreto, se han empleado las redes neuronales informadas por la física
(PINNs), obteniendo unos resultados prometedores en los casos estudiados. Por
otro lado, se ha creado una biblioteca en Python para simplificar y automatizar la
creación de modelos 3D de elementos finitos y la integración de datos de imagen
en estos modelos.
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Las principales conclusiones se han agrupado por capítulos:

• Capítulo 2: El modelo extendido de Tofts incorporando la difusión

– A diferencia de la mayoría de los modelos anteriores, esta nueva for-
mulación no asume que el agente de contraste se difunda libremente
a través de la cara del elemento. En este nuevo modelo consideramos
que, dependiendo del nivel de celularidad del elemento, la superficie
libre para la difusión del contraste puede ser una fracción de la cara
del elemento.

– Al definir el término difusivo en función del concepto de difusividad
efectiva, se incluye la difusividad como una incógnita adicional y que
puede tomar distintos valores en cada uno de los elementos. A través
de este enfoque se puede definir el coeficiente de difusión en función
de otras variables del modelo, evitando así incrementar el número to-
tal de incógnitas del modelo.

• Capítulo 3: El algortimo de optimización basado en el método de los ele-
mentos finitos

– La resonancia magnética dinámica con contraste es una técnica de
imagen médica muy útil para evaluar el estado de vascularización de
los tejidos, especialmente en oncología. Sin embargo, debido a la com-
plejidad de los modelos farmacocinéticos, es complicado obtener de
forma precisa los parámetros que describen la vascularización.

– Las simulaciones llevadas a cabo confirman las limitaciones de losmo-
delos estándar y extendido de Tofts al estimar los parámetros KTrans y
ve con precisión cuando el agente de contraste llega al tejido a través
de fenómenos de trasnporte pasivo, como la difusión.

– El modelo D-ETM propuesto ha demostrado una mayor precisión al
ajustar los parámetrosKTrans y ve. Este modelo ha capturado con exac-
titud la heterogeneidad en la distribución de estos parámetros, obte-
niendo menores errores que el modelo extendido de Tofts.

– En comparación con estudios previos [40], en los que usaron algo-
ritmos estocásticos para resolver el problema inverso, el método pro-
puesto en este capítulo es notablemente más rápido, evitando así cier-
tas simplificaciones que limitan el rango de aplicación del modelo.

– A pesar de los buenos resultados obtenidos, el modelo D-ETM ajusta
con menor precisión el parámetro ve en comparación con el modelo
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DP [40]. Esto se nota especialmente en las zonas necróticas, donde
apenas hay vascularización. Indirectamente, esto implica que el pará-
metro ve apenas influye en la solución, lo que hace que el valor de su
gradiente sea muy bajo y no se pueda ajustar con precisión.

• Capítulo 4: Explorando el potencial de las PINNs

– El enfoque basado en las PINNs ha superado al algortimo presentado
en el capítulo anterior en cuanto a precisión en los parámetros ajusta-
dos. Además, este nuevo método ha demostrado una mayor robustez
ante la presencia de ruido o la falta de datos.

– Este nuevo enfoque ha ajustado con precisión el parámetro ve a lo
largo de las zonas necróticas, superando las limitaciones tanto de los
métodos basados en el gradiente como de los métodos estocásticos
[40].

– La formulación original de las PINNs propuesta por Raissi et al. [87]
no era suficiente para el ajuste del D-ETM. Ha sido necesario incluir
otras características, como el uso de pesos ponderados y el refinado
adaptativo basado en los residuos (RAR, por sus siglas en inglés), para
poder obtener los parámetros con precisión.

• Capítulo 5: Una biblioteca de Python para reconstruir mallas 3D a partir
de datos clínicos

– Los modelos de paciente-específico están ganando cada vez más im-
portancia en el estudio de distintas patologías y necesitan de métodos
sencillos y eficaces que generen los datos de entrada necesarios para
los mismos.

– im2mesh es una solución que automatiza el proceso de generación
de estos datos de entrada a partir de imágenes segmentadas y crea
los archivos necesarios sin la intervención del usuario, lo que la hace
ideal para su integración en entornos de trabajo más complejos.

– Los enfoques del tipo "todo en uno" que pueden conectar los distintos
elementos de un entorno de trabajo serán necesarios para las futu-
ras plataformas que se integren en la práctica clínica. Actualmente
im2mesh está integrada en la plataforma web del proyecto PRIMAGE,
aunque también está disponible como un paquete independiente para
ser descargado por cualquier usuario que la quiera usar en su entorno
de trabajo.
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7.2 Líneas futuras

Los resultados presentados en esta tesis ponen de relieve la creciente importan-
cia de los modelos de paciente-específico y la necesidad de nuevos métodos que
obtengan datos precisos de las imágenes médicas y los incluyan de forma sencilla
en los modelos.

• Incorporar la difusión de agente de contraste en el análisis de las secuencias
DCE-MRI

Respecto a la formulación del D-ETM, es necesario revisar la definición del
término difusivo para tratar de aumentar la influencia de la variable ve en
el mismo. De este modo, el peso del gradiente de esta variable en las zonas
necróticas aumentará, facilitando la convergencia de los algortimos de op-
timización. Además, para poder ampliar el rango de aplicación del modelo
y aumentar la precisión del mismo, futuros trabajos deberían incorporar el
término convectivo en la formulación. Para tratar de reducir la complejidad
del modelo al añadir el término, sería posible comenzar fijando el valor de
la velocidad intersticial del fluido en base a valores tomados de la literatura,
evitando así una incógnita adicional.

Existen métodos alternativos para calcular el gradiente que pueden mini-
mizar el coste computacional asociado a este cálculo. La mejor alternativa
es el método del estado adjunto, ya que el coste computacional del método
no depende del número de variables del problema.

Como alternativa a los métodos basados en el descenso del gradiente, se ha
propuesto un enfoque basado en las PINNs. A pesar de los buenos resul-
tados obtenidos en los casos 1D simulados, es necesario seguir trabajando
en esta línea para optimizar el método y poder escalarlo a casos 2D. En pri-
mer lugar, es necesario hacer una calibración de los hiperparámetros, bien
a través de algoritmos de búsqueda, algoritmos evolutivos u optimización
Bayesiana. Es también necesario reducir el coste computacional del entre-
namiento de la red. Para ello se pueden emplear técnicas de transferencia
de aprendizaje, que aprovechan el conocimiento existente de problemas fí-
sicos similares.

• Métodos para automatizar la creación de modelos de paciente-específico

Aunque la bilioteca desarrollada ha demostrado ser sumamente útil para
trabajar con grandes conjuntos de casos ya segmentados, carece de funcio-
nes que permitan incluir casos sin segmentar. Por ello, el siguiente paso
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debería ir en la dirección de integrar esta biblioteca con otras herramientas
de segmentación automática o semi-automática.

7.3 Contribuciones

Como resultado del trabajo realizado en esta tesis doctoral, se han publicado va-
rios trabajos en revistas y otros están en revisión o en preparación. Además, este
trabajo también ha dado lugar a tres presentaciones orales en congresos interna-
cionales y otra en una conferencia local:

7.3.1 Publicaciones en revistas

1. Sainz-DeMena D., Ye W., Pérez M. A., García-Aznar J. M. A finite element

based optimization algorithm to include diffusion into the analysis of DCE-

MRI. Engineering with Computers 38, 3849–3865 (2022) https://doi.org/10.
1007/s00366-022-01667-w

2. Sainz-DeMena D., García-Aznar J. M., Pérez M. A., Borau C. Im2mesh: A

Python Library to Reconstruct 3D Meshes from Scattered Data and 2D Seg-

mentations, Application to Patient-Specific Neuroblastoma Tumour Image Se-

quences. Applied Sciences 12 (2022) https://doi.org/10.3390/app122211557
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1. Sainz-DeMena D., Pérez, M. A., García-Aznar J. M. Exploring the poten-
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DCE-MRI in the presence of diffusion

Enviada a Medical Engineering and Physics

2. Juma V., Sainz-DeMena D., Sánchez, M. T., García-Aznar J. M. Effects of
tumour heterogeneous properties on modelling the transport of radiative par-

ticles

Enviada a International Journal of Numerical Methods in Biomedical Engi-

neering

3. Borau C., Wertheim, K. Y., Hervás-Raluy S., Sainz-DeMena D., Walker D.,
Chisholm R., Richmond P., Varella V., Viceconti M., Montero A., Gregori-
Puigjané E., Mestres J., Kasztelnik M., García-Aznar J. M. A multiscale or-
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7.3.2 Comunicaciones en congresos y conferencias

Durante el desarrollo de esta tesis se han presentado las siguientes comunicacio-
nes:

1. 17th International Symposium on Computer Methods in Biomechanics and
Biomedical Engineering. A continuum approach for the diffusion compen-
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bre, 2021.

2. 8th EuropeanCongress onComputationalMethods inApplied Sciences and
Engineering. A Finite Element method to incorporate the effects of diffusion

to the Extended Tofts Model. Oslo (Noruega), Junio, 2022.

3. 11ª Jornada de Jóvenes Investigadores del Instituto de Investigación en In-
geniería de Aragón. A Finite Element Based Optimization Algorithm to Inclu-

de Diffusion into the Analysis of DCE-MRI. Zaragoza (España), Junio, 2022.

4. 7th Conference on Virtual Physiological Human (VPH). Patient-specific mo-

dels in tumor growth: integrating organoids and image-based biomarkers.
Porto (Portugal), Septiembre, 2022.

5. 17thU. S. National Congress onComputationalMechanics. Physics-Informed
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94

Chapter 7



Conclusiones

7.3.3 Docencia

El autor ha codirigido un Trabajo de Final de Grado en Ingeniería Mecánica, titu-
lado Simulación computacional de la vascularización de tumores sólidos utilizando

el Método de los Elementos Finitos, por Sergio Ibor Castel.

Además, el autor ha impartido clases prácticas en el Grado en Ingeniería Me-
cánica (Mecánica de sólidos deformables) y en el Grado en Ingeniería Química
(Resistencia de materiales).

7.4 Financiación

El autor de esta tesis agradece alMinisterio de Ciencia, Educación yUniversidades
la financiación recibida a través del programa FPU (FPU18/04541).

95



96



Appendices

97





Appendix A

A.1 Comparison between the semi-analytical and nu-

merical methods to compute the Jacobian matrix

A small model (36 nodes and 120 timepoints) was created to compute its Jacobian
matrix using the numerical approach based on the finite differences method, ob-
taining matrix JN, and the semi-analytical method proposed in section 3.3 (equa-
tions 3.10-3.12), obtaining matrix JA. The numerical matrix JN was considered as
ground truth.

Given that most of values in the Jacobian matrix are zero or close to zero, we
define a new error metric, ARDmax. This variable is defined as the quotient of
the absolute difference between the Jacobian retrieved by each method and the
maximum value of the numerical Jacobian. To improve the accuracy of themetric,
we evaluate it for every nodal concentration for each nodal variable and each
timepoint (equation A.1). E.g., for KTrans, we compute this metric for every nodal
concentration for a certain timepoint (ti) for a certain nodal variable (Kj

Trans):

ARDmax
ti
j =

∥JAti
j − JN

ti
j ∥

Max(JN
ti
j )

(A.1)

Figure A.1 shows the error distribution of the semi-analytical method with
respect to the numerical one. The K

Trans and vp Jacobian matrices show below
0.5% of error and 97% of the elements in the ve matrix show an error below 2%,
what proves the accuracy of the semi-analytical method.
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Figure A.1: Histogram of the metric ARDmax measured in the small model proposed. For
K
Trans and vp, the error is below 0.5%, while around 97% of the values for ve are below 2%.

A.2 Benchmark problem: influence of the axisymmet-

ric geometry

To further investigate the impact of the axisymmetric geometry on the conver-
gence issues discussed in section 3.4.1, an additional simulation was conducted.
The objective was to examine how eliminating the symmetry in the geometry af-
fected the convergence behavior. In this experiment, the geometry was adjusted
to remove the axisymmetric feature, while maintaining the consistent distribu-
tions of parameters. The specific parameter values used were as follows: KTrans

was set to 0.2 min-1 in the rim and 0.05 in the core; a constant value of ve was uni-
formly applied as 0.5 throughout the entire model; and vp was assigned a value
of 0.05 in the rim and 0.005 in the core.

The initial seed for this simulation consisted of a random distribution of val-
ues, which resembled the one described in section 3.4.1. For KTrans, the initial
values ranged between 0.4 min-1 and 0. Similarly, for ve, the values ranged be-
tween 0.2 and 0.8. Lastly, for vp, the initial values ranged from 0 to 0.1. Ten
different simulations were computed to evaluate the influence of the initial seed
on the results. All of them converged to very similar values, validating the results
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obtained (Table A.1).

Table A.1: Comparison of error metrics between the D-ETM and the ETM for the non
symmetric geometry of the benchmark problem. The absolute error corresponds to the
mean value of the model. KTrans absolute error is measured in min-1.

D-ETM ETM
Absolute
error

Fraction of nodes
error < threshold

Absolute
error

Fraction of nodes
error < threshold

K
Trans 1.14E-02 64.58% 2.69E-02 45.03%
ve 1.02E-01 56.14% 1.73E+06 71.07%
vp 8.45E-04 78.79% 5.56E-03 77.71%

Despite the fact that the D-ETM exhibits higher error metrics in Table A.1
compared to those in Table 3.1, it still demonstrates superior performance over
the ETM, particularly in relation to the K

Trans map. On the contrary, the ETM
shows lower error values in this particular scenario.

This observation can be attributed to the homogeneity observed in the pa-
rameter maps depicted in Figure A.2. In the benchmark problem, represented
by Figure 3.3, the reference maps exhibited heterogeneity, resulting in concen-
tration gradients between neighboring elements within the vascularized region.
These concentration gradients induced diffusion fluxes, which in turn affected
the parameters estimated by the ETM, as elaborated in section 3.4.1. However, in
the current case, the homogeneity in the parameter distributions eliminates the
influence of diffusion in the vascularized rim, thereby benefiting the ETM.
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Figure A.2: Third simulation of the benchmark problem, modifying the axisymmetric
geometry. Comparison between the reference values and the parameters returned by the
D-ETM and the ETM. Although the maps retrieved by the D-ETM are not as accurate
as the ones obtained in section 3.4.1, it outperforms the ETM, especially on the sharp
contours of KTrans and vp maps.
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