000131690 001__ 131690
000131690 005__ 20260112133226.0
000131690 0247_ $$2doi$$a10.1002/nme.7397
000131690 0248_ $$2sideral$$a137034
000131690 037__ $$aART-2024-137034
000131690 041__ $$aeng
000131690 100__ $$aOliveira, Michely Laís de
000131690 245__ $$aModified picard with multigrid method for two-phase flow problems in rigid porous media
000131690 260__ $$c2024
000131690 5203_ $$aTwo‐phase flow problems in porous media can be found in several areas, such as Geomechanics, Hydrogeology, Engineering and Biomedicine, for example. Typically, these processes are mathematically modeled by a highly nonlinear system of coupled partial differential equations. The nonlinearity of the system makes the design and implementation of robust numerical solvers a challenging task. In this work we consider the flow of two immiscible and incompressible fluids within a non‐deformable porous medium. A mixed pressure‐saturation formulation is adopted, allowing the transition from the unsaturated to saturated zones and maintaining numerical mass conservation. A cell‐centered finite volume method and an implicit Euler scheme are considered for the spatial and time discretization of the problem. In this work, we propose a solution method for two‐phase flow problems which is based on the combination of the modified Picard linearization method and a very simple cell‐centered multigrid algorithm that performs efficiently even for heterogeneous random media. This is shown in the numerical experiments, where two test problems are presented to demonstrate the robustness of the proposed solver.
000131690 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E2-417R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019-105574GB-I00$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-099536-A-I00
000131690 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000131690 590__ $$a2.9$$b2024
000131690 592__ $$a1.075$$b2024
000131690 591__ $$aMATHEMATICS, INTERDISCIPLINARY APPLICATIONS$$b26 / 136 = 0.191$$c2024$$dQ1$$eT1
000131690 593__ $$aApplied Mathematics$$c2024$$dQ1
000131690 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b44 / 175 = 0.251$$c2024$$dQ2$$eT1
000131690 593__ $$aNumerical Analysis$$c2024$$dQ1
000131690 593__ $$aEngineering (miscellaneous)$$c2024$$dQ1
000131690 594__ $$a6.1$$b2024
000131690 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000131690 700__ $$aPinto, Marcio Augusto Villela
000131690 700__ $$0(orcid)0000-0002-1598-2831$$aRodrigo, Carmen$$uUniversidad de Zaragoza
000131690 700__ $$0(orcid)0000-0002-9777-5245$$aGaspar, Francisco José$$uUniversidad de Zaragoza
000131690 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000131690 773__ $$g125, 5 (2024), e7397 [13 pp.]$$pInt. j. numer. methods eng.$$tInternational Journal for Numerical Methods in Engineering$$x0029-5981
000131690 8564_ $$s2319462$$uhttps://zaguan.unizar.es/record/131690/files/texto_completo.pdf$$yPostprint
000131690 8564_ $$s2492837$$uhttps://zaguan.unizar.es/record/131690/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000131690 909CO $$ooai:zaguan.unizar.es:131690$$particulos$$pdriver
000131690 951__ $$a2026-01-12-12:47:57
000131690 980__ $$aARTICLE