000131688 001__ 131688
000131688 005__ 20241125101139.0
000131688 0247_ $$2doi$$a10.1016/j.ijhydene.2023.07.347
000131688 0248_ $$2sideral$$a137062
000131688 037__ $$aART-2023-137062
000131688 041__ $$aeng
000131688 100__ $$aMartínez Alonso, A.
000131688 245__ $$aPhasing out steam methane reformers with water electrolysis in producing renewable hydrogen and ammonia: A case study based on the Spanish energy markets
000131688 260__ $$c2023
000131688 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131688 5203_ $$aDeploying renewable hydrogen presents a significant challenge in accessing off-takers who are willing to make long-term investments. To address this challenge, current projects focus on large-scale deployment to replace the demand for non-renewable hydrogen, particularly in ammonia synthesis for fertiliser production plants. The traditional process, involving Steam Methane Reformers (SMR) connected to Haber-Bosch synthesis, could potentially transition towards decarbonisation by gradually integrating water electrolysis. However, the coexistence of these processes poses limitations in accommodating the integration of renewable hydrogen, thereby creating operational challenges for industrial hubs. To tackle this issue, this paper proposes an optimal dispatch model for producing green hydrogen and ammonia while considering the coexistence of different processes. Furthermore, the objective is to analyse external factors that could determine the appropriate regulatory and pricing framework to facilitate the phase-out of SMR in favour of renewable hydrogen production. The paper presents a case study based in Spain, utilising data from 2018, 2022 and 2030 perspectives on the country's renewable resources, gas and electricity wholesale markets, pricing ranges, and regulatory constraints to validate the model. The findings indicate that carbon emissions taxation and the availability and pricing of Power Purchase Agreements (PPAs) will play crucial roles in this transition - the carbon emission price required for total phasing out SMR with water electrolysis would be around 550 EUR/ton CO2.
000131688 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000131688 590__ $$a8.1$$b2023
000131688 592__ $$a1.513$$b2023
000131688 591__ $$aCHEMISTRY, PHYSICAL$$b39 / 178 = 0.219$$c2023$$dQ1$$eT1
000131688 591__ $$aENERGY & FUELS$$b33 / 171 = 0.193$$c2023$$dQ1$$eT1
000131688 591__ $$aELECTROCHEMISTRY$$b6 / 45 = 0.133$$c2023$$dQ1$$eT1
000131688 593__ $$aEnergy Engineering and Power Technology$$c2023$$dQ1
000131688 593__ $$aRenewable Energy, Sustainability and the Environment$$c2023$$dQ1
000131688 593__ $$aFuel Technology$$c2023$$dQ1
000131688 593__ $$aCondensed Matter Physics$$c2023$$dQ1
000131688 594__ $$a13.5$$b2023
000131688 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131688 700__ $$0(orcid)0000-0002-1968-6300$$aNaval, N.$$uUniversidad de Zaragoza
000131688 700__ $$aMatute, G.
000131688 700__ $$aCoosemans, T.
000131688 700__ $$aYusta, J.M.
000131688 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000131688 773__ $$g52 (2023), 1472-1487$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000131688 8564_ $$s2111247$$uhttps://zaguan.unizar.es/record/131688/files/texto_completo.pdf$$yVersión publicada
000131688 8564_ $$s2353431$$uhttps://zaguan.unizar.es/record/131688/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131688 909CO $$ooai:zaguan.unizar.es:131688$$particulos$$pdriver
000131688 951__ $$a2024-11-22-12:01:55
000131688 980__ $$aARTICLE