000131653 001__ 131653
000131653 005__ 20241125101159.0
000131653 0247_ $$2doi$$a10.1002/adma.202303722
000131653 0248_ $$2sideral$$a137104
000131653 037__ $$aART-2023-137104
000131653 041__ $$aeng
000131653 100__ $$aZhang, Amin
000131653 245__ $$aConfining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy
000131653 260__ $$c2023
000131653 5203_ $$aNanozymes with inherent enzyme‐mimicking catalytic properties combat malignant tumor progression via catalytic therapy, while the therapeutic efficacy still needs to be improved. In this work, ultrasmall platinum nanozymes (nPt) in a confined domain of a wormlike pore channel in gold nanobipyramidal–mesoporous silica dioxide nanocomposites, producing nanozyme carriers AP‐mSi with photoenhanced peroxidase ability, are innovatively synthesized. Afterward, based on the prepared AP‐mSi, a lung‐cancer nanozymes probe (AP‐HAI) is ingeniously produced by removing the SiO2 template, modifying human serum albumin, and loading atovaquone molecules (ATO) as well as IR780. Under NIR light irradiation, inner AuP and IR780 collaborate for photothermal process, thus facilitating the peroxidase‐like catalytic process of H2O2. Additionally, loaded ATO, a cell respiration inhibitor, can impair tumor respiration metabolism and cause oxygen retention, hence enhancing IR780's photodynamic therapy (PDT) effectiveness. As a result, IR780's PDT and nPt nanozymes' photoenhanced peroxidase‐like ability endow probes a high ROS productivity, eliciting antitumor immune responses to destroy tumor tissue. Systematic studies reveal that the obvious reactive oxygen species (ROS) generation is obtained by the strategy of using nPt nanozymes and reducing oxygen consumption by ATO, which in turn enables lung‐cancer synergetic catalytic therapy/immunogenic‐cell‐death‐based immunotherapy. The results of this work would provide theoretical justification for the practical use of photoenhanced nanozyme probes.
000131653 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000131653 590__ $$a27.4$$b2023
000131653 592__ $$a9.191$$b2023
000131653 591__ $$aCHEMISTRY, PHYSICAL$$b4 / 178 = 0.022$$c2023$$dQ1$$eT1
000131653 593__ $$aMaterials Science (miscellaneous)$$c2023$$dQ1
000131653 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b11 / 439 = 0.025$$c2023$$dQ1$$eT1
000131653 593__ $$aNanoscience and Nanotechnology$$c2023$$dQ1
000131653 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b4 / 141 = 0.028$$c2023$$dQ1$$eT1
000131653 593__ $$aMechanics of Materials$$c2023$$dQ1
000131653 591__ $$aPHYSICS, CONDENSED MATTER$$b3 / 79 = 0.038$$c2023$$dQ1$$eT1
000131653 593__ $$aMechanical Engineering$$c2023$$dQ1
000131653 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b5 / 231 = 0.022$$c2023$$dQ1$$eT1
000131653 591__ $$aPHYSICS, APPLIED$$b6 / 179 = 0.034$$c2023$$dQ1$$eT1
000131653 594__ $$a43.0$$b2023
000131653 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131653 700__ $$aGao, Ang
000131653 700__ $$aZhou, Cheng
000131653 700__ $$aXue, Cuili
000131653 700__ $$aZhang, Qian
000131653 700__ $$0(orcid)0000-0003-1081-8482$$aFuente, Jesus M. De La
000131653 700__ $$aCui, Daxiang
000131653 773__ $$g35, 45 (2023)$$pAdv. mater.$$tAdvanced materials$$x0935-9648
000131653 8564_ $$s9917253$$uhttps://zaguan.unizar.es/record/131653/files/texto_completo.pdf$$yVersión publicada
000131653 8564_ $$s2565892$$uhttps://zaguan.unizar.es/record/131653/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131653 909CO $$ooai:zaguan.unizar.es:131653$$particulos$$pdriver
000131653 951__ $$a2024-11-22-12:10:45
000131653 980__ $$aARTICLE