000131677 001__ 131677
000131677 005__ 20240319081023.0
000131677 0247_ $$2doi$$a10.1016/j.electacta.2022.140649
000131677 0248_ $$2sideral$$a129664
000131677 037__ $$aART-2022-129664
000131677 041__ $$aeng
000131677 100__ $$aPiwek, J.
000131677 245__ $$aHigh frequency response of adenine-derived carbon in aqueous electrochemical capacitor
000131677 260__ $$c2022
000131677 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131677 5203_ $$aElectrochemical capacitors are attractive power sources, especially when they are able to operate at high frequency (high current regime). In order to meet this requirement their constituents should be made of high conductivity materials with a suitable porosity. In this study, enhanced power and simultaneously high capacitance (120 F g-1 at 1 Hz or 10 A g-1) electrode material obtained from carbonized adenine precursor is presented. A micro/mesoporous character of the carbon with optimal pore size ratio and high surface area was proven by the physicochemical characterization. The beneficial pore structure and morphology resembling highly conductive carbon black, together with a significant nitrogen content (5.5%) allow for high frequency response of aqueous capacitor to be obtained. The carbon/carbon symmetric capacitor (in 1 mol L-1 Li2SO4) has been tested to the voltage of 1.5 V. The cyclic voltammetry indicates a good electrochemical response even at high scan rate (50 mV s-1). The cyclability of the capacitor is comparable to the one operating with commercial carbon (YP50F). The adenine-based capacitor is especially favourable for stationary applications requiring high power.
000131677 536__ $$9info:eu-repo/grantAgreement/ES/MICIN PCI2019–103637
000131677 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000131677 590__ $$a6.6$$b2022
000131677 591__ $$aELECTROCHEMISTRY$$b8 / 30 = 0.267$$c2022$$dQ2$$eT1
000131677 592__ $$a1.264$$b2022
000131677 593__ $$aElectrochemistry$$c2022$$dQ1
000131677 593__ $$aChemical Engineering (miscellaneous)$$c2022$$dQ1
000131677 594__ $$a12.8$$b2022
000131677 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131677 700__ $$aSlesinski, A.
000131677 700__ $$aFic, K.
000131677 700__ $$0(orcid)0000-0002-2866-9369$$aAina, S.$$uUniversidad de Zaragoza
000131677 700__ $$aVizintin, A.
000131677 700__ $$aTratnik, B.
000131677 700__ $$aTchernychova, E.
000131677 700__ $$0(orcid)0000-0002-2436-1041$$aLobera, M. P.$$uUniversidad de Zaragoza
000131677 700__ $$0(orcid)0000-0003-2800-6845$$aBernechea, M.
000131677 700__ $$aDominko, R.
000131677 700__ $$aFrackowiak, E.
000131677 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000131677 773__ $$g424 (2022), 140649 [11 pp.]$$pElectrochim. acta$$tElectrochimica Acta$$x0013-4686
000131677 8564_ $$s5760574$$uhttps://zaguan.unizar.es/record/131677/files/texto_completo.pdf$$yVersión publicada
000131677 8564_ $$s2316367$$uhttps://zaguan.unizar.es/record/131677/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131677 909CO $$ooai:zaguan.unizar.es:131677$$particulos$$pdriver
000131677 951__ $$a2024-03-18-16:27:23
000131677 980__ $$aARTICLE