000131669 001__ 131669
000131669 005__ 20241125101201.0
000131669 0247_ $$2doi$$a10.1016/j.ceramint.2023.09.107
000131669 0248_ $$2sideral$$a137028
000131669 037__ $$aART-2023-137028
000131669 041__ $$aeng
000131669 100__ $$0(orcid)0000-0001-7056-0546$$aSotelo, A.$$uUniversidad de Zaragoza
000131669 245__ $$aSignificant reduction in processing time for Ca0.95Ce0.05MnO3 thermoelectric ceramics
000131669 260__ $$c2023
000131669 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131669 5203_ $$aAttrition-milling process has been applied to Ce-doped CaMnO3 precursors to obtain small grain-size powders. The use of Ce4+ as dopant instead a Rare Earth3+ has allowed decreasing by 50% the atomic proportion of dopant, to obtain equivalent charge carrier concentration, which is required for attaining promising properties for thermoelectric applications. An impressive decrease in thermal processing time was achieved, together with an increase in thermoelectric performances, when compared to classically prepared materials. XRD and SEM analysis have confirmed that the final material is nearly single phase. Moreover, grain sizes and density increase with the sintering duration. These microstructural differences are reflected in a significant decrease in electrical resistivity, when compared to the samples prepared from ball-milled precursors (used as reference), without drastically modifying the Seebeck coefficient values. On the other hand, despite of their high electrical conductivity, thermal conductivity is decreased for short time sintered materials, leading to the highest ZT values at 800 °C (∼0.27) in samples sintered for 1 h at 1310 °C. These values are among the best reported in the literature, but they have been obtained in very short time using a simple, and easily scalable process. The suggested approach presented in this work appears particularly promising for large-scale production of oxide-based thermoelectric modules for power generation.
000131669 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T54-23R$$9info:eu-repo/grantAgreement/ES/FEDER/UIDB/50011/2020$$9info:eu-repo/grantAgreement/ES/FEDER/UIDP/50011/2020$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2022-IAR-09
000131669 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131669 590__ $$a5.1$$b2023
000131669 592__ $$a0.938$$b2023
000131669 591__ $$aMATERIALS SCIENCE, CERAMICS$$b3 / 31 = 0.097$$c2023$$dQ1$$eT1
000131669 593__ $$aElectronic, Optical and Magnetic Materials$$c2023$$dQ1
000131669 593__ $$aCeramics and Composites$$c2023$$dQ1
000131669 593__ $$aSurfaces, Coatings and Films$$c2023$$dQ1
000131669 593__ $$aMaterials Chemistry$$c2023$$dQ1
000131669 593__ $$aProcess Chemistry and Technology$$c2023$$dQ2
000131669 594__ $$a9.4$$b2023
000131669 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131669 700__ $$aAmirkhizi, P.
000131669 700__ $$aDura, O.J.
000131669 700__ $$aGarcía, G.
000131669 700__ $$aAsensio, A.C.
000131669 700__ $$0(orcid)0000-0003-3995-5763$$aTorres, M.A.$$uUniversidad de Zaragoza
000131669 700__ $$0(orcid)0000-0002-0794-3998$$aMadre, M.A.$$uUniversidad de Zaragoza
000131669 700__ $$aKovalevsky, A.
000131669 700__ $$aRasekh, Sh
000131669 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Expresión Gráfica en Ing.
000131669 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000131669 773__ $$g49, 23 Part A (2023), 37793-37799$$pCeram. int.$$tCeramics International$$x0272-8842
000131669 8564_ $$s6026174$$uhttps://zaguan.unizar.es/record/131669/files/texto_completo.pdf$$yVersión publicada
000131669 8564_ $$s2518289$$uhttps://zaguan.unizar.es/record/131669/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131669 909CO $$ooai:zaguan.unizar.es:131669$$particulos$$pdriver
000131669 951__ $$a2024-11-22-12:11:49
000131669 980__ $$aARTICLE