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ABSTRACT

The interlayer Dzyaloshinskii–Moriya interaction (IL-DMI) chirally couples spins in different ferromagnetic layers of multilayer heterostructures. So
far, samples with IL-DMI have been investigated utilizing magnetometry and magnetotransport techniques, where the interaction manifests as a tun-
able chiral exchange bias field. Here, we investigate the nanoscale configuration of the magnetization vector in a synthetic anti-ferromagnet (SAF)
with IL-DMI, after applying demagnetizing field sequences. We add different global magnetic field offsets to the demagnetizing sequence in order to
investigate the states that form when the IL-DMI exchange bias field is fully or partially compensated. For magnetic imaging and vector reconstruc-
tion of the remanent magnetic states, we utilize x-ray magnetic circular dichroism photoemission electron microscopy, evidencing the formation of
360� domain wall rings of typically 0.5–3.0 lm in diameter. These spin textures are only observed when the exchange bias field due to the IL-DMI is
not perfectly compensated by the magnetic field offset. From a combination of micromagnetic simulations, magnetic charge distribution, and topol-
ogy arguments, we conclude that a non-zero remanent effective field with components both parallel and perpendicular to the anisotropy axis of the
SAF is necessary to observe the rings. This work shows how the exchange bias field due to IL-DMI can lead to complex metastable spin states during
reversal, important for the development of future spintronic devices.
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The interlayer Dzyaloshinskii–Moriya interaction (IL-DMI) is
an interlayer-mediated antisymmetric exchange interaction
observed in multilayer heterostructures, which promotes orthogo-
nal coupling between spins in different magnetic layers.1–4 This
interaction contrasts with the well established intralayer DMI,5,6

which chirally couples spins within the same magnetic layer.
IL-DMI is a coupling mechanism that may find interesting applica-
tions in 3D nanomagnetism, as it provides the opportunity of
inducing chiral magnetic states in a layer controlled by the mag-
netic state of another.
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IL-DMI can be understood as an effective unidirectional mag-
netic field breaking the symmetry of the reversal process, leading to a
chiral exchange bias.2 This exchange bias field has been for instance
utilized to achieve field free spin-orbit torque mediated deterministic
switching of perpendicularly magnetized thin film systems,7–11 as an
alternative to exchange bias generated at ferromagnet/anti-ferromag-
net interfaces. So far, samples with IL-DMI have been typically investi-
gated with magnetometry and magnetotransport techniques, such as
the magneto-optical Kerr effect (MOKE)1 and anomalous Hall
effect.2,12,13

Here, the remanent magnetic domain configurations present in a
synthetic anti-ferromagnet (SAF) with chiral exchange coupling due to
IL-DMI are investigated using x-ray magnetic circular dichroism
photo-emission electron microscopy (XMCD-PEEM). The states
imaged are obtained after performing a demagnetizing14,15 process
with different external field offsets added to the cycling sequence. By
combining multiple XMCD-PEEM projections measured at different
azimuthal angles, the magnetization vector is reconstructed, evidencing
the formation of 360� domain wall (DW) rings. The IL-DMI is found
to be key for the stability of these structures, as rings are only observed
when the exchange bias IL-DMI field is not fully compensated by the
external field offset. Experiments are complemented with micromag-
netic simulations, which highlight the importance of the relative orien-
tation of external and demagnetizing dipolar magnetic fields with the
in plane anisotropy axis of the sample for the formation of the 360�

DW rings.
The SAF structure under investigation consists of Si/Ta (4 nm)/Pt

(10 nm)/Co (1nm)/Pt (0.5nm)/Ru (1nm)/Pt (0.5nm)/CoFeB (2 nm)/
Pt (2 nm)/Ta (4nm), deposited by sputtering. The Co layer has domi-
nating strong perpendicular magnetic anisotropy (PMA) provided by
the Pt at the interfaces (surface anisotropy Ks¼ 1.2 mJm�2)1 i.e., it is a
hard out-of plane (OOP) layer. In contrast, the CoFeB (Co: 60%, Fe:
20%, B: 20%) has been tailored to exhibit moderately low in-plane (IP)
anisotropy, achieved by tuning its thickness slightly above the spin
reorientation transition which takes place at 1.55 nm. The transition
thickness occurs when the surface anisotropy (Ks¼ 0.7 mJm�2)1 bal-
ances the thin film shape anisotropy, i.e., Keff ¼ 2Ks=t � 0:5l0M

2
s

¼ 0, withMs being the saturation magnetization (MCoFeB
s ¼ 1:2� 106

Am�1, MCo
s ¼ 1:4� 106 Am�1). During deposition, a magnetic field

of�100 mT was applied providing further IP anisotropy in the CoFeB
layer along the field direction. This effect is negligible on the Co layer,
due to dominating PMA. The Pt layers in between both ferromagnetic
layers serve several purposes. They provide PMA to the ferromagnetic
layers, high spin orbit coupling to enhance the DMI, and also damp
the antiferromagnetic Ruderman–Kittel–Kasuya–Yosida (RKKY)
interactions due to the Ru spacer. Lastly, the Ta seed layer provides an
appropriate basis for the growth of the remaining layers, whereas the
top Ta protects the sample from oxidation.

In this type of SAFs, a chiral exchange bias due to IL-DMI has
been previously observed under measurement of minor IP hysteresis
loops on which solely the CoFeB layer reverses while the Co stays fixed
in the OOP direction. Upon reversal of the orientation of the Co layer,
the exchange bias changes sign. The unidirectional nature of the effect
is manifested by the IP angular dependence of the bias,1 which shows
opposite sign for the two possible directions parallel to the IP anisot-
ropy easy axis (EA), and zero for the directions orthogonal to it. In
particular for the sample investigated here, the magnitude of the

exchange bias field along the EA is 3.3 mT, compared with a coercivity
of 4.0 mT, as evidenced by Figs. 2(c) and 2(d).

To investigate the effect of IL-DMI on the domain states forming
in these samples, magnetic microscopy measurements were taken at
CIRCE16 beamline in ALBA Synchrotron, using XMCD-PEEM (see
sketch in Fig. 1). In this setup, the azimuthal angle of the sample with
respect to the x-rays can be modified in the full 360� angular range,
while the incidence angle is fixed to 16� with respect to the surface
plane, giving large sensitivity to IP components. Both circular polariza-
tion images are recorded and combined exploiting XMCD for mag-
netic contrast,17–19 measured at both Fe and Co’s L3 absorption edges
at each magnetic state. Prior to the experiments, 50nm thick PtxC1�x
squares and rectangles were deposited using focused electron beam
induced deposition (FEBID) on top of the film, serving as non-
magnetic references for equalizing both circular polarization images in
order to properly compute the final XMCD image. The holder used
for mounting the sample into the PEEM chamber has an embedded
dipolar electromagnet,16,20 giving the possibility of applying in-plane
uniaxial magnetic fields (~Bext). The nominal IP EA of the CoFeB (x̂),
given by the rectangle alignment mark’s long axis, is mounted parallel
to the electromagnet’s axis after previously saturating the Co layer in
one of the OOP directions.

FIG. 1. Schematic of two different relative sample/x-ray beam orientations. u0 and
u1 are the different relative angles between the x-ray beam (purple arrow) and the
magnetization vector (blue arrow and ~m symbol) upon sample rotation about the
axis normal to the substrate, h is the incidence angle with respect to the surface
plane of the x rays, the blue and red circular arrows denote both x-ray circular polar-
ization eigenmodes,~Bext the external magnetic field direction provided by the dipo-
lar electromagnet, the blue dots represent the emitted photo-electrons, and the
double headed EA arrow represents the IP anisotropy axis of the CoFeB layer.
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In order to obtain a magnetically non-trivial remanent state, a
demagnetization protocol, which consists of consecutively decreasing
IP sinusoidal~Bext signals, is applied.~Bext , thus, consists of an AC oscil-

lating component (~B
AC
ext ), and a DC or external field offset component

(~B
DC
ext ). The protocol is demonstrated in Fig. 2, where the magnetization

is probed in a separate x-ray resonant magnetic scattering (XRMS)
experiment, performed at SEXTANTS beamline in SOLEIL synchro-
tron. For this, XRMS hysteresis loops are taken where the specularly
reflected signal is recorded, using field sequences where the IL-DMI
exchange bias field (~BIL�DMI) is either fully or partially compensated

by ~B
DC
ext . The x-ray beam spot used is 300 lm in diameter,21 and the

x-ray beam was set to 13� of incidence with respect to the sample
plane, giving large sensitivity to the IP magnetization.22

Figures 2(c) and 2(d) show the XRMS hysteresis loops for the
two demagnetizing sequences in Figs. 2(a) and 2(b). In the green (fully
demagnetized case) shown in Fig. 2(c),~BIL�DMI ’s x̂ component is fully
compensated by ~Bext , i.e., Bx¼ 0, with ~B ¼~Bext �~BIL�DMI , yielding
final zero net magnetic signal. This state corresponds to the one
observed via XMCD-PEEM in Fig. 2(e), where the area of black and
white domains within the field of view (FOV) is indeed approximately
equal. The situation is different for the red (partially demagnetized
case) shown in Fig. 2(d), where ~BIL�DMI ’s x̂ component is not fully
compensated (Bx 6¼ 0), reaching a final state with non-zero net mag-
netic signal. This agrees with the corresponding PEEM experiment
shown in Fig. 2(f), where there is a clear dominating magnetic configu-
ration aligned with~Bext . In the partially demagnetized case, a number
of ring-like magnetic textures (0.5–3.0 lm in diameter) are frequently
observed by PEEM, for instance, the one marked by the white arrow in
Fig. 2(f). The emergence of a large number of rings is found in partially
demagnetized states as the one in Fig. 2(g), where an area with a larger
field of view is shown. All the images shown here are taken at the Co
L3 edge and refer to states forming on the CoFeB layer, since the mag-
netic features are identical at both Fe and Co edges, with Co showing a

significantly better signal-to-noise ratio due to the stoichiometry of the
CoFeB layer (see the supplementary material).

In the experiments, other demagnetizing sequences with offset
fields of different magnitude were performed. The maximum offset
investigated was 0.8 mT larger than the one that perfectly compensates
the exchange bias, i.e., Bx¼ 0.8 mT. We observe a decrease in the num-
ber of rings as the offset field increases, with a few of them still present
at this maximum offset.

To understand better the magnetic configuration of these spin tex-
tures, vector imaging of one of the rings is performed by measuring sev-
eral x-ray beam/sample projections. For this, the sample is rotated in the
PEEM chamber with respect to the x-ray direction, as shown in Fig. 1.
XMCD images are obtained for a total of eight azimuthal angles, see Fig. 3
(a). The images have been previously rotated and aligned with respect to
each other in order to have the same spatial orientation, following a simi-
lar procedure to the one described in.23 Additionally, deformations in dif-
ferent projection images are corrected by an algorithm, which makes use
of a combination of image registration techniques, using the PtxC1�x
marker’s geometrical shape as reference landmarks. These deformations
arise from the fact that the used PEEM microscope does not inherently
present circular symmetry. Some of the electron optical elements, in par-
ticular, the 120� beam splitter, typically introduce image distortions, which
become relevant when overlaying images for different sample orientations.

The spatially resolved normalized magnetization vector (~m) is
then reconstructed,23–29 by performing a pixel-by-pixel least squares
fitting of the XMCD profile (given by~k � ~m, with~k being the incident
x-ray wave-vector) as a function of the azimuthal rotation angle. The
resulting vector directions of ~m are shown in the central image of
Fig. 3(a). The line profiles in Fig. 3(b) evidence the presence of 360�

DWs separating the outer and inner domains, whose orientation is the
same, and the direction of ~m within them is the result of the EA and~B
directions. In the reconstruction, great precision is achieved in the
determination of the IP components due to the grazing incidence of
the x-rays, which on the other hand reduces the sensitivity to OOP
components. Furthermore, the magnetic signal decreases in areas

FIG. 2. (a) and (b) External field demagnetizing protocol, compensating either fully (a), or partially (b) the IL-DMI exchange bias field via a field offset (Bx¼ 0 and Bx 6¼ 0). (c)
and (d) XRMS measurements taken with circular incident polarization during application of the demagnetization procedure, respectively, for the field sequences in (a) and (b).
(e) and (f) XMCD-PEEM images measured at final green and red cases at Co’s L3 edge. The inset in (e) is common to (f), representing the external magnetic field, x-ray, and
IL-DMI field directions. (g) XMCD-PEEM image taken at Co’s L3 edge after partially demagnetizing the CoFeB film and utilizing a larger FOV, evidencing the formation of a large
number of rings. The inset here shows the direction of the x rays and the net effective field acting on the sample. The white dashed lines in (e), (f), and (g) denote the non-
magnetic reference PtxC1�x squares and rectangles.
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where the magnetization changes over small spatial lengthscales in
comparison with the microscope’s resolution, giving a larger uncer-
tainty in the domain walls’OOP components.

360� DW rings have been previously observed in individual fer-
romagnetic Permalloy thin film layers,30 in multilayered heterostruc-
tures,31–33 in exchanged biased films,15,34,35 and in magnetic tunnel
junctions.36 The role of Bloch lines,31 DW splitting,32 and dispersion
in anisotropy15 have been proposed as mechanisms for explaining
their formation.

In order to determine the dependence between the stability of
360� DW rings and the IL-DMI effective field, focus is first set on their
topology and magnetic charge distribution. For this, the simplified
sketch of the vector reconstructed configuration shown in Fig. 4(a) is
used, assuming a fully IP texture. The figure shows an elongated, 360�

DW ring with the EA along~x . A 1D 360� DW is a topologically non-
trivial structure, having been sometimes denominated 1D skyrmions
in the literature.37 However, when these DW form a ring structure as
the one shown here, the net winding number computed along a line
profile diametrically crossing the whole ring is zero due to the opposite
chirality of the two encountered 360� DW. Therefore, a 360� DW ring
as a whole is topologically trivial, which means that it can be continu-
ously deformed into a single domain state.

Additionally, the elongation observed for the ring textures along the
EA is expected based on magnetostatics arguments, i.e., N�eel walls prefer
to align parallel to the EA rather than perpendicular38 to it. Furthermore,
the magnetic charge distribution along the ring structure is anisotropic,

as evidenced by the “þ” and “�” in the figure. For both (top and bottom)
walls parallel to the EA, the two 180� DW forming the 360� DW repel
each other, which in combination with the ferromagnetic exchange pro-
mote the growth of the annular domain (cyan). In the absence of a net
magnetic field, this magnetic texture would expand and relax into
broader domains separated by consecutive 180� DW.39 This contrasts
with the (left and right) DW orthogonal to the anisotropy axis, where the
demagnetizing field arising from the charge distribution now makes the
two consecutive 180� DW attract each other, opposing the expansion of
the annular domain promoted by ferromagnetic exchange. The competi-
tion of these interactions dictates the stability of the vertical 360� DW
component at zero field.39 Thus, for the overall 360� DW ring texture to
remain stable, a net non-zero ~B field along the easy axis is required to
compress from both inner and outer parts, preventing it from relaxing
and expanding into broader domains, i.e., two consecutive domains sepa-
rated by 180� DWs. Additionally, this field prevents the unwinding of the
inner domain due to it being topologically trivial. This agrees well with
previous observations of 360� DW rings in systems with exchange
bias,15,34,35 since the field sequences used there do not add field offsets,
resulting in net non-zero fields at remanence.

Finally, we focus on investigating the mechanism behind the
nucleation of the rings using micromagnetic simulations. For this,
solely a single IP thin film is modeled representing the CoFeB layer of
the SAF, whose simulation parameters are summarized in Table I. As
in experiments,~BIL�DMI is parallel to the EA (horizontal~x direction),
and it is modeled through the effective field~B. In these simulations, we

FIG. 3. (a) XMCD-PEEM based vector
reconstruction of the magnetization of a
360� DW ring using eight projections.
Gray-scale images correspond to the
8 XMCD-PEEM projections taken at differ-
ent azimuthal x-ray beam/sample relative
angles. The angle of each projection is
given with respect to the x-axis indicated
in the central figure. The applied external
magnetic field direction is given by the
inset arrow of the 0� projection. The cen-
tral color-map represents the spatially
resolved magnetic vector configuration,
utilizing the hsl colormap for the IP direc-
tions, and black and white for the OOP
directions. (b) IP components of ~m along
the profiles given by the dashed arrows
overlayed on the central color plot,
evidencing 360� DW.
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do not include additional effects related to the interaction between Co
and CoFeB layers. In particular, the magnetostatic interaction in
between the two layers is not considered. In the following, our simula-
tions show a clear mechanism for the formation of the rings despite
this approximation.

In order to model the formation process via micromagnetic simu-
lations, the first step consists of obtaining a magnetic configuration
formed by multiple domains, resembling an intermediate state during
the demagnetizing protocol. For this, the simulation starts from a fully
saturated þmx configuration. Then, a~B field of increasing magnitude
is applied along �x̂ with a small �ŷ component (5� with respect to
þx̂), which represents a misalignment between~Bext and the EA. A cir-
cular defect of 0.8 lm radius and with 20% anisotropy value of the
layer is included to trigger the nucleation of domains (cyan). Once ~B
reaches the switching field magnitude, the system is allowed to evolve
dynamically, eventually reaching the state shown in [Fig. 4(b), state
(0)]. All 180� DWs in the simulation space have a�my component set
by By,

14 resulting in the magnetic charge distribution, once again rep-
resented by the “þ” and “�” signs.

As DW of opposite charge get closer promoted by the growth of
the inverted domain, the intensity of the demagnetizing field (~Bd)

associated to the magnetic charges begins to increase [Fig. 4(b), state
(1)]. The varying ~Bd in combination with the constant ~B eventually
reaches the sufficient field magnitude for overcoming the anisotropy
dominated nucleation field, as a consequence locally inverting the
magnetization. This allows for the formation of a new pair of 180�

DWs during the reversal, with their core magnetization pointing along
þmy , given that the ŷ component of ~Bd in this case is opposite and
larger in magnitude than the original set by~B, i.e., Bdy > �By. This is
exemplified in the crop shown in [Fig. 4(b), state (2)]; the new 180�

DW forms next to the original!# from [Fig. 4(b), state (1)], result-
ing in a 360� DW with "!# configuration. Thus, for the forma-
tion of 360� DW and the forthcoming rings, it is key for the ŷ
component of~Bd to be opposite in sign and greater in magnitude than
By. In the hypothetical case where either ~B and/or ~Bd were purely
along x̂ , it would not have lead to the formation of the rings, as the
existence of non-zero transverse field components is crucial.

From this point on, a ring is finally formed after the red domains
shrink due to the opposing~B [Fig. 4(b), states (3)–(5)]. The key role of an
alternating By field [Fig. 4(b), states (0)–(1)] for the formation of 360�

DW rings in a system with mx domains is similar to previous works in
nanowires with injection pads,14 where 360� DW were stabilized via the
application of alternating external magnetic fields. Here, instead, the net
magnetic field is dominated by~Bext or~Bd , for different steps of formation.

In this ideal simulation space, the ring eventually annihilates
[Fig. 4(b), state (6)], in contrast with the experimental results where
rings remain stable. This can be readily explained due to the presence of
pinning sites, defects, and imperfections in the real sample that locally
alter the magnetic energy landscape, leading to their meta-stability.42

The mechanism for the formation and stabilization of rings
described here is applicable to a single film subject to a demagnetizing
sequence with a nonzero constant offset field. This type of procedure is
more likely to happen in films with an intrinsic bias field, which
explains the larger number of works reporting the observance of rings
in exchanged bias bilayers.

In conclusion, we have observed 360� DW rings via XMCD-
PEEM magnetic vector reconstruction, forming in a SAF exhibiting
exchange bias due to IL-DMI. These textures are observed at rema-
nence after applying IP demagnetizing field sequences where a global

FIG. 4. (a) Simplified sketch of a 360� DW ring as the one obtained in the reconstruction shown in Fig. 3, where the magnetization winding sense at four different locations is
illustrated by the colored arrows. The rotating arrows denote the sense of rotation of magnetic spins along the dashed line arrows. (b) Dynamical evolution (numbered states)
of the simulation space to study the formation of 360� DW rings with IP magnetization vector directions given by the hsl colormap. EA and magnetic field~B directions are indi-
cated by the inset arrows in state 0. In state (0), ~Bd represents the demagnetizing field arising from the magnetic charges “þ” and “�,” which is non-homogeneous
and becomes stronger as the domain walls get closer to each other (subsequent states). The time for each state is given relatively to state (0); t1 ¼ 0:10 ns, t2 ¼ 0:22 ns,
t3 ¼ 0:42 ns, t4 ¼ 0:66 ns, t5 ¼ 1:90 ns, and t6 ¼ 3:40 ns.

TABLE I. Parameters for the micromagnetic simulation. Values for parameters were,
respectively, found at a,40 MS,

1 Aexc,
41 and K.1

Parameter Value

Cells (x, y, z) 3072 � 3072 � 1
Cell size (x, y, z) 4.5 � 4.5 � 5.0 (nm)
a 0.02
MS 1.2 � 106 (A/m)
Aexc 20 (pJ/m)
K 1:8� 103 (J/m3)
Defect size 0.8 (lm)
Defect anisotropy 3:6� 102 (J/m3)
Periodic boundary conditions 16 � 16 (repetitions)
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offset in field is added. A combination of XMCD-PEEM and XRMS
shows how the rings are only found when the field offset does not per-
fectly compensate for the IL-DMI exchange bias field present in the
SAF. We propose a mechanism for the formation and stability of the
rings, based on analyzing their magnetic charge distribution and topol-
ogy, in combination with micromagnetic simulations. First, a non-zero
net IP field parallel to the easy axis, result of external and IL-DMI
fields, is key for their stability at remanence. This net field in combina-
tion with pinning sites prevents their relaxation and annihilation due
to their trivial topology. Secondly, a non-zero component of the net
field perpendicular to the easy axis is required for their formation. This
component sets the initial direction of two 180� walls at the start of the
reversal process, which subsequently combine with two other 180�

walls that form afterward. The wall component of this second set of
180� walls is opposite to the original ones, set by the strong demagnet-
izing field in between domains that dominate as these become closer
to each other. The combination of the two sets of consecutive 180�

walls results in two 360� walls of opposite chirality, leading to a 360�

wall ring. A deep understanding of the effect of IL-DMI on the mag-
netic reversal process and domain structure of SAFs is crucial for the
potential exploitation of this effect in spintronic devices.

See the supplementary material for comparison between XMCD-
PEEM images taken at Co and Fe edges (Fig. S1), evidencing identical
magnetic textures in both cases.
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