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Abstract

This article outlines the research on the application of the variational multiscale theory (VMS) to a posteriori error estimation.
MS theory was initially developed by Professor Hughes to evince the origins of stabilized methods. In this paper it is shown

hat the stabilization parameters and the stabilization terms contain true error information that can be used to obtain explicit and
mplicit a posteriori error estimates. The technology consists of splitting the exact solution into resolved or coarse scales (finite
lement solution) and unresolved or fine scales (numerical error). By feeding this splitting into the variational formulation, an
xact weak form can be derived for the fine scales as a function of the resolved scales. The way of solving or approximating
his equation yields different algorithms and models for error estimation. Furthermore, using the so-called fine-scale Green’s
unction, an analytical representation of the fine scales is possible. Again, different approximations of this function give rise to
arious algorithms and models. This theory naturally suggests that the error can be computed by the combination of element
nterior and inter-element faces residuals with the corresponding error time-scales. From this standpoint, error estimators are
eveloped for the transport equation and the Navier–Stokes equations. This technology can be further used for example to
enerate adapted meshes, to derive reduced order models and in verification and validation algorithms.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Stabilized methods [1–3] have been around now for a few decades. In particular, in [4,5] Professor Hughes
nveiled that the extra variational integral added to the Galerkin method amounts to incorporate the error of the
umerical method into the finite element solution. These last two papers (extended to the transient case in [6])
oint also out that any stabilized method can be understood as a posteriori error estimator and, conversely, any
rror estimator can be interpreted as a potential stabilized method. This powerful and simple idea then would close
he circle quadrature since each stabilized method would possess its own a posteriori error estimator, opening a new
venue for investigation. Thus, the goal of this paper is to summarize the investigations in our group on applying
he variational multiscale approach (VMS) to the development of explicit and implicit a posteriori error estimators

in general, and to fluid transport problems in particular.
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Let us recall that a posteriori error estimation methods can be classified as residual based methods, recovery-
based methods and auxiliary-problem-based methods [7].

1. Residual-based methods estimate the error of the solution directly by computing residuals, both, interior
and/or inter-element or boundary residuals. Typically, they postprocess the discrete finite element solution,
and so, are called explicit methods. Explicit residual-based error estimators were proposed for the first time
by Babuška and Rheinbolt [8], and then extended to two-dimensions in [9,10].

2. Recovery-based methods use up superconvergent properties of the solutions and were first proposed by
[11,12]. They can be used at the element level or using patches of elements [13,14]. A general framework
for the analysis of the above methods can be found in [15]. For applications to aerodynamics see [16,17]
and for a recent contribution, [18].

3. Auxiliary-problem-based methods. In this technique, new partial differential equations are solved either at
the element level, in subdomains or in the whole domain. Since estimating the error requires solving a new
problem, they are also called implicit error estimators. Pioneering work was started by [19–22]. Important
contributions are those in [23–26], for instance.

A posteriori error estimation is in general a vast field, that was initiated for elliptic problems by Babuška and
Rheinbolt [19], and then followed by Zienkiewicz and Zhu [11,12], Eriksson and Johnson [27], Ainsworth and
Oden [28], among others. Stewart and Hughes also made contributions in [29,30]. The above ideas were then applied
to hyperbolic and fluid mechanics problems, for instance by Oden et al. [31,32], Johnson and coworkers [33–35],
Strouboulis and Oden [36], and Verfürth [37]. Developing strict bounds for linear-functionals of the solution is
another promising approach to error control (see [38–42]).

For the Stokes equations, we remark the work of Verfürth [43], Kay and Silvester [44], Bank and Welfert [45]
and, more recently, Larsson et al. [46] that propose implicit estimators which imply the solution of local problems
at the element level. The error is measured in energy-like norms. On the other hand, Ainsworth and Oden [47]
and Nobile [48], develop implicit error estimators which provide the lower and upper bounds of the error. In [49],
Russo proposes an explicit error estimator for the MINI-element employing bubble functions. Song et al. [50] take
advantage of VMS to develop an error estimator oriented towards generating adapted meshes.

As regards to the Navier–Stokes equations, Johnson and coworkers established residual-based error estimates in
various norms and their application to incompressible flow can be found in [51]. Ainsworth and Oden in [47,52]
established an error estimation measured in a energy-like norm which is bounded. Berrone presented a residual-
based approach in [53,54], where the influence of the Reynolds number is made explicit and the error estimate is
used to adapt the mesh.

For a more elaborate review on the topic, the reader can consult [7,55–57]. Furthermore, [58,59] review and
compare the performance of the most successful a posteriori error estimators when applied to fluid mechanics
problems. And despite of the breadth of the subject, their conclusions are not optimistic, since all authors conclude
that for fluid transport, present techniques are far from satisfactory. Simple algorithms are non-robust, that is, the
ratio of predicted to true error changes dramatically with the diffusion coefficient (see [60,61]). Some solutions
exist but require solving additional partial differential equations, which can turn computationally expensive.

Beyond the ideas outlined in this paper, VMS a posteriori error estimation has found application in other
areas, such as reduced-order models [62,63], uncertainty quantification [64,65], isogeometric analysis [66,67] and
convergence and accuracy enhancement of finite element solutions [68].

2. The transport equation

The transport equation is a simple linear model of fluid motion, ideal to illustrate the main ideas on a posteriori
error estimation driven by the variational multiscale theory (VMS).

2.1. Preliminaries

Consider a spatial domain Ω with boundary Γ , which is partitioned into two non-overlapping zones Γg and Γh .
Ω . The strong form of the boundary-value problem consists of finding u : Ω → R
Let x and y be two points in
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Fig. 1. Notation for the jump across element interfaces.

such that for the given essential boundary condition g : Γg → R, the natural boundary condition h : Γh → R, and
forcing function f : Ω → R, the following equations are satisfied⎧⎨⎩ Lu = f in Ω

u = g on Γg

Bu = h on Γh

(1)

where L is in principle a second-order differential operator and B, an operator defined later, acting on the boundary.
Next, let us define the weak form. Given the functional solution space S ⊂ H 1(Ω ) and weighting space
⊂ H 1(Ω ), with H 1(Ω ) the Sobolev space of order one [69],

S = {u ∈ H 1(Ω ) | u = g on Γg}

V = {v ∈ H 1(Ω ) | v = 0 on Γg}
(2)

he variational formulation for the above boundary-value problem consists of finding u ∈ S such that:

a(w, u) = (w, f ) + (w, h)Γh ∀w ∈ V (3)

here (·, ·) is the L2(Ω ) inner product, (·, ·)ω is the L2(ω) inner product in the domain ω, and a(·, ·) is a bilinear
orm satisfying

a(w, u) = (w,Lu) + (w,Bu)Γh (4)

or all sufficiently smooth functions w ∈ V and u ∈ S. Likewise, a(·, ·)ω is the bilinear operator with the integral
xtended over the domain ω.

In the case of finite element methods, the domain Ω is discretized into nel non-overlapping elements with
omain Ω e and boundary Γ e (e = 1, 2, . . . , nel). The functions then may be discontinuous across the inter-element
oundaries. Let us denote the union of element interiors as Ω̃ , where Ω̃ =

⋃nel
e=1 Ω

e and the union of element
oundaries minus Γ as Γ̃ , with Γ̃ =

⋃nel
e=1 Γ

e
\ Γ also referred to as the element interfaces or inter-element

oundaries. Furthermore, let [[·]] denote the jump operator of a function across an inter-element boundary. Following
he notation of Fig. 1, where the respective outward unit normals to elements Ω+ and Ω− are n+ and n−, the jump
f v · n is defined as [69]

[[v · n]] = n+
· v+

+ n−
· v− (5)

.2. The variational multiscale approach to error estimation

Professor Hughes evinced the origin of the variational multiscale theory in the seminal works [4,5] by applying
he concept of scale splitting to the solution u and weighting functions w,

u = ū + u′ ū ∈ S̄ u′
∈ S ′

w = w̄ + w′ w̄ ∈ V̄ w′
∈ V ′

(6)

here S̄, V̄ and S ′, V ′ denote the respective resolved and unresolved scales finite element spaces, satisfying
′

= S \ S̄ and V ′
= V \ V̄ . For our purposes, u represents the exact solution; ū, the resolved scales or finite

lement solution; and u′, the unresolved scales, subgrid scales or error.
The above decomposition can be substituted in the variational formulation (3). Because of its bilinearity, the

eak form is equivalent to these two subproblems,

a(w̄, ū) = −a(w̄, u′) + (w̄, f ) + (w̄, h) (7a)
Γh

3
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a(w′, u′) = −a(w′, ū) + (w′, f ) + (w′, h)Γh (7b)

he first one for the resolved scales ū and the second one for the unresolved scales u′.
For smooth functions within the element interiors but rough across the inter-element boundaries, such as finite

lement functions, integration by parts of a(w′, ū) leads to

a(w′, ū) =

nel∑
e=1

a(w′, ū)(Ωe)

=

nel∑
e=1

{
(w′,Lū)(Ωe) + (w′,Bū)Γ e

}
= (w′,Lū)Ω̃ + (w′, [[Bū]])Γ̃ + (w′,Bū)Γh (8)

Consequently, the fine-scale subproblem (7b) can be written as

a(w′, u′) = −(w′,Lū)Ω̃ − (w′, [[Bū]])Γ̃ − (w,Bū)Γh

+ (w′, f ) + (w′, h)Γh

= −(w′,Lū − f )Ω̃ − (w′, [[Bū]])Γ̃ − (w′,Bū − h)Γh (9)

inally, the fine-scale problem (9) can be solved analytically using the Green’s function of the fine-scale problem,
g′(x, y), so the error can be exactly computed as

u′(x) = −

∫
Ω̃y

g′(x, y) (Lū − f )( y) dΩy

−

∫
Γ̃y

g′(x, y) ([[Bū]])( y) dΓy

−

∫
Γh y

g′(x, y) (Bū − h)( y) dΓy

(10)

The fine-scale Green’s function is the projection of the classic Green’s function into the unresolved-scales space.
his concept was introduced in [4,5] and was further investigated and formally defined in [70]. The interested reader

s referred to the above publications for a more detailed information.

emarks.

1. The same result can be expressed via the Green’s function of the adjoint fine-scale problem g′∗ through the
identity g′(x, y) = g′∗( y, x).

2. Note that the integral is non-local and, therefore, the effect of the error is, in principle, non-local. For instance,
the error at a singularity can influence the precision at distant places. This is called the pollution effect [7].
For certain problems and computational methods, such as stabilized methods, the pollution effect is mostly
locally restrained.

3. The error estimator is residual-based. The contemplated residuals include:

i. Element interior residuals, Lū − f in Ω̃ .
ii. Inter-element residuals, [[Bū]] on Γ̃ .

iii. Natural boundary condition residual, Bū − h on Γh .

4. Other sources of errors, such as Dirichlet boundary condition approximations or boundary approximation,
are not considered here.

5. The fine-scale Green’s function g′(x, y) is the distribution that characterizes the behavior of the numerical
error, and emanates from the proper projection of the global Green’s function. Therefore, it depends on the
operator (with the corresponding geometry and boundary conditions), on the finite element space and on the
method (or projector). Furthermore, S ′ is the kernel of the projector that defines the method and can also be
viewed as the quotient space S ′

= S/S̄ (see [70] for further details).
6. Even though (10) is exact for a linear problem, the calculation of the fine-scale Green’s function can be

more complex than that of the solution of the original problem. In order to simplify the procedure, a simpler
strategy based on approximations compatible with the theory of stabilized methods is proposed.
4
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7. Using global Green’s functions to compute the pointwise error was investigated for elasticity problems
in [71,72] and the link between finite elements and Green’s functions in [73]. Also Estep et al. [74] use
global Green’s functions to study the domain of influence of the error in elliptic problems. These ideas will
be revisited in the section on the nature of the finite element error, where it will be shown that the pollution
error can be exactly computed as a combination of global free-space Green’s functions.

.3. A model for error estimation

The error representation (10) can be split into errors stemming from element interior residuals u′
int(x) and element

boundary residuals u′
bnd(x) [75,76], namely

u′(x) = u′
int(x) + u′

bnd(x) (11)

Therefore, using the triangle inequality [75] we can write

∥u′(x)∥ ≤ ∥u′
int(x)∥ + ∥u′

bnd(x)∥ (12)

2.3.1. Element interior error
In [70] it is shown that for certain types of variational methods, such as stabilized methods, the error distribution

is practically local. For these methods, the fine-scale Green’s function can be approximated by the element Green’s
function ge(x, y), which is the classic Green’s function defined within the domain of one element [4,5].

Therefore, following [77–79] the error due to element interiors can modeled as the smooth paradigm,

u′
int(x) ≈ −

∫
Ωe

y

ge(x, y) (Lū − f )( y) dΩy on Ω e (13)

As stated earlier, (13) is exact for element-edge-exact solutions.
By Hölders inequality (see Brenner and Scott [80]) we can develop an (approximate) upper bound,

|u′
int(x)| ≤ ∥ge(x, y)∥L p(Ωe

y ) ∥Lū − f ∥Lq (Ωe) (14)

with 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1. Taking the Lr norm,

∥u′
int(x)∥Lr (Ωe) ≤

⏐⏐⏐⏐⏐⏐ ∥ge(x, y)∥L p(Ωe
y )

⏐⏐⏐⏐⏐⏐
Lr (Ωe

x )
∥Lū − f ∥Lq (Ωe) (15)

emark. This contribution is vital for error estimation in the hyperbolic limit.

.3.2. Element boundary error
The term u′

bnd(x) is connected to the non-smooth derivatives across the element boundaries of the finite element
olution, ū. The inter-element boundary errors are approximated within each element as

u′
bnd(x) ≈ −

∫
Γ e

y

g′(x, y) ([[Bū]])( y) dΓy on Ω e (16)

here the jump definition has been formally extended to encompass the natural boundary condition residual,

[[Bū]] =

{
Bū − h on Γ e

∩ Γh

0 on Γ e
∩ Γg

(17)

ote that the inter-element boundary integral on Γ̃ has been replaced by the boundary integral along Γ e. Since this
integral contains the jump of the flux, Bū, it increases the non-locality by one layer of elements around Ω e.

Again, by Hölders inequality

|u′
bnd(x)| ≤ ∥g′(x, y)∥L p(Γ e

y ) ∥[[Bū]]∥Lq (Γ e) (18)

with 1 ≤ p, q ≤ ∞, 1/p + 1/q = 1 and taking the Lr norm,

∥u′
bnd(x)∥Lr (Ωe) ≤

⏐⏐⏐⏐⏐⏐ ∥g′(x, y)∥L p(Γ e
y )

⏐⏐⏐⏐⏐⏐
e
∥[[Bū]]∥Lq (Γ e) (19)
Lr (Ωx )

5
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Remarks.

1. This contribution is vital for error estimation in the diffusive limit.
2. Larson and Målqvist [81] state that most of the error lays within one layer of elements around Ω e, confirming

the above approximation.
3. Still, g′ needs to be related to a simpler function, such as ge. This is done in the next subsection.

2.3.3. Norms based on the L∞ norm of the residual
Because the Green’s function may not be very smooth in multidimensional applications, the choice p = 1 and

= ∞ stands out. Then, typical choices for r are r = 1 or r = 2. In this case, if ge(x, y) does not change sign in
e, ⏐⏐⏐⏐⏐⏐ ∥ge(x, y)∥L1(Ωe

y )

⏐⏐⏐⏐⏐⏐
Lr (Ωe

x )
= ∥be

0(x)∥Lr (Ωe
x ) (20)

here the function be
0(x) is a residual-free bubble [82–84]. Then, the error time scales can be defined as norms or

verages of residual-free bubbles [78],

τ e
L1

=
1

meas(Ω e)
∥be

0(x)∥L1(Ωe) τ e
L2

=
1

meas(Ω e)1/2 ∥be
0(x)∥L2(Ωe) (21)

emarks.

1. The above equations show the relation between element Green’s functions, residual-free bubbles and error
time-scales.

2. Note that whereas the norms of the element Green’s function depend on the dimensionality of the problem,
the error time scales do not. Time scales have the advantage that allow comparison between the various norm
choices and the flow time scale.

Now, an approximate analysis [75] shows that the norm of the fine-scale Green’s function on Γ e can be
pproximately linked to the norm of the element Green’s function in the domain Ω e by⏐⏐⏐⏐⏐⏐ ∥g′(x, y)∥L1(Γ e

y )

⏐⏐⏐⏐⏐⏐
Lr (Ωe

x )
≈

1
2

meas(Γ e)
meas(Ω e)

⏐⏐⏐⏐⏐⏐ ∥ge(x, y)∥L1(Ωe
y )

⏐⏐⏐⏐⏐⏐
Lr (Ωe

x )
(22)

.3.4. Summary of the model
Gathering all the contributions of the model, the a posteriori error estimator is defined as

∥u′(x)∥Lr (Ωe) ≤ meas(Ω e)1/r τLr

×

(
∥Lū − f ∥L∞(Ωe) +

1
2

meas(Γ e)
meas(Ω e)∥[[Bū]]∥L∞(Γ e)

)
on Ω e

(23)

emarks.

1. This is an explicit a-posteriori error estimator.
2. It is very similar to the estimator proposed by [37] and its extensions, with the advantage that it is

constant-free, that is, the method gives the error constant.
3. The error constants are dimensionally correct.
4. In principle, the theory allows the error estimate in the norm of choice, assuming that the corresponding

norm of the element Green’s function exists.
5. In [85], the stabilizing parameter is tuned to predict the error norm exactly in the one-dimensional case. Here,

this parameter is predicted by the theory and there is no need to solve local problems. The present method
is also exact for one-dimensional solutions which are nodally exact.

6. Russo shows in [86] a relation between residual-based error estimators and bubble functions for elliptic
problems.

7. Masud et al. in [87] consider using interior shape functions that are nonzero along the element edges for the

diffusion–reaction equation.

6
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2.4. Relation to the flow time-scale parameter

Selecting above p = 1, q = ∞, r = 1, then,

∥u′(x)∥L1(Ωe) ≤ ∥ge(x, y)∥L1(Ωe
x ×Ωe

y ) ∥Lū − f ∥L∞(Ωe) (24)

But for ge ≥ 0, the definition of τ e
flow [4] is precisely

τ e
flow =

1
meas(Ω )e ∥ge(x, y)∥L1(Ωe

x ×Ωe
y ) (25)

Therefore, the flow time-scale parameter τ e
flow gives an upper bound in the L1 norm of the solution error as a

function of the L∞ norm of the residual. Thus,

∥u′(x)∥L1(Ωe) ≤ τ e
flow meas(Ω )e

∥Lū − f ∥L∞(Ωe) (26)

emarks.

1. For piecewise constant residuals and nodally exact solutions, the above expression holds with the equal sign.
2. All the above results can be extended to more general cases, such as higher-order elements [88], piecewise

linear residuals [79] and other norms [78].
3. For parabolic problems, the so-called stability factors in [89] play here the role of error time-scales.

.5. Example: error time scales for the one-dimensional case

In the case of nodally exact finite element solutions, the fine-scale Green’s function is precisely equal to the
lement Green’s function ge(x, y) [70,77], which can be obtained as the solution of the following problem{

Lge = δy in Ω e

ge = 0 on Γ e

here δy(x) = δ(x − y) is the Dirac’s delta function.
Therefore, in this context the error in each element Ω e depends only on residuals inside the element. That is,

he error estimator becomes

u′(x) = −

∫
(Ωe)

ge(x, y) (Lū − f )(y) dΩy on Ω e (27)

If the residual is constant inside the element, i.e., (Lū − f ) ∈ P0, Eq. (27) reveals that

u′(x)|(Ωe) = −

∫
Ωe

ge(x, y)(Lū − f )(y) dΩy

= −(Lū − f )
∫
Ωe

ge(x, y) dΩy (28)

= −(Lū − f ) be
0(x)

here be
0(x) =

∫
Ωe

ge(x, y) dΩy is a residual-free bubble function [77,82–84], also solution of the problem{
Lbe

0 = 1 in Ω e

be
0 = 0 on Γ e (29)

In relation to the bubble function, again we obtain the error scale, τ e
Lr

, as

τ e
Lr

=
1

meas(Ω e)1/r ∥be
0(x)∥Lr (Ωe) (30)

or the transport equation, this parameter has dimensions of time and it becomes an error time-scale, similarly to
he flow stabilization parameter employed to stabilize the Galerkin method in stabilized methods [4].

The above concepts on a posteriori error estimation are applied to one-dimensional advection–diffusion–reaction
roblems, where Lu = au −κu −su, with a the fluid velocity, κ the diffusivity and s a source parameter [78,79].
,x ,xx

7
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t

F

Fig. 2. One-dimensional advection–diffusion problem. Exact and asymptotic dimensionless error time-scale τ e
L2

as a function of the element
Peclet number α.

Fig. 3. Global effectivity index for one dimensional advection–diffusion. “Exact MS” shows the results employing the exact expression for
he error time-scale and “Asymptotic MS”, the results using the asymptotic approximation depicted in Fig. 2.

ig. 2 shows the error time-scale τ e
L2

as a function of the element Peclet number α = |a|he/(2κ), where he is the
element length. As can be seen, the behavior of the error time-scale is very similar to that of the stabilization
parameter τ e

flow.
The technology is successful for element Peclet numbers ranging from the diffusion dominated regime till the

advection dominated regime. This is illustrated in Fig. 3, where the global effectivity index is shown as a function
of the number of elements for an advection-dominated example. As can be appreciated, the predicted error is exact.
The finite element solution is computed with the SGS stabilized method [90–92].

2.6. Error time-scales for the bilinear quad

In this section, we calculate the 2D error time scales for the bilinear quad. For the linear triangle, see [75].
Hyperbolic limit. In the hyperbolic limit, the residual-free-bubble is the solution of the problem{

|a|∇abe
0 = 1 in Ω e

e e
b0 = 0 on Γin

8
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Fig. 4. Bubble function be
0(x, y) for the rectangular element in the (a) hyperbolic limit for a velocity of a = (sin 30, cos 30) (b) diffusive

limit.

where a is the velocity; ∇a , the derivative in the direction of a and Γ e
in denotes the inflow portion of the boundary,

here a · n < 0. The solution can be expressed as (see Fig. 4)

be
0(x) =

⎧⎪⎨⎪⎩
y

|a| sin θ
y <

ay
ax

x
x

|a| cos θ
y >

ay
ax

x
(31)

For a rectangular element of sides hx and h y , the norms of be
0(x) yield the corresponding error time scales,

τ e
L1

=
∥b0∥L1(Ωe)

meas(Ω e)
=

hflow

2|a|

(
1 −

1
3

ay

ax

hx

h y

)
≤

hflow

2|a|

τ e
L2

=
∥b0∥L2(Ωe)

meas(Ω )e1/2 =
hflow
√

3|a|

√
1 −

1
2

ay

ax

hx

h y
≤

hflow
√

3|a|

here hflow is the longest length of the element along the streamwise direction.

emarks.

1. The above upper bound for the L1 error scale, calculated here for the rectangular bilinear quad and any
velocity direction, was suggested by [91]. An attempt to include flow directionality into the flow intrinsic
time scale was given in [93].

2. For θ = 0, the one-dimensional error time scales are recovered.
3. Let us recall that in 1D τflow = τL1 [78].

Elliptic limit. In the elliptic limit, the residual-free-bubble is the solution of the problem{
κ∆be

0 = 1 in Ω e

be
0 = 0 on Γ e

where κ is the diffusion coefficient.
The solution, depicted in Fig. 4, can be expressed as the series [94]

be
0(x) =

16
π4κ

∞∑
m=1(odd)

∞∑
n=1(odd)

1
n2

h2
x

+
m2

h2
y

1
nm

sin
(

nπ

hx
x
)

sin
(

mπ

h y
y
)

(32)

hich leads to the following error time scales:

τL1 =
64

π6κ

∞∑
m=1(odd)

∞∑
n=1(odd)

1
n2

h2
x

+
m2

h2
y

1
(nm)2 (33)

τL2 =
8

π4κ

√ ∞∑
m=1(odd)

∞∑
n=1(odd)

1(
n2

2 +
m2

2

)2

1
(nm)2 (34)
hx hy

9
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b

d
c

i

Fig. 5. L-shaped domain problem. Efficiencies for the L1 (left) and L2 (right) norms for various types of two-dimensional elements.
Advection dominated flow. (q = quads, tr = triangles, trinv = triangles with the diagonal in opposite direction).

Remarks.

1. The error scales for hx = h y are calculated as

τL1 =
h2

x

28.45κ
τL2 =

h2
x

24.24κ
(35)

2. Note that the error time scales are approximately half of the one-dimensional diffusive flow time scale.
3. The error time scales for the L1 and L2 norms are similar.
4. For the reaction limit, see [75].
5. Chacon and coworkers [95–98] incorporate the above error time scales as stabilization parameters, showing

very good properties of accuracy and stability.

.7. Two-dimensional example

We show here some results based on the L-shaped domain problem, described in [58], with zero essential
oundary conditions along the domain boundary. The parameters of the problem are a = (1, 3), two values of

κ = 10−6, 1, s = −1 and the independent force term f (x),

f (x, y) = 100r (r − 0.5)(r − 1/
√

2) (36)

with r2
= (x − 0.5)2

+ (y − 0.5)2.
Figs. 5–6 show that global and local efficiencies very closed to one are attained for both, advection and diffusion

ominated flows, for various element types and shapes [75]. In Fig. 6, the zones where the efficiency is large
orrespond to places with very small exact and estimated errors (of the order of 10−7 [75]), where at the same time,

the efficiency index losses its significance as it is the ratio of two very small quantities.

2.8. Application to adaptivity

As mentioned before, it is possible to create adaptive strategies in order to adjust the mesh size in the problem
domain and, thus, optimize the computational time. Given an error tolerance, etol = ∥u − ū∥(Ωe) = ∥u′

tol∥(Ωe), the
local norm of the estimated error η

e(i)
L2

≈ ∥u′
∥(Ωe) at iteration (i), and the mesh size distribution he(i) at iteration (i),

t can be shown that the new mesh size distribution at iteration (i + 1) is

he(i+1)
=

[
etol

η
e(i)
L2

]1/p

he(i) (37)

with p the order of convergence of the solution. In our case, although more efficient strategies are available using
coarsening and refining algorithms, at each iteration the mesh is regenerated using a commercial mesh generator.
For other norms and remeshing strategies, the interested reader is referred to [99].

The L-shaped problem is a common benchmark applied to the transport equation. Fig. 7 illustrates the initial
mesh of the problem whereas the image on the right shows the final adapted mesh, which captures the boundary,
outflow and interior layers for a high Peclet number case with κ = 10−6 (see [99] for more details).
10
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(

Fig. 6. L-shaped domain problem. Local efficiencies for the L2 norm plotted over the finite element solution. Advection dominated flow
left), Diffusion dominated flow (right).

Fig. 7. Adapted mesh for the L-shaped problem generated using VMS.

2.9. Application to quantities of interest

In [100] the present theory was successfully applied to estimate the error for quantities of interest, obviating the
need of computing the dual problem. [101] confirmed that the explicit error estimates obtained with the present
method coincide with those calculated combining the primal and dual problems. However, in order to generate
adapted meshes based on a quantity of interest, the adapted mesh should also be driven by the dual problem.

It is noteworthy that Garg and Stogner [68] use VMS fine-scale information to enhance the accuracy of the
computed quantities of interest, providing superior rates of convergence, including exact recovery for a non-trivial
class of quantities of interest.

2.10. Further works

Initial steps for using directly the subgrid scales to estimate the error can be found in [81,102–105], where the
subscales are computed in larger patches with homogeneous Dirichlet boundary conditions.

VMS error estimation for the advection–diffusion was applied to fluid problems in [106–110]. An application to

refinement algorithms for Isogeometric Analysis can be found in [66,67].

11
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3. Hyperbolic problems: the Euler and Navier–Stokes equations

The previous ideas are extended to hyperbolic problems, simply by diagonalizing the system and applying the
ormulation to the diagonal equations. This is exact for one-dimensional systems with constant coefficient matrices,
hereas it is an approximation for nonlinear or multidimensional cases. A more detailed explanation can be found

n [111].

.1. Preliminaries

Consider an open spatial domain Ω with boundary Γ , such that Γ = ΓG ∪ΓH. The strong form of the boundary-
value problem consists of finding the solution vector Y : Ω → Rneq , where neq is the number of equations of
the system (which coincides with the number of unknowns), such that for the given essential boundary conditions
G : ΓG → Rneq and the natural boundary conditions H : ΓH → Rneq , the following equations are satisfied⎧⎨⎩ LY = 0 in Ω

Y = G on ΓG
BY = H on ΓH

(38)

More complex boundary conditions could be contemplated with simple extensions of the theory. Here L represents
a steady linear second order vector operator, such as the advective–diffusive system

LY = Ai Y ,i + (K i j Y , j ), j − S (39)

where Ai are constant Euler Jacobians, K i j constant diffusion matrices and S a linear source term. Many systems
admit a conservative form, which can be expressed as [112,113]

LY = Fadv
i,i − Fdiff

i,i − S (40)

where Fadv
i is the i th advective flux with Ai = Fadv

i,Y and Fdiff
i , the i th diffusive flux, with Fdiff

i = K i j Y , j .

emark. For the Euler and Navier–Stokes equations, L can be taken as the quasilinear form of the equations,
hich represents a linearization of the system.

Next, consider the conservative weak form: Find Y ∈ S such that ∀W ∈ V

−(W ,i , Fadv
i ) + (W ,i , Fdiff

i ) = (W , S) + (W ,H)ΓH (41)

here S and V are the corresponding solution and weighting spaces,

S = {Y | Y ∈ (H 1)neq , Y = G on ΓG}

V = {W | W ∈ (H 1)neq , W = 0 on ΓG}
(42)

nd the natural boundary condition is given by the operator

BY = −Fadv
i ni + Fdiff

i ni (43)

ith n = [ni ], the outward normal to the boundary.

.2. The error estimation paradigm

Following the same steps as in Section 2.2, a sum decomposition is introduced for the exact solution Y ∈ S ⊂ H 1

nto the finite element solution (resolved or subgrid scales) Y and the error (unresolved scales) Y ′, and likewise for
the weighting function [4,5],

Y = Y + Y ′

W = W + W ′ (44)

ypically Y belongs to a finite element space S̄ with Ω e, e = 1, . . . , nel disjoint elements. The union of element
interiors is denoted by Ω̃ = ∪

nel
e Ω e whereas the inter-element boundaries, by Γ̃ = ∪

nel
e Γ e

\ Γ with Γ e the element
boundary. Accordingly, the error Y ′

∈ S ′ with S ′
= S/S̄ [70].
12
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s

The above splitting is substituted into the weak form and invoking linearity, Eq. (41) is equivalent to two

ubproblems,

−(W ,i , Fadv
i ) + (W ,i , Fdiff

i ) = (W , S) + (W ,H)ΓH (45a)

−(W ′
,i , Fadv

i ) + (W ′
,i , Fdiff

i ) = (W ′, S) + (W ′,H)ΓH (45b)

The first subproblem is the equation for the coarse scales and the second one, the subproblem for the subgrid scales
or error.

We are interested in deriving an equation for the error Y ′. Because of linearity, one can write

Fadv
i = F̄adv

i + Fadv′

i

Fdiff
i = F̄diff

i + Fdiff′
i

S = S̄ + S′

(46)

Therefore, the second subproblem can be written as

− (W ′
,i , Fadv′

i ) + (W ′
,i , Fdiff′

i ) − (W ′, S′) =

(W ′
,i , F̄adv

i ) − (W ′
,i , F̄diff

i ) + (W ′, S̄) + (W ′,H)ΓH (47)

Now, the first two terms on the right-hand-side can be integrated by parts, that is,

(W ′
,i , F̄adv

i ) =

∑
e

(W ′
,i , F̄adv

i )(Ωe)

=

∑
e

{
−(W ′, F̄adv

i,i )(Ωe) + (W ′, F̄adv
i ni )Γ e

}
= −(W ′, F̄adv

i,i )Ω̃ + (W ′, [[F̄adv
i ni ]])Γ̃ + (W ′, F̄adv

i ni )ΓH (48)

(W ′
,i , F̄diff

i ) =

∑
e

(W ′
,i , F̄diff

i )(Ωe)

=

∑
e

{
−(W ′, F̄diff

i,i )(Ωe) + (W ′, F̄diff
i ni )Γ e

}
= −(W ′, F̄diff

i,i )Ω̃ + (W ′, [[F̄diff
i ni ]])Γ̃ + (W ′, F̄diff

i ni )ΓH (49)

where [[·]] is the jump operator [5,69].
Substituting in the fine-scale problem (47), one arrives at

−(W ′
,i , Fadv′

i ) + (W ′
,i , Fdiff′

i ) − (W ′, S′)

= − (W ′,LY − S̄)Ω̃ + (W ′, [[F̄adv
i ni ]] − [[F̄diff

i ni ]])Γ̃
+ (W ′, F̄adv

i ni − F̄diff
i ni + H)ΓH (50)

= − (W ′,LY − S̄)Ω̃ − (W ′, [[BY ]])Γ̃
− (W ′,BY − H)ΓH

Remarks.

1. As a consequence, it can be seen that the error is driven by the same partial differential equation as the
primal problem but with a modified right-hand-side. The right-hand-side contains the sources of error: element
interior residuals, inter-element flux jumps and natural boundary condition errors.

2. Errors associated with the Dirichlet boundary condition have been ignored.
3. For continuous solution finite element spaces, Fadv

i is also continuous because it is a function of the solution
variables and, therefore, the jump of Fadv

i across inter-element boundaries is zero. This jump might have an
impact in discontinuous Galerkin methods. However, Fdiff

i contains derivatives of the solution variables and
it is discontinuous even for continuous finite element spaces.
13
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Then, solving analytically for Y ′ as a function of the fine-scale Green’s function [5,75], the error of the numerical
computation can be calculated by the following paradigm

Y ′(x) = −

∫
Ω̃

G′(x, y) (LY − S̄)( y) dΩy −

∫
Γ̃

G′(x, y) ([[BY ]])( y) dΓy

−

∫
ΓH

G′(x, y) (BY − H)( y) dΓy

(51)

here G′(x, y) ∈ S ′
× S ′ is the Green’s function of the fine-scale problem [4,5], a matrix operator in this case,

[[·]] is the jump operator [5,69] and x, y ∈ Ω .
The fine-scale Green’s function is the distribution that characterizes the behavior of the numerical error, and

emanates from the proper projection of the global Green’s function. Therefore, it depends on the differential operator
(the partial differential equation with the corresponding geometry and boundary conditions), on the finite element
space and on the method (or projector).

Remarks.

1. The interpolation errors of the boundary conditions have been neglected.
2. For the non-conservative form of the equations, the weak form can be written: Find Y ∈ S such that ∀W ∈ V

(W , Fadv
i,i ) + (W ,i , Fdiff

i ) = (W , S) + (W ,H)ΓH (52)

where S and V are the corresponding solution and weighting spaces and the natural boundary condition is
given by the operator

BY = Fdiff
i ni (53)

with n = [ni ], the outward normal to the boundary. Then, the same error paradigm as (51) can be derived,
but with B given as above.

The error representation (51) can be split into errors stemming from element interior residuals and element
oundary residuals [75], namely

Y ′(x) = Y ′
int(x) + Y ′

bnd(x) (54)

sing the triangle inequality, we can write for each component

∥Y ′

i (x)∥ ≤ ∥Y ′

i int(x)∥ + ∥Y ′

i bnd(x)∥ (55)

.3. Summary of models

In this section, the proposed error estimators are summarized for convenience of the reader, distinguishing
ethods for hyperbolic systems and advection–diffusion systems.
Hyperbolic systems. There are three models:

1. Standard r = 1, 2

∥Y ′

i (x)∥Lr (Ωe) ≈ ∥τflow i j (LȲ − S) j∥Lr (Ωe) on Ω e (56)

where for the L2 norm, τ flow is substituted by τ L2 .
2. Naive r = 1, 2

∥Y ′

i (x)∥Lr (Ωe) ≤ meas(Ω e)1/r τ sm
Lr i j

× ∥(LȲ − S) j∥L∞(Ωe) on Ω e (57)

where τ sm
i j is the signed maximum, that is the maximum absolute value within an element multiplied by its
sign. In practice, the maximum value is searched from the collection of integration points.

14
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3. Upper bound r = 1, 2

∥Y ′

i (x)∥Lr (Ωe) ≤ meas(Ω e)1/r
|τ e

Lr i j |

× ∥(LȲ − S) j∥L∞(Ωe) on Ω e (58)

where τ e
i j is the average value of the parameter within an element. In practice, it can be calculated from the

values at the integration points. It can be substituted by the maximum value within the element, but then, the
upper bound results in a much higher error estimate.

Remarks.

1. Typically the Standard error estimator gives a smaller error estimate than the Naive model, which in turn
gives a smaller error estimate than the Upper bound error estimator.

2. In practice, the L∞ norm is computed as the maximum value at Gaussian quadrature points or nodal
quadrature points. Using the nodal quadrature points results in higher error estimates, but it is less robust
because at the boundary zero boundary condition values can be encountered.

3. Sources of approximation in these models are: the multi-dimensionality, the nonlinearity of the system of
equations and the model for τ (in the case of nondiagonalizable systems).

Advection–diffusion systems. There are three models:

1. Standard r = 1, 2

∥Y ′

i (x)∥Lr (Ωe) ≈ ∥τflow i j (LȲ − S) j∥Lr (Ωe)

+ meas(Ω e)1/r τ+

Lr i j
1
2

meas(Γ e)
meas(Ω e) ∥[[BȲ ]] j∥L∞(Γ e) on Ω e

(59)

where (as for the inviscid case) for the L2 norm, τ flow is substituted by τ L2 , and τ+

i j = maxΩ
e
(0, τ e

i j )
calculated within the element.

2. Naive r = 1, 2

∥Y ′

i (x)∥Lr (Ωe) ≤ meas(Ω e)1/r τ+

Lr i j

×

(
∥(LY − S) j∥L∞(Ωe)

+
1
2

meas(Γ e)
meas(Ω e) ∥[[BȲ ]] j∥L∞(Γ e)

)
on Ω e

(60)

where τ+

i j = maxΩ
e
(0, τ e

i j ) calculated within the element.
3. Upper bound r = 1, 2

∥Y ′

i (x)∥Lr (Ωe) ≤ meas(Ω e)1/r
|τma

Lr i j |

×

(
∥(LY − S) j∥L∞(Ωe)

+
1
2

meas(Γ e)
meas(Ω e) ∥[[BȲ ]] j∥L∞(Γ e)

)
on Ω e

(61)

where τma
i j = max(Ωe)(|τ e

i j |) is the maximum value of the absolute value parameter within an element. In
practice, it can be calculated from the values at the integration points.

3.4. Further works

Using VMS for error estimation in compressible flow simulation was further investigated in [114]. Some
examples of adaptivity in the incompressible limit of the unified compressible–incompressible formulation [112,113]
applied to thermal problems with natural convection can be found in [115]. [116,117] apply error estimates to
boundary layer and unstructured mesh generation in ballistic applications with evolving geometries.
15
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Fig. 8. Oblique shock problem setup.

Fig. 9. Oblique shock problem. Naive error estimator. L1 local efficiencies for T .

3.5. Numerical examples

To illustrate the performance of the a posteriori error estimator for the Euler and Navier–Stokes equations, the
present formulation is applied to two inviscid examples (one supersonic and another one subsonic) and to a viscous
low-Mach number case.

3.5.1. Oblique shock at M = 2
In this supersonic inviscid case, a uniform M = 2 flow is sharply turned 10◦ by a wall (see Fig. 8). Fig. 9

depicts the distribution of local efficiencies for temperature. It also shows that when changes in the solution are
important, the local efficiency is about one. Table 1 summarizes the global efficiencies obtained by the three methods
(see [111]).

3.5.2. Joukowski airfoil at M = 0.1
This example is devoted to the subsonic inviscid simulation of a Joukowski airfoil, with a dimensionless thickness

t . Table 2 summarizes the efficiencies for p, u1 and u2 for the three estimators with an airfoil thickness t = 0.15.
Fig. 10 shows an application of the error estimator to mesh adaptation based on the u2 velocity component. For

more information of the case description and for further results see [111].
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Table 1
Oblique shock problem at M = 2. Global efficiencies.

Model norm p u1 u2 T

Standard L1 0.29 0.25 0.32 0.28
L2 0.31 0.28 0.34 0.31

Naive L1 0.74 0.76 0.88 0.92
L2 0.68 0.80 0.83 0.94

Upper bound L1 3.70 7.91 0.98 7.74
L2 3.30 7.42 0.91 7.29

Table 2
Joukowski airfoil at M = 0.1, t = 0.15. Global efficiencies using a low Mach number
tau based on [118].

Model norm p u1 u2 T

Standard L1 0.63 0.17 0.67 –
L2 2.73 0.49 1.70 –

Naive L1 1.35 0.44 1.42 –
L2 4.92 1.00 3.38 –

Upper bound L1 1.63 0.99 1.30 –
L2 5.58 2.58 3.35 –

Fig. 10. Joukowski airfoil M = 0.1, t = 0.15. Adapted mesh based on L2 norm of u2, vtol/u∞ = 0.001.

3.5.3. Viscous boundary layer at Re = 10 000, M = 0.01
In this final example, the formulation is applied to a viscous boundary layer (see Fig. 11 for the problem setup).

Fig. 12 shows the local efficiencies of p, u1 and u2 obtained with the Naive method. Note that outside of the
oundary layer, the exact and estimated errors are both very small and the effectivity index is not a reliable quantity.

. Saddle-point problems: Stokes and Navier–Stokes equations

The concepts explained in the previous sections are extended to the Stokes and the incompressible Navier–
tokes equations. It is well known that saddle-point problems present some peculiarities that need to be taken into
onsideration. And although the Navier–Stokes are more demanding than the Stokes problem due to the presence
f the convective term, both systems share many important traits.

In particular, the difficulties of calculating explicitly the fine-scale Green’s function, made us take a different
pproach to calculate the error time-scales. Residuals and solution error are linked in a way inspired by VMS, that
s, by multiplying the residuals with the corresponding error time-scales (or inverse-velocity scales in the case of

1
H seminorms), τ ’s. However, these τ ’s are computed a-priori from unitary problems.

17
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Fig. 11. Compressible boundary layer. Problem setup.

Fig. 12. Local efficiencies in a compressible boundary layer. L1 norm, Naive method.

In this work, the problem is treated as a saddle point problem, thus, considering the pressure a Lagrange multiplier
and focusing the efforts on the analysis of the error in the velocity field. The error estimation is analyzed in problems
that reach the steady state; thus, turbulent flows at high Reynolds numbers are not handled. An extended explanation
of this work is found in [119,120].

4.1. Preliminaries

Let Ω be a domain in Rnsd with boundary Γ , where nsd is the number of spatial dimensions of the problem. In this
case n = 2. According to the boundary conditions, the boundary is partitioned in two parts: Γ , where Dirichlet
sd g

18
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boundary conditions are imposed and Γh , where Neumann boundary condition are defined, such that Γg ∪ Γh = Γ
and Γg ∩ Γh = ∅. The steady incompressible Navier–Stokes equations read⎧⎪⎪⎨⎪⎪⎩

u · ∇u + ∇ p − ν∇
2u = f in Ω

∇ · u = 0 in Ω
u = g on Γg

Bu = ν∇u · n = h on Γh

(62)

here u = (u, v) and p are the unknown variables. u represents the velocity vector and ν the kinematic viscosity,
hich is assumed constant. In this work, we call p the pressure although, in fact, p =

pmech
ρ

where pmech is the
echanical pressure and ρ is the density, that is considered constant. Finally, g = (gx , gy)T and h = (hx , h y)T are

he Dirichlet and Neumann boundary conditions, respectively. When the viscosity is constant, the viscous term can
e written as a Laplacian. In this simpler form, the above natural condition possesses a physical meaning, namely,
he variation of the velocity in the outward normal direction of the boundary. In doing so, we avoid boundary
onditions on pseudo-tractions, which lack physical meaning (see for instance [121,122]).

In short, problem (62) can be expressed as⎧⎨⎩ LY = S in Ω
u = g on Γg

Bu = h on Γh

(63)

here L is the equation differential operator, B is the differential operator which acts on the Neumann boundaries
nd arises from integration by parts. Y = (u, p, v)T is the unknown vector and S = ( fx , 0, fy)T represents the
ource term.

The variational form is obtained multiplying the strong form by weighting functions and integrating by parts. To
et it up we need to introduce the velocity weighting and trial solution spaces, V and S, and the pressure weighting
nd trial spaces, Q and P . Indeed,

V =
{
v ∈ (H 1(Ω )nsd ) | v = 0 on Γg

}
S = {u ∈ (H 1(Ω )nsd ) | u = g on Γg}

Q =
{
q ∈ L2(Ω ) ∩ H 1(Ω ) s.t.

∫
Ω q = 0

}
P =

{
p ∈ L2(Ω ) ∩ H 1(Ω ) s.t.

∫
Ω p = 0

} (64)

The variational form can be written as: Find {u, p} ∈ S × P such that

B(u, p; v, q) = F(v, q), ∀{v, q} ∈ V × Q (65)

ith

B(u, p; v, q) = (u · ∇u, v) + (∇ p, v) + ν(∇u, ∇v) − (∇ · u, q) (66)

nd

F(v, q) = (v, f ) + (v, h)Γh (67)

ote that in order to obtain the above natural boundary condition, the pressure term has not been integrated by
arts.

Now, in order to establish the FEM formulation, we select finite dimensional spaces. Let Sh ⊂ S and Vh ⊂ V
e the trial and weighting finite dimensional spaces for the velocity. Similarly, we define Ph ⊂ P and Qh ⊂ Q as
he trial and weighting finite dimensional spaces for the pressure. This spaces represent a partition Ch formed by
lements Ω e with boundary Γ e.

The Galerkin method is set as: Find {uh, ph} ∈ Sh × Ph such that

B(uh, ph; vh, qh) = F(vh, qh), ∀{vh, qh} ∈ Vh × Ph (68)

ith

B(uh, ph; vh, qh) = (uh · ∇uh, vh) + (∇ ph, vh) + ν(∇uh, ∇vh) − (∇ · uh, qh) (69)

nd

F(v , q ) = (v , f ) + (v , h) (70)
h h h h Γh
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Stabilized method. In order to obtain stable solutions, it is well known that the finite element spaces for
velocity and pressure must satisfy the Babuška-Brezzi or inf-sup condition [123,124]. A way of circumventing
his condition is to introduce stabilization terms in the discrete formulation. Besides, additional stabilized terms

ust be included in the FEM formulation since spurious oscillations can appear in the velocity field for convection-
ominated regimes. Many authors have developed stabilized formulations for the Stokes problem [121,125–129]
nd Navier–Stokes [130–133].

In this work, the solution is driven towards steady state through a transient. Thus, following [134] the unsteady
tabilized method reads: Find {uh, ph} ∈ Sh × Ph such that

Bstab(uh, ph; vh, qh) = Fstab(vh, qh), ∀{vh, qh} ∈ Vh × Ph (71)

with

Bstab(uh, ph; vh, qh) = (
∂uh

∂t
, vh) + (uh · ∇uh, vh) + (∇ ph, vh)+

ν(∇uh, ∇vh) − (∇ · uh, qh)+∑
Ωe∈Ch

τmom

(
∂uh

∂t
+ uh · ∇uh + ∇ ph − ν∆uh, uh · ∇vh

+∇qh − ν∆vh

)
(Ωe)

+δ(∇ · uh, ∇ · vh)

(72)

and

Fstab(vh, qh) = (vh, f ) + (vh, h)Γh +

∑
Ωe∈Ch

τmom
(

f , uh · ∇vh + ∇qh − ν∆vh
)

(Ωe) (73)

where δ and τmom are stability parameters. They are taken from Codina [131]

τmom =

(
c1ν

h2 +
c2|u|

h

)−1

δ =
c3h2

τmom
(74)

he constants c1, c2 and c3 are taken as c1 = 4, c2 = 2 and c3 = 1. Note that other definitions exist that use the
metric of the mesh, such as [113,135].

This stabilized formulation allows us to employ the same shape functions for the velocity and the pressure.
Particularly, we select linear elements for triangles and bilinear elements for quadrilaterals.

4.2. The variational multiscale background

In the VMS framework, both the trial and test function spaces are decomposed into the resolved and unresolved
subsets, S = S̄ ⊕S ′ and V = V̄ ⊕V ′. Due to the multiscale decomposition, the variables are divided into two parts
such that

Y = Ȳ + Y ′ Ȳ ∈ S̄, Y ′
∈ S ′

W = W̄ + W ′ W̄ ∈ V̄, W ′
∈ V ′

(75)

Thus, the variational formulation can be split into

B(ū, p̄; v̄, q̄) + B(u′, p′
; v̄, q̄) = F(v̄, q̄), ∀{v̄, q̄} ∈ V̄ × Q̄ (76a)

B(ū, p̄; v′, q ′) + B(u′, p′
; v′, q ′) = F(v′, q ′), ∀{v′, q ′

} ∈ V ′
× Q′ (76b)

emark. Due to the decomposition, the convective term is split into the following terms, u · ∇u = ū · ∇ ū + ū ·

u′
+ u′

· ∇ ū + u′
· ∇u′ The first term on the RHS corresponds to the coarse scales whereas the last three terms,

o the error. The last and the second-to-last terms are neglected with respect to the first term on the RHS since we
′ ¯
uppose that ∥u ∥ ≪ ∥u∥.
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Now, in order to estimate the error, we turn our attention to the fine-scale equation Eq. (76b). The fine-scale
ariational form can be expressed as: Find u′

∈ S ′ and p′
∈ P ′ such that

(ū · ∇u′, w′) + (∇ p′, w′) + ν(∇u′, ∇w′) = ( f − ū · ∇ ū − ∇ p̄ + ν∆ū, w′)Ω̃
−([[Bū]]E , w′)Γ̃
−(Bū − h, w′)Γh ∀w′

∈ V ′

(77)

(∇ · u′, q ′) = (−∇ · ū, q ′) ∀q ′
∈ P ′ (78)

here Ω̃ is the union of the element interiors and Γ̃ is the internal element boundaries, i.e., Γ̃ = ∪Γ e
\Γ = ∪E\Γ ,

ith E being the edges of the partition Ch . Also, [[·]]E denotes the jump operator that takes into account the derivative
iscontinuities of ∂ū

∂n across the element edges. For a velocity field u = (u, v)T , and an edge shared by elements
Ω+ and Ω−, it is defined as

[[Bū]]E = ν(∇ū|
∂Ω+∩E

· n+
+ ∇ū|

∂Ω−∩E
· n−, ∇v̄|

∂Ω+∩E
· n+

+ ∇v̄|∂Ω−∩E
· n−)T (79)

where n+ and n− are the unit outward normal of elements Ω+ and Ω−, respectively.
On the LHS of Eqs. (77) and (78), there appear terms which only involve the fine scales, particularly, the error

projected to the fine-scale test functions. On the RHS, we have the residuals of the numerical solution projected
to the same fine-scale test functions. Again there appear three kinds of residuals: element internal residuals, inter-
element residuals and Neumann boundary condition residuals. The first residuals are related to the non satisfaction
of the differential equation LȲ − f inside each element. It can be seen as the difference between the numerical
and the exact solution once the differential operator is applied, LȲ − LY . The second and third residuals are
assembled together because they emerge from the lack of continuity of the numerical solution on the element
boundaries.

In this error estimator, as the VMS theory shows, the residuals and the error estimate are directly linked. The
way to proceed is to obtain error time scales, τ ’s, which represent an average of the fine scales on the element.
Classically, the intrinsic time-scale τ ’s have been identified with stabilization parameters. However, these τ ’s also
are linked to the subgrid scales or error of the numerical solution.

Taking the fine-scale Eqs. (77), the local error estimation is carried out setting this problem on each element
Ω e, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ū · ∇u′, w′)(Ωe) + (∇ p′, w′)(Ωe) + ν(∇u′, ∇w′)(Ωe) = ( f − ū · ∇ ū − ∇ p̄ + ν∆ū, w′)(Ωe)

−([[Bū]]E , w′)Γ̃ e

−(Bū − h, w′)Γ e∩Γh ∀w′
∈ V ′

(∇ · u′, q ′)(Ωe) = (−∇ · ū, q ′)(Ωe) ∀q ′
∈ P ′

(80)

From Eq. (80) we can identify five kinds of residuals for an element,

RMx = fx − u · ∇ū − ∂x p̄ + ν∆ū on Ω e

RMy = fy − u · ∇v̄ − ∂y p̄ + ν∆v̄ on Ω e

RC = ∇ · ū on Ω e

RS⊥
= ν[[∇ ū · n]] · n on ∂ E ∈ Ω e

RS∥
= ν[[∇ ū · n]] · n∥ on ∂ E ∈ Ω e

(81)

The residuals RMx , RMy , RC represent the internal residual for the momentum equation and continuity equation,
respectively. On the other hand, the residuals RS⊥

and RS∥
denote the inter-element residual due to the jumps of

the FEM solution on the element boundaries. Particularly, RS⊥
is the orthogonal component of the jump and RS∥

the parallel component with respect to the element edge.
Thus, extending previous works on VMS error estimation [18,75–78,81,99–102,106,108,109,111,114,136–143],

the error estimator is built as the sum products of each residual times the corresponding parameter, which will
1
be explained later. Thus, a dimensionally consistent expression to compute the explicit error estimator in the H
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seminorm is defined as

|u′
|H1(Ωe) :=

1
√

|(Ω e)|
(τ )

uRMx
H1

nbub∑
i=1

|(RMx , vbubi )Ωe |+

+
1

√
|(Ω e)|

(τ )
uRMy

H1

nbub∑
i=1

|(RMy, vbubi )Ωe |+

+
1

√
|(Ω e)|

(τ )
uRC
H1

nbub∑
i=1

|(RC , vbubi )Ωe |+

+
√

|Ω e|(τ )
uRS⊥

H1

nedge∑
i=1

1
li

|(RS⊥
, vbubi )Γ e |+

+
√

|Ω e|(τ )
uRS∥

H1

nedge∑
i=1

1
li

|(RS∥
, vbubi )Γ e |

(82)

here li is the length of the edge i in the element Ω e and (τ )
uRi
H1 is the error time scale for each residual, i.e., for

= Mx, My, C, S⊥, S∥. In order to be consistent with the definition of the τ ’s, we have included geometric factors
of the measure of the element, |Ω e

|, in each residual [1,5,78]. In Eq. (82) we can see that the residuals are projected
into functions called vbubi . The functions vbubi are nbub local bubble functions defined in the element and nedge on
the element edges, which are related to the solution of the subgrid problem and error time scales, τ ’s, see [119].
These functions are defined as:

• Triangular elements: Let λT 1, λT 2, λT 3 be the barycentric or area coordinates. Then,{
vbubi = λT i · λT j for 1 ≤ i < j ≤ 3
vbub4 = λT 1λT 2λT 3

(83)

Thus, we have four bubble functions per element.

• Quadrilateral elements: Let λQ1, λQ2, λQ3, λQ4 be the barycentric or area coordinates. Then,⎧⎨⎩ vbubi =
λQ1λQ2λQ3λQ4

λQi
for 1 ≤ i ≤ 4

vbub5 = λQ1λQ2λQ3λQ4

(84)

Thus, we have five bubble functions per element.

The rest of the section is devoted to explain the calculation of the τ ’s. In order to compute the error time-scales
for the momentum equations, we consider two different contributions: one related to the convective term and another
one connected to the solution of a local Stokes problem. The diffusion-dominated contribution is taken from the work
on Stokes flow [119], (τSt )

uRi
H1 . The advection-dominated contribution is taken from the one-dimensional analysis

of the advection-diffusion equation in [78] for the H1 seminorm. There, it is shown that the error inverse-velocity
scale for the transport equation is

1
|uh |

min(
√

α,
α

√
3

) (85)

here α = he|uh |/(2ν) is the element Reynolds number. Considering that the Stokes contribution already takes into
ccount the diffusive limit, the final expression for the error scale can be simplified to

(τ )
uRi
H1 = min

(
1

|uh |

α
√

3
, (τSt )

uRi
H1

)
(86)

Once the elemental error is obtained, the global error (i.e. the error in the whole domain) can be computed as

|u′
|H1(Ω) =

( ∑
|u′

|
2
H1(Ωe)

)1/2

(87)

∀Ωe∈Ω
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Remarks.

1. The Stokes error scales τSt ’s represent a measure of the error on a element of unit area (measured in H 1-
seminorm) produced by a determined unit residual. As quadrilaterals and triangles are employed, we have
to compute τ ’s for both types of elements using a unit-area triangular domain and a unit-area rectangular
domain, respectively. They are computed solving the problem below (88) on an element of unit area. That
is,
Find (u′, p′) ∈ (Q B, PB), that satisfies⎧⎪⎪⎨⎪⎪⎩

(∇ p′, w′) + ν(∇u′, ∇w′) =

( f − ∇ p̄+ ν∇
2ū, w′)Ωe +

1
2 (ν[[∇ ū · n]], w′)Γ e+

(h − ν∇ ū ·n, w′)Γh ∀w′
∈ Q B

(∇ · u′, q ′) = (−∇ · ū, q ′) ∀q ′
∈ PB

(88)

where Q B and PB are the velocity and pressure spaces, respectively. The τSt ’s are calculated integrating the
solution of the subgrid problem. For more information, see [43,44,119], where the shape functions are a
combination of bubble functions and edge bubble functions. The selected finite element spaces for velocities,
Q B , and pressure, PB , to solve the local problem (88), satisfy the Babuška-Brezzi condition.

2. The factor 1
2 in the jump in Eq. (88), expresses the splitting of the residuals on the element boundary between

the two elements that share the boundary [7,22,43,44].
3. The values of the Stokes τSt ’s are listed in [119]. Eq. (82) shows that a specific error scale corresponds to

each type of residual. It turns out that the classic τ associated to the internal bubble is not enough to predict
the error correctly. In fact, as can be seen that the τSt ’s related to edge bubbles provide a significant error
contribution (see [144], where it is shown that for low order elements, the edge residuals dominate the error
estimate). Thus, a simpler error estimator could be considered taking into account only the residuals on the
element boundaries, RS⊥

and RS∥
.

4. The extension of the error estimation to 3D problems can be made using the expression (82) and considering
the residuals on the faces instead of the residuals on the element boundaries. As a first approximation, the
τ ’s in [119] can be employed.

5. Note that for estimates in the H 1 seminorm, the inviscid limit of the inverse-velocity error scale does not
converge to the inviscid inverse-velocity error scale. This is so because the slope of the solution in the
layers increases as the viscosity decreases. As a consequence, the error scales in the H 1 seminorm cannot
be composed from the error scales for the inviscid limit and those for the diffusive limit, but it has to be
derived considering both components simultaneously.

6. For incompressible and Stokes flow [119,120], direct computation of the error scales from the stabilization
matrix underestimates the actual error. Also, we had to recur to numerical computation of the error constants
because they could not be obtained from the fine-scale Green’s function.

4.3. Further works

The variational multiscale theory was employed by Song and coworkers [50] to estimate the error and generate
adapted meshes, where local Dirichlet problems are solved to both obtain the stabilized term and estimate the error
employed in the mesh refinement process. Zheng et al. [145] developed a simple error estimator based on a local
projection which is used for driving adaptive meshes. Araya et al. made use of VMS a posteriori error estimation
for the Stokes and Brinkman equations in [146].

In the field of finite volume methods, Colomés et al. [147] develop an explicit VMS error estimator where the
fine scales are modeled by the flow subgrid time-scales.

[139,148] applied the estimator to aerothermal problems. [138] uses the VMS error estimation with the orthogonal
subscales for incompressible flows using the stabilization matrix as an error time scale, which as shown here
underestimates the local error. This last work was extended to adaptivity for viscoelastic flows in [149].

Finally, following these ideas, VMS has been applied to linear elasticity in [141–143]. In [150] VMS error
estimation is extended to small deformation elasticity applied to contact mechanics with friction and in [151] to

incompressible finite elasticity with quite success.
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Fig. 13. Lid-driven cavity flow problem with unitary velocity on the top edge.

Table 3
Lid-driven cavity. Global efficiencies for velocity in H1-seminorm for quadrilaterals
and triangles.

nel Quadrilaterals nel Triangles

Re = 1 Re = 100 Re = 1000 Re = 1 Re = 100 Re = 1000

16 2.717 2.482 2.433 32 0.845 0.825 0.795
64 3.404 2.798 2.048 128 1.192 1.136 1.125
256 3.305 2.693 1.887 512 1.263 1.150 0.932
1024 3.843 3.294 2.166 2048 1.294 1.210 0.921

Fig. 14. Lid-driven cavity. Local efficiencies with the explicit error estimator. Re = 1.

.4. Numerical example: Lid-driven cavity

The lid-driven cavity problem is a typical benchmark for viscous fluid flows. The domain is a unitary square
onsisting of three edges with no-slip conditions and a top edge with a unit tangential velocity (see Fig. 13). The
ressure is set to zero at the lower left corner. As usual, the Reynolds number is based on the lid velocity and the
quare side length. Uniform meshes are considered.

Table 3 shows the global efficiencies for the considered estimators whereas Fig. 14 represents the local efficiencies
or n = 16 and n = 256.
el el
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Fig. 15. Lid-driven cavity. Adaptive mesh refinement for quadrilaterals. Re = 1, Re = 100 and Re = 1000.

Fig. 16. Lid-driven cavity. Adaptive mesh refinement for triangles. Re = 1, Re = 100 and Re = 1000.

Once the local error is estimated, we can evaluate where it is convenient to refine the mesh to obtain a more
accurate solution. This remeshing process is made following Section 2.8, with an objective error tolerance of
∥u′

T O L∥H1(Ωe) = 0.080. In Figs. 15 and 16, we observe how the elements are concentrated at the upper corners.
The greater the Reynolds number, the finer the elements on the right side.

5. The nature of discrete error and pointwise error computation

This section is devoted to shedding light into the nature of the FEM error showing the connection between
the residuals and the error itself. According to the nature of the residuals, the numerical error can be split into
two components: element interior residuals and inter-element jumps. A relationship between these residuals (coarse
scales) and the error components (fine scales) is established, yielding to a very simple model for the pointwise
error, which is modeled as a linear combination of bubble functions for the element interior residuals and free-space
Green’s functions for the inter-element jumps. The numerical error is studied for the standard Galerkin and SUPG
methods with application to the convection–diffusion equation.

5.1. Preliminaries

This section is based on the model, equations and definitions of Section 2. Again, the variational formulation
reads: Find u ∈ S such that

a(w, u) = (w, f ) + (w, h)Γh ∀w ∈ V (89)

with the usual meaning for the bilinear forms operators, spaces and domains. Taking the elements of the partition,
we define the associated finite dimensional spaces Sh

⊂ S and Vh
⊂ V for the trial and weighting functions,

respectively,

Sh
= {uh ∈ H 1(Ω ) | uh|Ωe ∈ Pk, uh|Γg = g, ∀Ω e

∈ Ω̃}
h 1 e ˜ (90)
V = {wh ∈ H (Ω ) | wh|Ωe ∈ Pk, wh|Γg = 0, ∀Ω ∈ Ω}
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where Pk denotes the space of polynomials of degree k. Thus, the standard Galerkin method reads: Find uh ∈ Sh

such that

a(wh, uh) = (wh, f ) + (wh, h)Γh ∀wh ∈ Vh (91)

In order to stabilize the convection–diffusion equation, a popular method is SUPG, which includes an additional
erm to the Galerkin method. The SUPG method reads: Find uh ∈ Sh such that

aSUPG(wh, uh) = a(wh, uh) + aτ (wh; uh, f ) = (wh, f ) + (wh, h)Γh ∀wh ∈ Vh (92)

The stabilizing term aτ (·; ·, ·) is

aτ (wh; uh, f ) =

∑
Ωe∈Ω̃

ae
τ (wh; uh, f ) (93)

here ae
τ (wh; uh, f ) =

(
a · ∇wh, τ

e(Luh − f )
)
Ωe and τ e

= min
( h

2|a|
, h2

12κ

)
. The value h is a measure of the element

length.
The variational multiscale theory consists of splitting the variational form in a coarse and fine components. We

identify the coarse scales with the finite element solution and the error with the fine scales. Therefore,

a(w̄, ū) + a(w̄, u′) = (w̄, f ) + (w̄, h)Γh ∀w̄ ∈ V̄ (94a)

a(w′, ū) + a(w′, u′) = (w′, f ) + (w′, h)Γh ∀w′
∈ V ′ (94b)

The spaces V̄ and S̄ represent the coarse scales and are identified with Vh and Sh . The fine scales are defined such
hat S = S̄ ⊕ S ′ and V = V̄ ⊕ V ′.

Observing the variational multiscale form, Eq. ((94)a) represents the coarse-scale variational form and Eq. ((94)b),
he fine-scale variational form. We focus on this last equation to estimate the error. Integrating by parts Eq. ((94)b),
e establish the relationship between the error and the residuals,

a(w′, u′) = −(w′,Lū − f )Ω̃ − (w′, [[Bū]])Γ̃ − (w′,Bū − h)Γh (95)

The LHS of Eq. (95) is the bilinear form applied to the fine scales, where the error u′ is projected on the fine
cales w′. The RHS of Eq. (95) contains the residuals of the numerical solution. The first term of the RHS is
he internal residuals defined inside the elements, the second one considers the jump of the flux on the element
oundaries, and finally, the third term represents the Neumann boundary condition residual.

.2. VMS error estimation framework

Following the nature of the residuals, the error is decomposed in two terms, u′

bub and u′

poll. Accordingly, the
′

bub component is in charge of modeling the error that arises from the internal residuals inside each element,
w′,Lū − f )Ωe , and the u′

poll component represents the error produced by the residuals on the element boundary,
w′, [[Bū]])Γ̃ and (w′,Bū − h)Γh .

.2.1. Internal residual error, u′

bub
This kind of error possesses a local character since it is defined inside the element. This error is computed as a

ombination of bubble functions on each element,

u′

bub,(Ωe)(x) =

nbub∑
i=1

cbub
i bi (x) (96)

There are different ways of defining the bubble functions, bi (x), depending on whether we consider 1D and 2D
problems.

One-dimensional problems. For 1D problems, the internal residual error is modeled by means of residual-free
bubbles [4,5,82,84]. In this case, the residual-free bubbles are calculated using the fine-scale Green’s functions.
A relevant article written by Hughes and Sangalli [70] establishes an explicit definition of the fine-scale Green’s
operator,

G ′
= G − GPT (PGPT )−1PG (97)
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Eq. (97) shows that the fine-scale Green’s operator is computed taking into account two terms, G and P (see [70,137]
for further details):

• The classical Green’s function operator, G, which is the inverse of the differential equation, G = L−1

• A projection, P , that goes from the space of all scales, S, to the coarse scales, S̄, P : S → S̄. We select a
projector induced by the H 1

0 -seminorm since it provides fine-scale Green’s functions confined in the elements.

Therefore, employing the fine-scale Green’s functions, g′(x, y), the internal residual error is computed as

u′

bub,Ωe (x) = −

∫
Ωe

g′(x, y)(Lū − f )(y) dΩy (98)

In order to compute the error with bubble functions, we consider two cases

• Constant residual:

u′

bub,Ωe (x) = be
0(x)( f − Lu) (99)

• Non-constant residual:

u′

bub,Ωe (x) = be
0(x)( f − Lū)(ci ) +

∞∑
k=1

be
k(x)

1
k!

dk( f − Lū)
dyk

⏐⏐⏐⏐
y=ci

(100)

here ci is the central point of the element and be
k is the k th-moment order residual-free bubble, defined as

be
k(x) =

∫
Ωe

g′(x, y)(y − ci )k dΩy (101)

hese bubble functions, which arise from the fine-scale Green’s function, are called residual-free bubbles since u′

bub
ulfills∫

Ωe
Lu′

bubw
′ dΩ =

∫
Ωe

( f − Lū)w′ dΩ ∀w′
∈ V ′

∩ H 1
0 (Ω e) (102)

hat is to say, in each element, u′

bub represents the solution that lives in S ′ with homogeneous Dirichlet boundary
ondition, where the source term is f − Lū.

Multi-dimensional problems. In multidimensional problems, residual-free bubbles are very difficult to obtain.
hus, the error component, u′

bub(x) =
∑nbub

i=1 ci bi (x) is a linear combination of polynomial bubble functions defined
n a finite dimensional space, Sh

bub. For both triangles and quadrilaterals, the first bubble function, b1(x), is the
implest polynomial that fulfills to be zero on the element boundary. The successive bubbles are built adding the
onomials of the Pascal triangle with center in the barycenter of the element. The problem is set on each element

s: Find u′

bub ∈ Sh
bub such that

a(w′

bub, u′

bub) = (w′

bub, f − Lū) ∀w′

bub ∈ Sh
bub (103)

.2.2. Inter-element error, u′

poll
The inter-element error presents a global character and is originated by the lack of continuity of the FEM solution,

¯ , and the internal residual error, u′

bub. This kind of error is in charge of solving the part of the error that u′

bub does
ot consider. Thus, the inter-element error, u′

poll represents the solution of the following problem,⎧⎪⎪⎨⎪⎪⎩
Lu′

poll = 0 in Ω \ Γ̃
Lu′

poll = −([[Bū]] + [[Bu′

bub]])δΓ̃ on Γ̃
u′

poll = 0 on Γg

Bu′

poll = h − Bū − Bu′

bub on Γh

(104)

It is assumed that the error component u′

bub, defined inside the elements, satisfies Lu′
bub = f − Lū enabling to

pproach Lu′
poll = 0 as the first equation in Eq. (104) expresses. Then, the error source is the jump of ū and u′

bub
n the element boundaries.

Although it seems that the way of determining the error pollution leads to the solution of a problem in the whole

omain, it can be simplified both in 1D and multiD problems.

27



G. Hauke and D. Irisarri Computer Methods in Applied Mechanics and Engineering 417 (2023) 116341

b
(

One-dimensional problems. Here only linear elements are considered (see [137] for the extension to higher-order
elements). The error pollution is modeled as a linear combination of free-space Green’s functions set at the nodes
of the discretization, nnp,

u′

poll(x) =

nnp∑
A=1

cbnd
A gF (x, xA) (105)

The coefficients cbnd
A are determined depending on the nodes we are treating:

• Internal nodes
The coefficients cbnd

A are chosen imposing the Galerkin orthogonality property

a(w, u′) = a(w, u′
bub) + a(w, u′

poll) = 0 ∀w ∈ V̄ (106)

Therefore,

a(w, u′
poll) = −a(w, u′

bub) ∀w ∈ V̄ (107)

Introducing the definition of u′

poll in Eq. (105) and integrating by parts the LHS of Eq. (107), for a internal
node A

(wA, cbnd
A LgF (x, xA)) = −a(wA, u′

bub) (108)

(wA, δ(x, xA)cbnd
A ) = −a(wA, u′

bub) (109)

cbnd
A = −a(wA, u′

bub) (110)

• Neumann boundary nodes
Following the same steps as for the internal nodes, the coefficients cbnd

A at these nodes are computed as

cbnd
A = −a(wA, u′

bub) −

(
wA,

nnp∑
B=1,B ̸=A

cbnd
B BgF (x, xB)

)
Γh

(111)

• Dirichlet boundary nodes
For the nodes set at the Dirichlet boundaries, we know that the u′

= 0. Therefore, the cbnd
A coefficients are

solved imposing this condition, i.e.,

cbnd
A gF (xA, xA) +

nnp∑
B=1,B ̸=A

cbnd
B gF (xA, xB) = 0 (112)

Multi-dimensional problems. Taking problem (104), the second equation is multiplied by the free-space Green’s
function and integrated by parts twice. Then, we get the expression

u′

poll(x) = −

∫
Γ̃

gF (x, y)
(

[[Bū]]( y) + [[Bu′
bub]]( y)

)
dΓy+∫

∂Ω

gF (x, y)Byu′

poll( y) dΓy −

∫
∂Ω

u′

poll( y)By gF (x, y) dΓy

for all x ∈ Ω

(113)

As can be observed, the calculation of u′

poll implies the computation of an integral on the inter-element boundaries,
Γ̃ , which involves the jumps of ū and u′

bub. The other two integrals are set on the domain boundary and contain
oth u′

poll and its derivative. Hence, the integro-differential equation can be solved via boundary element methods

BEM).
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Fig. 17. 1D Convection–diffusion problem. Exact and FEM solution.

Fig. 18. 1D Convection–diffusion problem. Error components.

5.3. Numerical examples

5.3.1. Pointwise error estimation in 1D problems
The convection–diffusion problem is expressed as⎧⎨⎩ −κ

d2u
dx2 + a

du
dx

= 4x(1 − x) in Ω = [0, 1]

u = 0 on Γg

(114)

The case κ = 0.01 and a = 1 is solved with the standard Galerkin method using a uniform mesh with 5 elements.
ig. 17 represents the exact and the FEM solution, where spurious oscillations can be seen due to the regime being
onvection-dominated.

The error components u′

bub and u′

poll are depicted in Fig. 18. The interior error is estimated with Eq. (100) and
he inter-element error is computed according to Section 5.2.2.

Finally, the estimated error is obtained summing both components, u = u′

bub + u′

poll. The estimated and the exact
rror are shown in Fig. 19. Both are almost identical.

.3.2. Pointwise error estimation in 2D problems
The convection–diffusion problem in 2D is expressed as⎧⎨⎩ −κ∆u + a · ∇u = f in Ω

u = g on Γg

κ∇u · n = h on Γh

(115)

here κ and a = (ax , ay) are the diffusive and convection coefficients, respectively.
For the example, we select a (0, 1)×(0, 1)-domain with κ = 0.03 and a = (1, 2)/

√
5 and homogeneous Dirichlet

boundary conditions. We take f = 1. The numerical solution is obtained via the SUPG method employing a 8 × 8
mesh with bilinear quadrilaterals. The numerical and the reference solutions are shown in Fig. 20. The reference
29
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Fig. 19. 1D Convection–diffusion problem. Exact and estimated error.

Fig. 20. 2D Convection–diffusion equation. Reference and FEM solution.

solution, uref, has been obtained in a fine mesh (100 × 100 elements) and is assumed to be similar to the exact
solution.

The internal residual error, u′

bub, is depicted in Fig. 21a using six bubble functions per element. On the other
hand, the error pollution is computed solving Eq. (113). Fig. 21b shows this error term. Finally, the estimated error
is the addition of both components. We can appreciate in Fig. 22 that the reference error, u′

ref = uref − ū, and
he estimated error are similar. The error is mainly concentrated in the boundary layer where the solution is more
brupt.

. Conclusion

Explicit and implicit a posteriori error estimators have been derived from the variational multiscale theory (VMS).
he error estimators, which are based on a model that introduces approximations compatible with the theory of
tabilized methods, include both, element interior and inter-element residuals. The element interior residual is key
or predicting the error in the hyperbolic regime, whereas the inter-element residual, in the diffusive regime.

It has been shown that the error constants can be written in the form of error time scales, which have been
calculated explicitly from element Green’s functions. Incompressible flows require a slightly different approach,
and the error time scales are precomputed from unitary problems.

Numerical examples confirm that the global efficiencies are close to one and that the local efficiencies are a good
approximation of the true error, mainly in areas where the errors are large.

Thus, the proposed a posteriori error estimator leads to a very economical and robust technique for fluid problems
computed with stabilized methods and can be readily implemented in existing computer codes.
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Fig. 21. 2D Convection–diffusion equation. Internal residual error and inter-element error.

Fig. 22. 2D Convection–diffusion equation. Reference error and estimated pointwise error.

A study on the nature of the error shows that the error can be decomposed into an element interior contribution
described by residual-free bubbles (or a sufficiently rich bubble space) plus an inter-element contribution, described
by global free-space Green’s functions. This decomposition has been applied successfully to both, Galerkin and
SUPG solutions.

The success of this estimator can be explained by the fact that it solves a-priori the local dual problems at
he element level and since the error distribution is practically local for methods stemming from H 1

0 projection,
hese represent fairly well the exact error. Moreover, the proposed technology achieves similar accuracy as implicit

ethods with less computational cost, since it is not necessary to solve any differential equation to calculate the
rror.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

This work has been partially funded by the Ministerio de Economı́a y Competitividad, Spain under contract
ID2019-106099RB-C44 (AEI/FEDER,UE), Gobierno de Aragón/FEDER-UE, Spain (Grupo de Investigacion de
eferencia de Mecanica de Fluidos Computacional T32 20R).
31



G. Hauke and D. Irisarri Computer Methods in Applied Mechanics and Engineering 417 (2023) 116341
References
[1] T.J. Hughes, G. Scovazzi, L.P. Franca, Multiscale and stabilized methods, Encycl. Comput. Mech. Second Ed. (2018) 1–64.
[2] R. Codina, S. Badia, J. Baiges, J. Principe, Variational multiscale methods in computational fluid dynamics, Encycl. Comput. Mech.

(2017) 1–28.
[3] L. Franca, G. Hauke, A. Masud, Revisiting stabilized finite element methods for the advective-diffusive equation, Comput. Methods

Appl. Mech. Engrg. 195 (2006) 1560–1572.
[4] T. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the

origins of stabilized methods, Comput. Methods Appl. Mech. Engrg. 127 (1995) 387–401.
[5] T. Hughes, G. Feijoo, L. Mazzei, J. Quincy, The variational multiscale method: A paradigm for computational mechanics, Comput.

Methods Appl. Mech. Engrg. 166 (1998) 3–24.
[6] T.J. Hughes, J.R. Stewart, A space-time formulation for multiscale phenomena, J. Comput. Appl. Math. 74 (1) (1996) 217–229.
[7] M. Ainsworth, J.T. Oden, A Posterior Error Estimation in Finite Element Analysis, John Wiley & Sons, 2000.
[8] I. Babuška, W. Rheinboldt, Analysis of optimal finite element meshes in R1, Math. Comp. 33 (1979) 435–463.
[9] I.M. Babuška, A. Miller, A feedback finite element method with a posteriori error estimation part 1, Comput. Methods Appl. Mech.

Engrg. 61 (1987) 1–40.
[10] D. Kelly, J. Gago, O. Zienkiewicz, I. Babuška, A posterior error analysis and adaptive processes in the finite element method. Part

I– Error analysis, Internat. J. Numer. Methods Engrg. 19 (1983) 1593–1610.
[11] O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator in the finite element method, Internat. J. Numer. Methods Engrg. 24 (1987)

337–357.
[12] O.C. Zienkiewicz, J.Z. Zhu, Adaptivity and mesh generation, Internat. J. Numer. Methods Engrg. 32 (1991) 783–810.
[13] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique,

Internat. J. Numer. Methods Engrg. 33 (1992) 1331–1364.
[14] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity,

Internat. J. Numer. Methods Engrg. 33 (1992) 1365–1382.
[15] M. Ainsworth, A. Craig, A posteriori error in the finite element method, Numer. Math. 60 (1991) 429–463.
[16] J. Wu, J. Zhu, J. Smelter, O. Zienkiewicz, Error estimation and adaptivity in Navier-Stokes incompressible flows, Comput. Mech. 6

(1990) 259–271.
[17] G. Bugeda, E. Oñate, Adaptive mesh refinement techniques for aerodynamic problems, in: H. Alder, J. Heinrich, S. Lavanchy, E.

Oñate, B. Suárez (Eds.), Actas Métodos numéricos en ingeniería y ciencias aplicadas, Math. Comp., 1992, pp. 513–522,
[18] E. Oñate, J. Arteaga, J. Garcia, R. Flores, Error estimation and mesh adaptivity in incompressible viscous flows using a residual

power approach, Comput. Methods Appl. Mech. Engrg. 195 (2006) 339–362.
[19] I.M. Babuška, W.C. Rheinboldt, A posteriori error estimates for the finite element, Internat. J. Numer. Methods Engrg. 12 (1978)

1597–1615.
[20] I.M. Babuška, W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 18 (1978) 736–754.
[21] I. Babuška, W. Rheinboldt, Adaptive approaches and reliability estimations in finite element analysis, Comput. Methods Appl. Mech.

Engrg. 17 (1979) 519–540.
[22] R. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985) 283–301.
[23] H. Jin, S. Prudhomme, A posteriori error estimation of steady-state finite element solutions of the Navier-Stokes equations by a

subdomain residual method, Comput. Methods Appl. Mech. Engrg. 159 (1998) 19–48.
[24] P. Díez, A. Huerta, A posteriori error estimation for standard finite element analysis, Comput. Methods Appl. Mech. Engrng. 163

(1998) 141–157.
[25] A. Huerta, P. Diez, Error estimation including pollution assessment for nonlinear finite element analysis, Comput. Methods Appl.

Mech. Engrg. 181 (2000) 21–41.
[26] N. Parés, P. Díez, A. Huerta, Subdomain-based flux-free a posteriori error estimators, Comput. Methods Appl. Mech. Engrng. 195

(2006) 297–323.
[27] K. Eriksson, C. Johnson, An adaptive finite element method for linear elliptic problems, Comput. Methods Appl. Mech. Engrg. 50

(1988) 361–383.
[28] M. Ainsworth, J. Oden, A unified approach to a posterior error estimation using element residual methods, Numer. Math. 65 (1993)

23–50.
[29] J. Stewart, T. Hughes, An a posteriori error estimator and hp-adaptive strategy for finite element discretizations of the Helmholzt

equation in exterior domains, Finite Elem. Anal. Des. 25 (1997) 1–26.
[30] J. Stewart, T. Hughes, A tutorial in elementary finite element error analysis: A systematic presentation of a priori and a posteriori

error estimates, Comput. Methods Appl. Mech. Engrg. 158 (1998) 1–22.
[31] J. Oden, L. Demkowicz, W. Rachowicz, T. Westermann, A posteriori error analysis in finite elements: The element residual method

for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations, Comput. Methods Appl. Mech.
Engrg. 82 (1990) 183–203.

[32] J. Oden, W. Wu, M. Ainsworth, An a posterior error estimate for finite element approximations of the Navier-Stokes equations,
Comput. Methods Appl. Mech. Engrg. 111 (1994) 185–202.

[33] C. Johnson, Adaptive finite element methods for diffusion and convection problems, Comput. Methods Appl. Mech. Engrg. 82 (1990)
301–322.

[34] C. Johnson, Finite Element Methods for Flow Problems, Tech. Rep., 1, AGARD Report 787 (AGARD, 7 Rue Ancelle, 92299 Neuilly

sur Seine, France), 1992, pp. 1–47.

32

http://refhub.elsevier.com/S0045-7825(23)00465-6/sb1
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb2
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb2
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb2
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb3
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb3
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb3
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb4
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb4
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb4
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb5
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb5
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb5
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb6
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb7
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb8
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb9
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb9
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb9
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb10
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb10
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb10
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb11
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb11
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb11
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb12
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb13
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb13
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb13
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb14
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb14
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb14
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb15
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb16
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb16
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb16
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb17
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb17
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb17
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb18
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb18
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb18
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb19
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb19
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb19
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb20
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb21
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb21
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb21
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb22
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb23
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb23
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb23
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb24
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb24
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb24
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb25
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb25
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb25
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb26
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb26
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb26
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb27
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb27
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb27
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb28
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb28
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb28
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb29
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb29
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb29
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb30
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb30
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb30
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb31
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb31
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb31
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb31
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb31
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb32
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb32
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb32
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb33
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb33
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb33
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb34
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb34
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb34


G. Hauke and D. Irisarri Computer Methods in Applied Mechanics and Engineering 417 (2023) 116341
[35] C. Johnson, P. Hansbo, Adaptive finite element methods in computational mechanics, Comput. Methods Appl. Mech. Engrg. 101
(1992) 143–181.

[36] T. Strouboulis, J. Oden, A posteriori error estimation of finite element approximations in fluid mechanics, Comput. Methods Appl.
Mech. Engrg. 98 (1990) 201–242.

[37] R. Verfürth, A posteriori error estimators for convection-diffusion equations, Numer. Math. 80 (1998) 641–663.
[38] M. Paraschivoiu, J. Peraire, A.T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential

equations, Comput. Methods Appl. Mech. Engrg. 150 (1997) 289–312.
[39] D. Venditti, D. Darmofal, Adjoint error estimation and grid adaptation for functional outputs: Application to quasi-one-dimensional

flow, J. Comput. Phys. 164 (2000) 204–227.
[40] D. Venditti, D. Darmofal, Grid adaptation for functional outputs: Application to two-dimensional inviscid flows, J. Comput. Phys.

176 (2002) 40.
[41] D. Venditti, D. Darmofal, Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput.

Phys. 187 (2003) 22–46.
[42] K. Fidkowski, D. Darmofal, Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA J.

49 (2011) 673–694, http://dx.doi.org/10.2514/1.J050073.
[43] R. Verfürth, A posteriori error estimators for the Stokes problem, Numer. Math. 55 (1989) 309–325.
[44] D. Kay, D. Silvester, A posteriori error estimation for stabilized mixed approximations of the Stokes equations, SIAM J. Sci. Comput.

21 (4) (1999) 1321–1336.
[45] R.E. Bank, B.D. Welfert, A posteriori error estimates for the Stokes problem, SIAM J. Numer. Anal. 28 (3) (1991) 591–623.
[46] F. Larsson, P. Díez, A. Huerta, A flux-free a posteriori error estimator for the incompressible Stokes problem using a mixed FE

formulation, Comput. Methods Appl. Mech. Engrg. 199 (37) (2010) 2383–2402.
[47] M. Ainsworth, J.T. Oden, A posterior error estimates for Stokes’ and Oseen’s equations, SIAM J. Numer. Anal. 34 (1997) 228–245.
[48] F. Nobile, A Posteriori Error Estimates for the Finite Element Approximation of the Stokes Problem, Tech. Rep., ICES, The University

of Texas at Austin, 2003.
[49] A. Russo, A posteriori error estimators for the Stokes problem, Appl. Math. Lett. 8 (2) (1995) 1–4.
[50] L. Song, Y. Hou, H. Zheng, Adaptive variational multiscale method for the Stokes equations, Internat. J. Numer. Methods Fluids 71

(11) (2013) 1369–1381.
[51] J. Hoffman, C. Johnson, Adaptive finite element methods for incompressible fluid flow, in: T. Barth, H. Deconinck (Eds.), Error

Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, in: Lecture Notes in Computational Science and
Engineering, vol. 25, Springer, 2002, pp. 97–158.

[52] J.T. Oden, W. Wu, M. Ainsworth, An a posteriori error estimate for finite element approximations of the Navier-Stokes equations,
Comput. Methods Appl. Mech. Engrg. 111 (1–2) (1994) 185–202.

[53] S. Berrone, Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods,
Comput. Methods Appl. Mech. Engrg. 190 (34) (2001) 4435–4455.

[54] E. Berrone, Robustness in a posteriori error analysis for FEM flow models, Numer. Math. 91 (2002) 389–422.
[55] K. Eriksson, D. Estep, P. Hansbo, C. Johnson, Introduction to adaptive methods for differential equations, Acta Numer. 105 (1995)

105–158.
[56] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teuber, 1996.
[57] W. Bangerth, R. Rannacher, Adaptive Finite Element Methods for Differential Equations, Birkhäuser, 2003.
[58] V. John, A numerical study of a posteriori error estimators for convection-diffusion equations, Comput. Methods Appl. Mech. Engrg.

190 (2000) 757–781.
[59] A. Papastavrou, R. Verfürth, A posteriori error estimators for stationary convection-diffusion problems: a computational comparison,

Comput. Methods Appl. Mech. Engrg. 189 (2000) 449–462.
[60] V. John, J. Novo, A robust SUPG norm a posteriori error estimator for stationary convection–diffusion equations, Comput. Methods

Appl. Mech. Engrg. 255 (2013) 289–305.
[61] V. John, P. Knobloch, J. Novo, Finite elements for scalar convection-dominated equations and incompressible flow problems: a never

ending story? Comput. Vis. Sci. 19 (2018) 47–63.
[62] R. Reyes, R. Codina, Element boundary terms in reduced order models for flow problems: Domain decomposition and adaptive coarse

mesh hyper-reduction, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 368 (2020) 113159, http://dx.doi.org/10.1016/j.cma.
2020.113159, URL https://www.sciencedirect.com/science/article/pii/S0045782520303443.

[63] R. Codina, R. Reyes, J. Baiges, A posteriori error estimates in a finite element VMS-based reduced order model for the incompressible
Navier-Stokes equations, Mech. Res. Commun. (ISSN: 0093-6413) 112 (2021) 103599, http://dx.doi.org/10.1016/j.mechrescom.2020.
103599, URL https://www.sciencedirect.com/science/article/pii/S0093641320301270, Special issue honoring G.I. Taylor Medalist Prof.
Arif Masud.

[64] A. Masud, G. Scovazzi, A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations,
Internat. J. Numer. Methods Fluids 65 (1–3) (2011) 28–42, http://dx.doi.org/10.1002/fld.2456, URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/fld.2456.

[65] O. Colomes, G. Scovazzi, J. Guilleminot, On the robustness of variational multiscale error estimators for the forward propagation of
uncertainty, Comput. Methods Appl. Mech. Engrg. 342 (2018) 384–413.

[66] M. Scott, D. Thomas, E. Evans, Isogeometric spline forests, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 269 (2014)

222–264, http://dx.doi.org/10.1016/j.cma.2013.10.024, URL https://www.sciencedirect.com/science/article/pii/S0045782513002764.

33

http://refhub.elsevier.com/S0045-7825(23)00465-6/sb35
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb35
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb35
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb36
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb36
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb36
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb37
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb38
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb38
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb38
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb39
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb39
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb39
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb40
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb40
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb40
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb41
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb41
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb41
http://dx.doi.org/10.2514/1.J050073
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb43
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb44
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb44
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb44
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb45
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb46
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb46
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb46
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb47
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb48
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb48
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb48
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb49
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb50
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb50
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb50
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb51
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb51
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb51
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb51
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb51
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb52
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb52
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb52
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb53
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb53
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb53
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb54
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb55
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb55
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb55
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb56
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb57
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb58
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb58
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb58
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb59
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb59
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb59
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb60
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb60
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb60
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb61
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb61
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb61
http://dx.doi.org/10.1016/j.cma.2020.113159
http://dx.doi.org/10.1016/j.cma.2020.113159
http://dx.doi.org/10.1016/j.cma.2020.113159
https://www.sciencedirect.com/science/article/pii/S0045782520303443
http://dx.doi.org/10.1016/j.mechrescom.2020.103599
http://dx.doi.org/10.1016/j.mechrescom.2020.103599
http://dx.doi.org/10.1016/j.mechrescom.2020.103599
https://www.sciencedirect.com/science/article/pii/S0093641320301270
http://dx.doi.org/10.1002/fld.2456
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2456
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2456
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.2456
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb65
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb65
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb65
http://dx.doi.org/10.1016/j.cma.2013.10.024
https://www.sciencedirect.com/science/article/pii/S0045782513002764


G. Hauke and D. Irisarri Computer Methods in Applied Mechanics and Engineering 417 (2023) 116341
[67] E. Evans, M. Scott, X. Li, D. Thomas, Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive
basis for isogeometric analysis, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 284 (2015) 1–20, http://dx.doi.org/10.1016/
j.cma.2014.05.019, URL https://www.sciencedirect.com/science/article/pii/S0045782514001807, Isogeometric Analysis Special Issue.

[68] V.V. Garg, R.H. Stogner, Local enhancement of functional evaluation and adjoint error estimation for variational multiscale
formulations, Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 354 (2019) 119–142, http://dx.doi.org/10.1016/j.cma.2019.05.
023, URL https://www.sciencedirect.com/science/article/pii/S0045782519302932.

[69] T. Hughes, The Finite Element Method:Linear Static and Dynamic Finite Element Analysis, Dover Publications, 2000.
[70] T. Hughes, G. Sangalli, Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization and

stabilized methods, SIAM J. Numer. Anal. 45 (2) (2007) 539–557.
[71] F. Cirak, E. Ramm, A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem, Comput. Methods

Appl. Mech. Engrg. 156 (1–4) (1998) 351–362.
[72] T. Grätsch, F. Hartmann, Pointwise error estimation and adaptivity for the finite element method using fundamental solutions, Comput.

Mech. 37 (5) (2006) 394–407.
[73] F. Hartmann, Green’s Functions and Finite Elements, Springer, 2013.
[74] D. Estep, M. Holst, M. Larson, Generalized Green’s functions and the effective domain of influence, Commun. Numer. Meth. Engrg.

18 (2002) 15–30.
[75] G. Hauke, D. Fuster, M.H. Doweidar, Variational multiscale a-posteriori error estimation for the multi-dimensional transport equation,

Comput. Methods Appl. Mech. Engrg. 197 (2008) 2701–2718.
[76] G. Hauke, M.H. Doweidar, D. Fuster, A posteriori error estimation for computational fluid dynamics. The variational multiscale

approach, in: E. Ramm, R. de Borst (Eds.), Multiscale Methods in Computational Mechanics, in: Lecture Notes in Applied and
Computational Mechanics, vol. 55, Springer, 2010, pp. 19–38.

[77] G. Hauke, M.H. Doweidar, M. Miana, The multiscale approach to error estimation and adaptivity, Comput. Methods Appl. Mech.
Engrg. 195 (2006) 1573–1593.

[78] G. Hauke, M.H. Doweidar, M. Miana, Proper intrinsic scales for a-posteriori multiscale error estimation, Comput. Methods Appl.
Mech. Engrg. 195 (2006) 3983–4001.

[79] G. Hauke, M.H. Doweidar, Intrinsic scales and a posteriori multiscale error estimation for piecewise-linear functions and residuals,
Int. J. Comput. Fluid Dyn. 20 (2006) 211–222.

[80] S. Brenner, L. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, 2002.
[81] M.G. Larson, A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Energy norm estimates for

elliptic problems, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2313–2324.
[82] F. Brezzi, M. Bristeau, L.P. Franca, M. Mallet, G. Rogé, A relationship between stabilized finite element methods and the Galerkin

method with bubble functions, Comput. Methods Appl. Mech. Engrg. 96 (1992) 117–129.
[83] F. Brezzi, A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci. 4 (1994) 571–587.
[84] F. Brezzi, L. Franca, T. Hughes, A. Russo, b =

∫
g, Comput. Methods Appl. Mech. Engrg. 145 (1997) 329–339.

[85] A.N. Agarwal, P. Pinsky, Stabilized element residual method (SERM): A posteriori error estimation for the advection-diffusion equation,
J. Comput. Appl. Math. 74 (1996) 3–17.

[86] A. Russo, A posteriori error estimators via bubble functions, Math. Models Methods Appl. Sci. 1 (1996) 33–41.
[87] A. Masud, T. Truster, Modeling of steep layers in singularly perturbed diffusion-reaction equation via flexible fine-scale basis, Comput.

Methods Appl. Mech. Engrg. 372 (2020) 113343.
[88] G. Hauke, M.H. Doweidar, D. Fuster, A. Gomez, J. Sayas, Application of variational a-posteriori multiscale error estimation to

higher-order elements, Comput. Mech. 38 (2006) 382–389.
[89] D. Estep, M. Holst, D. Mikulencak, Accounting for stability: a posteriori error estimates based on residuals and variational analysis,

Commun. Numer. Meth. Engrg. 18 (2002) 15–30.
[90] L. Franca, S. Frey, T. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model, Comput. Methods

Appl. Mech. Engrg. 95 (1992) 253–276.
[91] L. Franca, F. Valentin, On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation, Comput.

Methods Appl. Mech. Engrg. 190 (2000) 1785–1800.
[92] G. Hauke, A simple stabilized method for the advection-diffusion-reaction equation, Comput. Methods Appl. Mech. Engrg. 191 (2002)

2925–2947.
[93] I. Harari, L. Franca, S. Oliveira, Streamline design of stability parameters for advection-diffusion problems, J. Comput. Phys. 171

(2001) 115–131.
[94] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I, John Wiley & Sons, 1989.
[95] T.C. Rebollo, B.M. Dia, A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D

advection–diffusion equations, Comput. Methods Appl. Mech. Engrg. 285 (2015) 406–426.
[96] T.C. Rebollo, S. Fernandez-Garcia, On the computation of the stabilized coefficients for the 1D spectral VMS method, SEMA 75

(2018) 573–590.
[97] T. Chacón Rebollo, S. Fernández-García, M. Gómez-Mármol, Anisotropic VMS solution of advection–diffusion problems by spectral

approximation of sub-grid scales, J. Comput. Appl. Math. 380 (2020) 112959.
[98] T.C. Rebollo, S. Fernández-García, D. Moreno-Lopez, I.S. Muñoz, Spectral variational multi-scale method for parabolic problems:

application to 1D transient advection-diffusion equations, Comput. Appl. Math. 42 (1) (2023) 43.
[99] G. Hauke, M.H. Doweidar, S. Fuentes, Mesh adaptivity for the transport equation led by variational multiscale error estimators,
Internat. J. Numer. Methods Fluids 69 (2012) 1835–1850.

34

http://dx.doi.org/10.1016/j.cma.2014.05.019
http://dx.doi.org/10.1016/j.cma.2014.05.019
http://dx.doi.org/10.1016/j.cma.2014.05.019
https://www.sciencedirect.com/science/article/pii/S0045782514001807
http://dx.doi.org/10.1016/j.cma.2019.05.023
http://dx.doi.org/10.1016/j.cma.2019.05.023
http://dx.doi.org/10.1016/j.cma.2019.05.023
https://www.sciencedirect.com/science/article/pii/S0045782519302932
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb69
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb70
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb70
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb70
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb71
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb71
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb71
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb72
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb72
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb72
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb73
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb74
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb74
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb74
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb75
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb75
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb75
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb76
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb76
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb76
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb76
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb76
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb77
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb77
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb77
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb78
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb78
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb78
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb79
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb79
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb79
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb80
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb81
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb81
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb81
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb82
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb82
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb82
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb83
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb84
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb85
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb85
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb85
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb86
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb87
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb87
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb87
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb88
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb88
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb88
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb89
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb89
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb89
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb90
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb90
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb90
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb91
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb91
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb91
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb92
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb92
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb92
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb93
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb93
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb93
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb94
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb95
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb95
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb95
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb96
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb96
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb96
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb97
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb97
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb97
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb98
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb98
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb98
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb99
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb99
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb99


G. Hauke and D. Irisarri Computer Methods in Applied Mechanics and Engineering 417 (2023) 116341
[100] G. Hauke, D. Fuster, Variational multiscale a-posteriori error estimation for quantities of interest, J. Appl. Mech. 76 (2009) 021201,
1–6.

[101] B.N. Granzow, M.S. Shephard, A.A. Oberai, Output-based error estimation and mesh adaptation for variational multiscale methods,
Comput. Methods Appl. Mech. Engrg. 322 (2017) 441–459.

[102] M.G. Larson, A. Målqvist, Adaptive variational multiscale methods based on a posteriori error estimation: Duality techniques for
elliptic problems, Comput. Sci. Eng. 44 (2005) 181–193.

[103] M.G. Larson, A. Målqvist, An adaptive variational multiscale method for convection-diffusion problems, Commun. Numer. Methods.
Eng. 25 (2009) 65–79.

[104] A. ElSheik, S. Chidiac, W. Smith, A posteriori error estimation based on numerical realization of the variational multiscale method,
Comput. Methods Appl. Mech. Engrg. 197 (2008) 3637–3656.

[105] A. ElSheik, S. Smith, S. Chidiac, Numerical investigation of the reliability of a posteriori error estimation for advection-diffusion
equations, Commun. Numer. Methods. Eng. 24 (2008) 711–726.

[106] R. Araya, F. Valentin, A multiscale a posteriori error estimate, Comput. Methods Appl. Mech. Engrg. 194 (2005) 2077–2094.
[107] R. Araya, E. Behrens, R. Rodriguez, An adaptive stabilized finite element scheme for the advection-reaction-diffusion equation, Appl.

Numer. Math. 54 (2005) 491–503.
[108] R. Araya, E. Behrens, R. Rodriguez, Error estimator advection-reaction-diffusion equations based on solution of local problems, Appl.

Numer. Math. 206 (2007) 440–453.
[109] A. Bazile, E. Hachem, J. Larroya-Huguet, Y. Mesri, Variational multiscale error estimator for anisotropic adaptive fluid mechanic

simulations: Application to convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 331 (2018) 94–115.
[110] A. Jha, A residual based a posteriori error estimators for AFC schemes for convection-diffusion equations, Comput. Math. Appl. (ISSN:

0898-1221) 97 (2021) 86–99, http://dx.doi.org/10.1016/j.camwa.2021.05.031, URL https://www.sciencedirect.com/science/article/pii/
S0898122121002236.

[111] G. Hauke, D. Fuster, F. Lizarraga, Variational multiscale a posteriori error estimation for systems: The Euler and Navier–Stokes
equations, Comput. Methods Appl. Mech. Engrg. 283 (2015) 1493–1524.

[112] G. Hauke, T. Hughes, A unified approach to compressible and incompressible flows, Comput. Methods Appl. Mech. Engrg. 113
(1994) 389–395.

[113] G. Hauke, T. Hughes, A comparative study of different sets of variables for solving compressible and incompressible flows, Comput.
Methods Appl. Mech. Engrg. 153 (1998) 1–44.

[114] C. Bayona-Roa, R. Codina, J. Baiges, Variational multiscale error estimators for the adaptive mesh refinement of compressible flow
simulations, Comput. Methods Appl. Mech. Engrg. 337 (2018) 501–526.

[115] G. Hauke, J. Lanzarote, Simulation of low-speed buoyant flows with a stabilized compressible/incompressible formulation: The full
Navier-Stokes approach versus the Boussinesq model, Algorithms 15 (8) (2022) 278.

[116] S. Tendulkar, F. Yang, R. Nastasia, M.W. Beall, A.A. Oberai, M.S. Shephard, O. Sahni, Geometry and adaptive mesh update procedures
for ballistics simulations, in: R. Sevilla, S. Perotto, K. Morgan (Eds.), Mesh Generation and Adaptation: Cutting-Edge Techniques,
Springer International Publishing, Cham, ISBN: 978-3-030-92540-6, 2022, pp. 209–231.

[117] F. Yang, A. Chandra, Y. Zhang, S. Tendulkar, R. Nastasia, A.A. Oberai, M.S. Shephard, O. Sahni, A parallel interface tracking
approach for evolving geometry problems, Eng. Comput. 38 (5) (2022) 4289–4305, http://dx.doi.org/10.1007/s00366-021-01386-8,

[118] M. Polner, L. Pesch, J. van der Vegt, Construction of stabilization operators for Galerkin least-squares discretizations of compressible
and incompressible flows, Comput. Methods Appl. Mech. Engrg. 196 (2007) 2431–2448.

[119] D. Irisarri, G. Hauke, A posteriori error estimation and adaptivity based on VMS for the Stokes problem, Internat. J. Numer. Methods
Fluids 88 (10–11) (2018) 493–520.

[120] D. Irisarri, G. Hauke, A posteriori error estimation and adaptivity based on VMS for the incompressible Navier-Stokes equations,
Comput. Methods Appl. Mech. Engrg. 373 (2021) 113508.

[121] T.J. Hughes, L.P. Franca, A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various
well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech.
Engrg. 65 (1) (1987) 85–96.

[122] J. Donea, A. Huerta, Finite Element Methods for Flow Problems, Wiley, 2003.
[123] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (3) (1973) 179–192.
[124] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Revue

Française d’Automatique Inf. Recherche Oper. Anal. Numer. 8 (2) (1974) 129–151.
[125] F. Brezzi, J. Pitkäranta, On the Stabilization of Finite Element Approximations of the Stokes Equations, Springer, 1984.
[126] R. Pierre, Simple C0 approximations for the computation of incompressible flows, Comput. Methods Appl. Mech. Engrg. 68 (2)

(1988) 205–227.
[127] N. Kechkar, D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (197)

(1992) 1–10.
[128] L.P. Franca, T.J. Hughes, R. Stenberg, Stabilized finite element methods for the Stokes problem, Incompressible Comput. Fluid Dyn.

(1993) 87–107.
[129] L. Franca, A. Russo, Approximation of the Stokes problem by residual-free macro bubbles, East-West J. Numer. Math. 4 (1996)

265–278.
[130] M. Behr, T. Tezduyar, Finite element solution strategies for large-scale flow simulations, Comput. Methods Appl. Mech. Engrg. 112

(1–4) (1994) 3–24.
[131] R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods
Appl. Mech. Engrg. 190 (13) (2000) 1579–1599.

35

http://refhub.elsevier.com/S0045-7825(23)00465-6/sb100
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb100
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb100
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb101
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb101
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb101
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb102
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb102
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb102
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb103
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb103
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb103
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb104
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb104
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb104
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb105
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb105
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb105
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb106
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb107
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb107
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb107
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb108
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb108
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb108
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb109
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb109
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb109
http://dx.doi.org/10.1016/j.camwa.2021.05.031
https://www.sciencedirect.com/science/article/pii/S0898122121002236
https://www.sciencedirect.com/science/article/pii/S0898122121002236
https://www.sciencedirect.com/science/article/pii/S0898122121002236
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb111
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb111
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb111
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb112
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb112
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb112
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb113
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb113
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb113
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb114
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb114
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb114
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb115
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb115
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb115
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb116
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb116
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb116
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb116
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb116
http://dx.doi.org/10.1007/s00366-021-01386-8
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb118
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb118
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb118
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb119
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb119
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb119
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb120
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb120
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb120
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb121
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb121
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb121
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb121
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb121
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb122
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb123
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb124
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb124
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb124
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb125
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb126
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb126
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb126
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb127
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb127
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb127
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb128
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb128
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb128
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb129
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb129
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb129
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb130
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb130
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb130
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb131
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb131
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb131


G. Hauke and D. Irisarri Computer Methods in Applied Mechanics and Engineering 417 (2023) 116341
[132] W. Dettmer, D. Peric, An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes
equations based on a stabilised formulation, Comput. Methods Appl. Mech. Engrg. 192 (9) (2003) 1177–1226.

[133] A. Masud, R. Khurram, A multiscale/stabilized finite element method for the incompressible Navier-Stokes equations, Comput. Methods
Appl. Mech. Engrg. 195 (2006) 1750–1777.

[134] L. Franca, S. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations, Comput. Methods Appl. Mech.
Engrg. 99 (1992) 209–233.

[135] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali, G. Scovazzi, Variational multiscale residual-based turbulence modeling for large
eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg. 197 (1) (2007) 173–201.

[136] D. Irisarri, G. Hauke, A posteriori pointwise error computation for 2-D transport equations based on the variational multiscale method,
Comput. Methods Appl. Mech. Engrg. 311 (2016) 648–670.

[137] D. Irisarri, G. Hauke, Pointwise error estimation for the one-dimensional transport equation based on the variational multiscale method,
Int. J. Comput. Methods 14 (4) (2017) 30, http://dx.doi.org/10.1142/S0219876217500402, URL http://www.worldscientific.com/doi/
abs/10.1142/S0219876217500402.

[138] R. Rossi, J. Cotela, N. Lafontaine, P. Dadvand, S. Idelsohn, Parallel adaptive mesh refinement for incompressible flow problems,
Comput. & Fluids 80 (2013) 342–355.

[139] Y. Mesri, A. Bazile, J. Larroya-Huguet, E. Hachem, Parallel and adaptive VMS finite elements formulation for aerothermal problems,
Comput. & Fluids 173 (2018) 42–50.

[140] D. Irisarri, G. Hauke, Variational multiscale a posteriori error estimation for 2nd and 4th-order ODEs, Int. J. Numer. Anal. Model.
12 (3) (2015) 430–454.

[141] A. Masud, T. Truster, L. Bergman, A variational multiscale a posteriori error estimation method for mixed form of nearly
incompressible elasticity, Comput. Methods Appl. Mech. Engrg. 200 (2011) 3453–3481.

[142] G. Hauke, D. Irisarri, Variational multiscale a posteriori error estimation for systems. application to linear elasticity, Comput. Methods
Appl. Mech. Engrg. 285 (2015) 291–314.

[143] J. Baiges, R. Codina, Variational multiscale error estimators for solid mechanics adaptive simulations: An Orthogonal Subgrid Scale
approach, Comput. Methods Appl. Mech. Engrg. 325 (2017) 37–55.

[144] C. Carstensen, R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods, SIAM J. Numer.
Anal. 36 (5) (1999) 1571–1587.

[145] H. Zheng, Y. Hou, F. Shi, Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations, J.
Comput. Phys. 229 (19) (2010) 7030–7041.

[146] R. Araya, R. Rebolledo, F. Valentin, On a multiscale a posteriori error estimator for the stokes and Brinkman equations, IMA J.
Numer. Anal. (ISSN: 0272-4979) 41 (1) (2019) 344–380, http://dx.doi.org/10.1093/imanum/drz053.

[147] O. Colomes, G. Scovazzi, I. Sraj, O. Knio, O. Le Maître, A finite volume error estimator inspired by the variational multiscale
approach, in: 2018 AIAA Non-Deterministic Approaches Conference, 2018, p. 1178.

[148] A. Bazile, Y. Mesri, J.-C. Larroya-Huguet, E. Hachem, Aerothermal impingement jet flow simulations using anisotropic multiscale
mesh adaptation, in: 2018 Fluid Dynamics Conference, American Institute of Aeronautics and Astronautic, 2018, http://dx.doi.org/10.
2514/6.2018-2898.

[149] J. Cotela-Dalmau, R. Rossi, A. Larese, Simulation of two- and three-dimensional viscoplastic flows using adaptive mesh refinement,
Internat. J. Numer. Methods Engrg. 112 (11) (2017) 1636–1658, http://dx.doi.org/10.1002/nme.5574, URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/nme.5574.

[150] A. Masud, T.J. Truster, L.A. Bergman, A unified formulation for interface coupling and frictional contact modeling with embedded
error estimation, Internat. J. Numer. Methods Engrg. 92 (2) (2012) 141–177.

[151] A. Masud, T.J. Truster, A framework for residual-based stabilization of incompressible finite elasticity: stabilized formulations and
methods for linear triangles and tetrahedra, Comput. Methods Appl. Mech. Engrg. 267 (2013) 359–399.
36

http://refhub.elsevier.com/S0045-7825(23)00465-6/sb132
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb132
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb132
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb133
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb133
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb133
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb134
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb134
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb134
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb135
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb135
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb135
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb136
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb136
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb136
http://dx.doi.org/10.1142/S0219876217500402
http://www.worldscientific.com/doi/abs/10.1142/S0219876217500402
http://www.worldscientific.com/doi/abs/10.1142/S0219876217500402
http://www.worldscientific.com/doi/abs/10.1142/S0219876217500402
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb138
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb138
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb138
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb139
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb139
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb139
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb140
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb140
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb140
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb141
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb141
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb141
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb142
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb142
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb142
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb143
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb143
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb143
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb144
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb144
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb144
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb145
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb145
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb145
http://dx.doi.org/10.1093/imanum/drz053
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb147
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb147
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb147
http://dx.doi.org/10.2514/6.2018-2898
http://dx.doi.org/10.2514/6.2018-2898
http://dx.doi.org/10.2514/6.2018-2898
http://dx.doi.org/10.1002/nme.5574
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5574
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5574
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5574
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb150
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb150
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb150
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb151
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb151
http://refhub.elsevier.com/S0045-7825(23)00465-6/sb151

	A review of VMS a posteriori error estimation with emphasis in fluid mechanics
	Introduction
	The transport equation
	Preliminaries
	The variational multiscale approach to error estimation
	A model for error estimation
	Element interior error
	Element boundary error
	Norms based on the L∞ norm of the residual
	Summary of the Model

	Relation to the flow time-scale parameter
	Example: error time scales for the one-dimensional case
	Error time-scales for the bilinear quad
	Two-dimensional example
	Application to adaptivity
	Application to quantities of interest
	Further works

	Hyperbolic problems: the Euler and Navier–Stokes Equations
	Preliminaries
	The error estimation paradigm
	Summary of models
	Further works
	Numerical examples
	Oblique shock at M=2
	Joukowski airfoil at M=0.1
	Viscous boundary layer at ℜ= 10 000, M=0.01


	Saddle-point problems: Stokes and Navier–Stokes equations
	Preliminaries
	The variational multiscale background
	Further works
	Numerical example: Lid-driven cavity

	The nature of discrete error and pointwise error computation
	Preliminaries
	VMS error estimation framework
	Internal residual error, u'bub
	Inter-element error, u'poll

	Numerical examples
	Pointwise error estimation in 1D problems
	Pointwise error estimation in 2D problems


	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


