000131657 001__ 131657
000131657 005__ 20241125101159.0
000131657 0247_ $$2doi$$a10.1063/5.0158119
000131657 0248_ $$2sideral$$a137125
000131657 037__ $$aART-2023-137125
000131657 041__ $$aeng
000131657 100__ $$aCascales Sandoval, Miguel A.
000131657 245__ $$aObservation and formation mechanism of 360° domain wall rings in synthetic anti-ferromagnets with interlayer chiral interactions
000131657 260__ $$c2023
000131657 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131657 5203_ $$aThe interlayer Dzyaloshinskii–Moriya interaction (IL-DMI) chirally couples spins in different ferromagnetic layers of multilayer heterostructures. So far, samples with IL-DMI have been investigated utilizing magnetometry and magnetotransport techniques, where the interaction manifests as a tunable chiral exchange bias field. Here, we investigate the nanoscale configuration of the magnetization vector in a synthetic anti-ferromagnet (SAF) with IL-DMI, after applying demagnetizing field sequences. We add different global magnetic field offsets to the demagnetizing sequence in order to investigate the states that form when the IL-DMI exchange bias field is fully or partially compensated. For magnetic imaging and vector reconstruction of the remanent magnetic states, we utilize x-ray magnetic circular dichroism photoemission electron microscopy, evidencing the formation of 360° domain wall rings of typically 0.5–3.0 μm in diameter. These spin textures are only observed when the exchange bias field due to the IL-DMI is not perfectly compensated by the magnetic field offset. From a combination of micromagnetic simulations, magnetic charge distribution, and topology arguments, we conclude that a non-zero remanent effective field with components both parallel and perpendicular to the anisotropy axis of the SAF is necessary to observe the rings. This work shows how the exchange bias field due to IL-DMI can lead to complex metastable spin states during reversal, important for the development of future spintronic devices.
000131657 536__ $$9info:eu-repo/grantAgreement/ES/DGA/Q-MAD$$9info:eu-repo/grantAgreement/EC/H2020/101001290/EU/3DNANOMAG-Three-dimensional nanoscale magnetic structures$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 101001290-3DNANOMAG$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1
000131657 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131657 590__ $$a3.5$$b2023
000131657 592__ $$a0.976$$b2023
000131657 591__ $$aPHYSICS, APPLIED$$b59 / 179 = 0.33$$c2023$$dQ2$$eT1
000131657 593__ $$aPhysics and Astronomy (miscellaneous)$$c2023$$dQ1
000131657 594__ $$a6.4$$b2023
000131657 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131657 700__ $$aHierro-Rodríguez, A.
000131657 700__ $$aRuiz-Gómez, S.
000131657 700__ $$aSkoric, L.
000131657 700__ $$aDonnelly, C.
000131657 700__ $$aNiño, M. A.
000131657 700__ $$aVedmedenko, E. Y.
000131657 700__ $$aMcGrouther, D.
000131657 700__ $$aMcVitie, S.
000131657 700__ $$aFlewett, S.
000131657 700__ $$aJaouen, N.
000131657 700__ $$aFoerster, M.
000131657 700__ $$0(orcid)0000-0002-4303-9525$$aFernández-Pacheco, A.$$uUniversidad de Zaragoza
000131657 7102_ $$12004$$2398$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física de la Tierra
000131657 773__ $$g123, 17 (2023), 172407 [7 pp.]$$pAppl. phys. lett.$$tApplied Physics Letters$$x0003-6951
000131657 8564_ $$s1824741$$uhttps://zaguan.unizar.es/record/131657/files/texto_completo.pdf$$yVersión publicada
000131657 8564_ $$s2572856$$uhttps://zaguan.unizar.es/record/131657/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131657 909CO $$ooai:zaguan.unizar.es:131657$$particulos$$pdriver
000131657 951__ $$a2024-11-22-12:10:48
000131657 980__ $$aARTICLE