
Microprocessors and Microsystems 106 (2024) 105023

A
0

F
a
Y
a

b

A

K
D
E
N
P

1

n
a
u
a
e
c
w
o
d
f
d

b
f
s

h
R

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

lip-and-Patch: A fault-tolerant technique for on-chip memories of CNN
ccelerators at low supply voltage
amilka Toca-Díaz a, Reynier Hernández Palacios b, Rubén Gran Tejero a, Alejandro Valero a,∗

Department of Computer Science and Systems Engineering, Universidad de Zaragoza, Spain
Vicerrectoría de Investigaciones, Universidad de Camagüey, Cuba

R T I C L E I N F O

eywords:
eep learning
nergy efficiency
etwork accuracy
ermanent faults

A B S T R A C T

Aggressively reducing the supply voltage (𝑉𝑑𝑑) below the safe threshold voltage (𝑉𝑚𝑖𝑛) can effectively lead to
significant energy savings in digital circuits. However, operating at such low supply voltages poses challenges
due to a high occurrence of permanent faults resulting from manufacturing process variations in current
technology nodes.

This work addresses the impact of permanent faults on the accuracy of a Convolutional Neural Network
(CNN) inference accelerator using on-chip activation memories supplied at low 𝑉𝑑𝑑 below 𝑉𝑚𝑖𝑛. Based on
a characterization study of fault patterns, this paper proposes two low-cost microarchitectural techniques,
namely Flip-and-Patch, which maintain the original accuracy of CNN applications even in the presence of a
high number of faults caused by operating at 𝑉𝑑𝑑 < 𝑉𝑚𝑖𝑛. Unlike existing techniques, Flip-and-Patch remains
transparent to the programmer and does not rely on application characteristics, making it easily applicable to
real CNN accelerators.

Experimental results show that Flip-and-Patch ensures the original CNN accuracy with a minimal impact on
system performance (less than 0.05% for every application), while achieving average energy savings of 10.5%
and 46.6% in activation memories compared to a conventional accelerator operating at safe and nominal supply
voltages, respectively. Compared to the state-of-the-art ThUnderVolt technique, which dynamically adjusts the
supply voltage at run time and discarding any energy overhead for such an approach, the average energy
savings are by 3.2%.
. Introduction

Artificial Intelligence (AI) has emerged as a groundbreaking tech-
ology capable of analyzing vasts amounts of data, learn patterns,
nd make accurate predictions across numerous industrial sectors. To
nlock the full potential of AI, specialized hardware accelerators play
crucial role. These accelerators, like GPUs or TPUs, speed up the

xecution of AI workloads, enabling faster processing and more effi-
ient resource utilization than traditional CPU systems. However, as AI
orkloads grow in complexity and size, their computational and mem-
ry demands increase, resulting in a higher power consumption of AI
evices. Addressing power consumption in AI accelerators is essential
or energy efficiency, environmental sustainability, and responsible AI
eployment.

The energy efficiency of current computing systems is compromised
y conservative operation guardbands due to variations in the manu-
acturing process of current CMOS technology nodes. An example is the
upply voltage (𝑉𝑑𝑑) of the transistor. To ensure a safer system opera-

∗ Corresponding author.
E-mail address: alvabre@unizar.es (A. Valero).

tion against sudden 𝑉𝑑𝑑 droops, the supply voltage is conservatively
set above the limit of the safe voltage (𝑉𝑚𝑖𝑛) imposed by the worst-case
transistor. However, significant 𝑉𝑑𝑑 droops are infrequent events [1].
Moreover, overscaling 𝑉𝑑𝑑 results in energy wasting, since static and
dynamic energy scale linearly and quadratically with 𝑉𝑑𝑑 , respectively.

Many AI accelerators, such as those employed in the inference
process of deep Convolutional Neural Networks (CNNs), integrate large
and energy-hungry on-chip memories to store application parameters.
Such memory structures commonly employ 6-transistor SRAM bitcells
susceptible to the aforementioned process variations.

To reduce energy consumption, a viable solution adopted in vari-
ous microprocessor components, including on-chip memories, involves
relaxing the voltage guardband by lowering 𝑉𝑑𝑑 toward 𝑉𝑚𝑖𝑛 while
maintaining a fixed frequency, a technique commonly known as Dy-
namic Voltage Scaling (DVS) [1,2]. However, aggressively underscaling
𝑉𝑑𝑑 beyond 𝑉𝑚𝑖𝑛 is challenging due to the high number of perma-
nent faults appearing in vulnerable bitcells, causing them to remain
vailable online 10 February 2024
141-9331/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.micpro.2024.105023
eceived 4 September 2023; Received in revised form 31 January 2024; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2 February 2024

https://www.elsevier.com/locate/micpro
https://www.elsevier.com/locate/micpro
mailto:alvabre@unizar.es
https://doi.org/10.1016/j.micpro.2024.105023
https://doi.org/10.1016/j.micpro.2024.105023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2024.105023&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.
Fig. 1. Normalized accuracy for different supply voltages for weight and activation memories protected or unprotected with ECC codes with respect to the original accuracy
(fault-free operation mode at 0.6 V). For a given type of memory, the other memory is free of faults to isolate the respective effects.
r
a
M

stuck at a specific logic value [3]. Unfortunately, conventional Error-
Correcting Codes (ECC) offer limited coverage to permanent faults,
requiring larger storage capacities, complex encoders/decoders, and
higher energy consumption to ensure a reliable operation [4–6].

To illustrate this phenomenon, Fig. 1 depicts the averaged top-1
accuracy for a number of widely used CNN benchmarks as the 𝑉𝑑𝑑 of
on-chip memories of an accelerator reduces below 𝑉𝑚𝑖𝑛 (0.6 V).1 Results
are normalized to the original accuracy achieved at 0.6 V without
faults and distinguish between weight and activation memories. In turn,
memories are protected or unprotected with Single-Error Correction
Double-Error Detection (SECDED) ECC at a granularity of 16-bit words.
Notably, the inclusion of ECC yields substantial accuracy improvements
for both types of memories. However, even with ECC protection, weight
and activation memories impose an accuracy degradation exceeding
20% and 40%, respectively, when 𝑉𝑑𝑑 scales down to 0.54 V.

Notice too that activations are more vulnerable to faults than
weights. Unlike weights, which are fixed parameters, activations are
dynamically updated through repeated accumulation of partial sums,
usually requiring a larger value range than weights [7]. Assuming
separate application-specific fixed-point quantizations for weights and
activations, the latter usually require more integer bits [8,9], poten-
tially resulting in greater magnitude deviations under faults. This paper
focuses on activation memories and leaves weight memories for future
work.

In the context of CNN accelerators, researchers have proposed di-
verse mechanisms to address the impact on accuracy of a large number
of permanent faults as a result of 𝑉𝑑𝑑 < 𝑉𝑚𝑖𝑛. Some of these approaches
include custom retraining of neural networks under faults [10], en-
hancing the placement algorithm during the FPGA compilation process
to bypass faulty cells [3], or dynamically adjusting 𝑉𝑑𝑑 for individual
network layers at run time [11].

The above works either rely on the programmer or necessitate
offline profiling of the target CNN application to adapt the mechanism.
Unlike those approaches, in a previous work [12], we proposed a cou-
ple of microarchitectural mechanisms that do not impose any burden
to the programmer nor depend on application characteristics, making
them highly appealing to real CNN accelerators. By considering the
impact of faulty activation bitcells on CNN application accuracy, our
approach restores the original accuracy under 𝑉𝑑𝑑 as low as 0.54 V.
This is achieved thanks to modifying the representation of activations

1 See Section 3 for further details about the experimental environment.
2

t

with a few number of faults, and ensuring a fault-free backup storage
for activations with a high number of faults.

This paper extends our previous work [12] according to the fol-
lowing four main contributions: (i) the management of the proposed
backup storage is enhanced to support new CNN workloads under
evaluation, (ii) the fault characterization study is extended to different
supply voltage levels, (iii) a new performance metric based on the
softmax probability array is defined and measured for a more compre-
hensive evaluation of our approach, and (iv) the proposed technique
is quantitatively compared against the state-of-the-art ThUnderVolt
technique. We refer to our approach as Flip-and-Patch.

Experimental results show that Flip-and-Patch effectively reduces
the average energy consumption of activation memories by 10.5%
when compared to a conventional CNN accelerator operating at safe
𝑉𝑚𝑖𝑛 supply voltage. In comparison to the state-of-the-art ThUnderVolt
technique [11], and excluding the non-trivial energy overhead of this
approach, the average energy savings are by 3.2%. These numbers
are obtained with a minimal impact on system performance (less than
0.05% for every application) and preserving the original CNN accuracy.

The remainder of this paper is organized as follows. Section 2
provides a background for this work. Section 3 introduces a fault char-
acterization study that lays the foundations of our proposal. Section 4
presents the proposed microarchitectural techniques to counteract per-
manent faults. Section 5 refers to the experimental evaluation. Section 6
discusses related work, and finally, Section 7 concludes this paper.

2. Background

This section summarizes the CNN accelerator architecture and the
reliability model used in this work to evaluate the proposed approach.

2.1. Baseline CNN accelerator architecture

Our modeled baseline CNN architecture is based on state-of-the-
art accelerator models from both the academia and the industry, like
DaDianNao [21] and Google’s TPU [22], to speed up the inference
process in CNNs. Fig. 2 plots the hardware organization consisting of
a 16 × 16 Processing Element (PE) array, on-chip memory storage to
educe costly off-chip memory accesses, dispatchers for every memory,
nd a control unit. On-chip intermediate storage includes a pair of 2
iB activation memories and a 2 MiB weight memory. The compu-
ational and storage resources are sized according to the domain of

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.
Table 1
Main characteristics of the studied CNN benchmarks.

Benchmark Depth Average Activation representation Accuracy
layer size (integer, fraction)

AlexNet [13] 5 × Conv, 3 × FC, 3 × MaxPooling 153 KiB 4 bits, 4 bits 0.89
DenseNet [14] 120 × Conv, 1 × FC, 5 × Pooling 254 KiB 3 bits, 5 bits 0.92
Inception [15] 149 × Conv, 2 × FC, 7 × MaxPooling, 11 × Pooling 44 KiB 8 bits, 6 bits 0.79
MobileNet [16] 28 × Conv, 1 × Pooling 340 KiB 4 bits, 9 bits 0.88
ResNet [15] 53 × Conv, 1 × FC, 1 × MaxPooling, 1 × Pooling 178 KiB 4 bits, 4 bits 0.81
SqueezeNet [17] 26 × Conv, 4 × Pooling 431 KiB 6 bits, 4 bits 0.93
VGG16 [18] 13 × Conv, 3 × FC, 5 × MaxPooling 1.32 MiB 3 bits, 8 bits 0.81
VGG19 [18] 16 × Conv, 3 × FC, 5 × MaxPooling 606 KiB 8 bits, 2 bits 0.94
Xception [19] 6 × Conv, 1 × FC, 4 × MaxPooling, 1 × Pooling 289 KiB 7 bits, 6 bits 0.90
ZFNet [20] 5 × Conv, 3 × FC, 3 × MaxPooling 324 KiB 4 bits, 6 bits 0.83
r
f

Fig. 2. Overview of the baseline CNN accelerator.

embedded systems [23], although our proposal could be easily adapted
for larger accelerators.

The PE array is a systolic array processor with PEs interconnected
through a 2D mesh. Each PE independently computes 16-bit fixed-point
dot-products through partial sums with an input from one activation
memory, acting as input memory, and a weight from the weight mem-
ory. The dataflow in the PE array corresponds to the output stationary
approach described in SCALE-Sim [24].

Like EIE accelerator [25], activation memories swap their roles after
the computation of every network layer. In this way, a given activation
memory stores even layers and the counterpart memory stores odd
layers. On the other hand, the weight memory caches weights to be
issued in the proper order by the dispatcher to the PE array.

Similarly to previous CNN accelerator models [7,26,27], network
parameters occupy 16 bits and are represented in fixed-point arith-
metic, adjusting the number of integer and fraction bits to the require-
ments of each CNN application at run time (see Section 3).

The relatively small size of activation memories implies to spill to
off-chip memory those activations of layers exceeding 2 MiB. These
memories are arranged as scratchpad memories and designed to pro-
vide 16 activations (32 bytes per cycle) to the parallel processing in
the PE array. Finally, dispatchers are driven by the control unit, which
exploits control information of the currently computed layer.

2.2. Reliability model

Our reliability model for permanent faults is based on the publicly
available bit-level model of a real hardware platform, where Salami
3

et al. test the on-chip memory reliability of a VC707 Xilinx FPGA f
working under different low-power operation modes, underscaling 𝑉𝑑𝑑
from 0.6 V (𝑉𝑚𝑖𝑛) to 0.54 V [3]. Setting 𝑉𝑑𝑑 below 0.54 V is not
possible since the tested FPGA stops operating. The FPGA includes
4 MiB on-chip memory storage, which corresponds to the activation
storage of our CNN accelerator. Refer to the next section for a detailed
characterization of activation fault patterns.

Remark that this work focuses on permanent faults as a consequence
of underscaling 𝑉𝑑𝑑 below 𝑉𝑚𝑖𝑛. These faults manifest during the entire
period of time in which 𝑉𝑑𝑑 < 𝑉𝑚𝑖𝑛 and are detected during post-
fabrication testing before deploying the device in the field [28,29]. The
memory test does not depend on the applications to be run in the field.
In particular, all the memory bits are tested to check if they correctly
store ‘0’ and ‘1’ logic values at specific 𝑉𝑑𝑑 levels. A bitcell is considered
faulty if the read value does not match the last written value.

Dealing with other types of faults as a consequence of voltage noise,
aging effects, or particle strikes, which are unpredictable and appear at
specific execution cycles are out of the scope of this paper. A significant
advantage of our proposal over prior work is that, once the faulty
bitcells are established at a specific 𝑉𝑑𝑑 level, the proposed approach
operates exclusively at the microarchitecture level without any impact
on the regular operation of a CNN application.

Finally, similar to previous academic work [30] and commercial de-
vices [31], our baseline CNN accelerator has dedicated voltage domains
for logic and arrays, which allows reducing 𝑉𝑑𝑑 below 𝑉𝑚𝑖𝑛 in activation
memories while keeping the rest of the hardware components at 𝑉𝑑𝑑
above 𝑉𝑚𝑖𝑛 to avoid faults.

3. Characterization study

We have chosen a number of widely used CNN benchmarks with
different data representation, computational, and memory storage re-
quirements. Table 1 summarizes the main characteristics of these CNNs.
The depth in number of layers largely varies between the smallest
(AlexNet and ZFNet) and largest (Inception) neural network, as well as
the average layer size from tens to thousands of KiB. The next column
refers to the required number of bits for fixed-point representation,
distinguishing between integer and fraction parts, to avoid accuracy
losses with respect to the top-1 accuracy with 32-bit floating-point
(IEEE-754) representation. As observed, benchmarks require between 8
and 14 bits to represent activations, plus an additional bit for the sign.2
For simplicity, we assume that fraction bits are extended to represent up
to 16-bit words.3 All the CNNs run a colorectal cancer histology dataset
for image classification purposes [32]. All the presented results in this
work are averaged for the inference of the entire dataset consisting of
750 different test images. The rightmost column of the table shows the
accuracy of each CNN, ranging from 0.79 (Inception) to 0.94 (VGG19).

2 Unlike activations, whose integer bits range from 3 to 8, weights only
equire from 0 to 4 integer bits, making them inherently more resilient to
aults (see Fig. 1).

3 Exploiting bit over-provisioning as a backup for faulty bits deserves
urther exploration and is out of the scope of this work.

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.
Fig. 3. Normalized accuracy for different types of faulty activations: Low-Order (LO), Low- & High-Order (L&HO), and High-Order (HO), varying the supply voltage with respect
to the original (fault-free) accuracy.
More details about the experimental environment can be found in
Section 5.1.

The impact of faults on the accuracy of a CNN application mainly
depends on the position of the affected activation bits. More precisely,
for a fixed-point data type, the numerical deviation of a faulty activa-
tion scales exponentially with the significance of the affected bit. We
have defined three types of faulty activations according to the faulty
bit locations in 16-bit activation words:

• Low-Order (LO). These activations only contain faults in the least
significant byte.

• High-Order (HO). These activations only exhibit faults in the most
significant byte.

• Low- & High-Order (L&HO). Activations with this pattern show
faults in both least and most significant bytes.

The number of faulty activations grows with the 𝑉𝑑𝑑 reduction.
In particular, according to the reliability model of a real hardware
platform evaluated in [3], see Section 2.2, the percentage of faulty
activations is 0.005%, 0.107%, and 0.904%, for 0.58 V, 0.56 V, and
0.54 V 𝑉𝑑𝑑 values, respectively. In turn, for the faultiest operation mode
with 𝑉𝑑𝑑 = 0.54 V, LO, HO, and L&HO faulty activations represent
0.45%, 0.45%, and 0.004% of all the activations, respectively.

Fig. 3 shows the impact of the different types of faulty activations
on the accuracy of the studied CNN applications. Note that, for a
given CNN and type of faulty activation, the normalized accuracy with
respect to a reliable operation mode (𝑉𝑑𝑑 ≥ 𝑉𝑚𝑖𝑛 = 0.6 V) is shown as
stacked bars for the chosen 𝑉𝑑𝑑 levels.

LO activations do not compromise the accuracy of any CNN re-
gardless of the 𝑉𝑑𝑑 value. That is, the faultiest operation mode reaches
the original accuracy obtained with a reliable operation mode. This is
mainly due to the deviation of the resulting magnitude in LO activations
is rather low. In fact, according to Table 1, the least significant byte
only stores fraction bits for most of the studied benchmarks.

Inception is the only benchmark with a minor accuracy loss for LO
activations at 0.54 V. This is due to the combination of three main
effects. First, Inception requires up to 8 bits to represent the integer part
of activations, leading to larger magnitude deviations in LO activations.
Second, this benchmark has the lowest average layer size, in the sense
that it does not include as many redundant parameters as other CNNs,
which may mitigate the impact of faults. Third, Inception is the deepest
CNN. Despite the presence of pooling layers and Rectified Linear Units
(ReLU), which may reduce the impact of faults, deeper CNNs may
magnify and broadcast faulty activation values.

On the other hand, HO activations largely affect the accuracy of
all the neural networks. MobileNet, SqueezeNet, VGG16, Xception, and
ZFNet perform a random guessing at 𝑉𝑑𝑑 = 0.54 V. That is, they
suffer the greatest possible accuracy loss (accuracy scales down to one
eighth according to the eight classes of the dataset). Scaling 𝑉𝑑𝑑 up
to 0.56 V does not help much. In fact, it makes no difference for
Xception. Moreover, in SqueezeNet, VGG16, and ZFNet, 0.58 V are
4

still not enough to reach the original accuracy. For HO activations,
Fig. 4. Example of applicability of the flipping technique to an 8-bit HO activation.
Labels MSb and LSb stand for more and less significant bit, respectively. A stuck-at ‘1’
fault is located in a high-order bit of the activation.

the normalized accuracy ranges from 13.4% (SqueezeNet) to 72.2%
(DenseNet), with an average of 32.7%, for 𝑉𝑑𝑑 = 0.54 V.

Interestingly, despite the percentage of L&HO activations being as
low as 0.004% for 𝑉𝑑𝑑 = 0.54 V, they significantly hurt the accuracy of
CNNs like SqueezeNet, VGG16, and Xception down to 47.1%, 63.2%,
and 50.7%, respectively. This is mainly due to these benchmarks re-
quire a high memory storage demand (see Table 1), meaning that they
are more exposed to this type of faults in the activation memory. In
addition, these applications require a significant number of integer bits
to represent activations, increasing the probability of large numerical
deviations in L&HO activations.

Based on the above insights, we propose to turn HO activations into
LO activations, and provide an alternative fault-free memory storage for
L&HO activations. On the other hand, LO activations remain untouched
since they do not affect the accuracy of any CNN. Unless otherwise
stated, the remainder of this work assumes the faultiest operation
mode with 𝑉𝑑𝑑 = 0.54 V during the entire inference process of CNN
benchmarks.

4. Proposed approach: Flip-and-Patch

Flip-and-Patch is based on the observation that activations with
faults in the most significant byte (HO activations) largely degrade
the accuracy of CNN applications. In addition, a small number of
activations with faults in both most and less significant bytes (L&HO
activations) also compromise the accuracy of some CNNs. The proposed
approach consists of a couple of techniques. First, we introduce a word
flipping mechanism to deal with HO activations. Then, we propose a
patching approach to deal with L&HO activations. Finally, the overhead
of both techniques is quantified.

4.1. Flipping technique

The aim of this technique is to minimize the weight of faulty bits
in HO activations. Assuming a little-endian data representation, 𝑁-bit

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.

𝑎

H
A
t
a
i
f
o

n
b

i
a

Fig. 5. Proposed flipping technique consisting of 16 2:1 multiplexers of 16-bits width in the read port of an activation memory. The read block comprises activations from 𝑎0 to
15. Added circuitry is highlighted in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
v

t
h

O activations only contain faults in bit positions from 𝑁∕2 to 𝑁 − 1.
fter flipping an activation, a bit occupying the 𝑖th position occupies

he (𝑁−1−𝑖)-th position. For instance, for 𝑁 = 16, bit 12 becomes bit 3
nd vice versa. The flipping technique ensures that HO activations turn
nto LO activations, where bit faults are only located in low-order bits
rom 0 to 𝑁∕2− 1. The flipping action significantly reduces the impact
f a fault on the magnitude of the activation.

Fig. 4 illustrates an example of applicability of the flipping tech-
ique to an 8-bit HO activation with a stuck-at ‘1’ fault in the second
it from left to right. The fault transforms the original value −2.125

into −10.125. After flipping the activation, the value is −2.375, largely
reducing the magnitude deviation.

To differentiate between HO (flipped) activations and the remaining
(non-flipped) activations, the proposed design includes an 𝑓 control
bit per activation. This bit is set, for different 𝑉𝑑𝑑 levels, during post-
fabrication testing before deploying the device in the field, similarly to
as done in faulty bitmaps used by error detection/correction techniques
to differentiate between faulty and reliable contents [28,29]. Remark
that permanent faults appearing when the device is already in the field
due to aging phenomena could be covered using a more complex self-
testing mechanism and periodically writable control bits at run time
without further changes in the proposed approach.4

Fig. 5 shows how the read port of an activation memory is enhanced
to perform the flip operation in selected activations. The port includes
16 × 2:1 multiplexers of 16-bit width, according to the size of read
blocks in number of activations. These multiplexers are driven by the
𝑓𝑖 bit of activations, reversing back the bit order of a flipped activation
(𝑎𝑖[0:15]) when necessary (𝑓𝑖 = 1). Note that the write port (not
shown in the figure) requires the same number of multiplexers to store
activations in the proper bit order.

Fig. 6 confirms the effectiveness of the flipping technique, where
the cumulative distribution of number of permanent faults for every
bit position of activations is shown. In a conventional design, bit faults
accumulate linearly along the 16-bit width. On the other hand, the
proposed approach removes all the faults in high-order bits (apart from
those of L&HO activations), in exchange of faults accumulating faster
in low-order bits compared to the conventional design.

4 This design enhancement is beyond the scope of this paper. The reader
s referred to orthogonal work on specific aging-aware techniques for CNN
ccelerators [33–35].
5

−

Fig. 6. Cumulative distribution of number of faults for every bit position.

Fig. 7. Example of applicability of the patching technique to an 8-bit L&HO activation.
Stuck-at ‘1’ faults are located in both low-order and high-order bits of the activation.

4.2. Patching technique

The flipping technique does not remove the impact of L&HO acti-
vations on the CNN accuracy. The second technique consists of a tiny
cache, referred to as patching cache, that stores the original (fault-free)
alue of such activations.

Fig. 7 plots an example where the effectiveness of the flipping
echnique is compromised. Stuck-at ‘1’ faults in both low-order and
igh-order bits result in an L&HO activation where the original value
2.125 turns into −10.625. After flipping the L&HO activation, the

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.

r
l

m

q
a

t
g
r

Fig. 8. Proposed Flip-and-Patch technique in the read port of an activation memory. The read block comprises activations from 𝑎0 to 𝑎15. Required components of the patching
approach are highlighted in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Flowchart of a read operation using the Flip-and-Patch technique.
esulting magnitude deviation is reduced to −6.375, but it is much
arger than the value −2.375 obtained in the previous example (see

Fig. 4). In this case, it is imperative to retrieve the original value from
the patching cache.

Since the patching cache stores a reliable copy of L&HO activations
of the entire activation memory, alias addresses may conflict in the
small cache. To avoid conflict misses, the patching memory is organized
as a 2.5 KiB 5-way set-associative cache. The capacity is large enough
to store all the L&HO activations, even for a reliability model with 4×

ore faults than the former one (see Section 5.5).
Like 𝑓 bits for the flipping approach, the patch mechanism re-

uires a 𝑝 control bit per activation to determine whether a requested
ctivation is to be found in the patching cache or not.

Fig. 8 shows the main components of the proposed approach, dis-
inguishing between flipping and patching components in yellow and
reen, respectively. The combination of the two techniques requires to
eplace 2:1 with 4:1 multiplexers, which are driven by the 𝑝𝑖 and 𝑓𝑖 bits,

to select among three possibilities: neither flipping nor patching (00),
flipping (01), or patching (10).5 Therefore, during the post-fabrication
testing, both 𝑝 and 𝑓 control bits are set according to the type of
activation entry: original or LO (00), HO (01), and L&HO (10).

Fig. 9 depicts a flowchart of a read operation in an activation
memory enhanced with Flip-and-Patch. First, a 32-byte block consisting
of 16 activations is read, plus the 𝑓 and 𝑝 control bits of each individual

5 A simultaneous activation of both control bits is not allowed.
6

activation (32 bits). Then, every activation value is adjusted according
to the control bits as follows. If 𝑓𝑖 = 1, the corresponding multiplexer
forwards to the PE array the entry with the flipped activation (𝑎𝑖[0:15],
see Fig. 8). Otherwise, if 𝑝𝑖 = 0, the multiplexer forwards to the PE array
the original activation 𝑎𝑖[15:0].

In case of 𝑝𝑖 = 1, the multiplexer selects the latched path. These
latches temporarily store reliable copies of L&HO activations from the
patching cache. For design simplicity, the patching cache includes a
single 16-bit read port, forcing to read reliable L&HO activations of
a same block in consecutive cycles as shown in the flowchart. Never-
theless, the impact on system performance is small since the patching
cache is rarely exercised (L&HO activations represent 0.004% of all
the activations, see Section 3). Experimental results show that system
performance degradation is less than 0.05% for every CNN application.
Once the complete activation block is ready, it is forwarded to the PE
array.

Finally, the write port maintains 2:1 multiplexers to perform either
flipped or non-flipped writes to the activation memory. In addition,
16 latches are required to perform up to 16 sequential stores to the
patching cache if necessary.

4.3. Power, energy, area, and timing overhead

The proposed approach requires two control bits (𝑝 and 𝑓 bits) per
16-bit activation word. That is, the storage overhead grows linearly
with the size of the activation memory as one eighth of the total
effective capacity of the memory. In particular, for a 2 MiB activation

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.

p

h
R
p
t
r
H
o

a
7
a
a
c
b

r
L
i
a

5

d
t
f
d
t
o
s
v

𝑆

S
c

Table 2
Leakage power, dynamic energy, and area of activation memories with DVS (0.6 V)
and baseline (0.54 V) supply voltages. The overhead of Flip-and-Patch (F+P) is also
shown for 0.54 V.

Activation memory Patching

DVS Base F+P cache

Leakage power (mW) 315 269.8 288.5 7.8
Dynamic read energy (pJ) 83.8 64.5 71.3 2.5
Dynamic write energy (pJ) 66.4 48 53.7 2.7
Area (mm2) 6.207 7.129 0.031

memory, the storage overhead is 128 + 128 KiB. Note that, despite
conventional memory designs already include similar control bits to
distinguish between reliable and faulty contents [29], we conserva-
tively take into account the energy and area overhead of both bit
arrays.

Table 2 summarizes the leakage (static) power, dynamic energy,
and area of activation memories under different operation modes.
Dynamic Voltage Scaling (DVS) and baseline (Base) refer to activation
memories supplied at safe 0.6 V (𝑉𝑚𝑖𝑛) and faulty 0.54 V, respectively,
whereas label F+P alludes to the proposed Flip-and-Patch technique
applied to activation memories powered at 0.54 V. The overhead of
F+P consists of the required multiplexers, latches, and control bits.
Finally, the rightmost column refers to the overhead of the 2.5 KiB
patching cache (0.12% bit storage overhead with respect to the 2
MiB activation memory). Control bits and patching cache are supplied
at 0.6 V to avoid faults. All the results were obtained with CACTI-P
for a 32-nm technology node and ITRS low-power device type [36].
As observed, the power and energy overhead of the F+P approach
maintains the enhanced activation memory between the results for
0.6 V and 0.54 V operation modes, whereas the area overhead is 15.4%
of the conventional activation memory.

Finally, F+P includes a pair of control bits and 4:1 multiplexers in
the critical path of activation memories. As obtained with CACTI-P, the
access time increases from 2.69 ns to 2.75 ns. Therefore, we assume that
such a small timing overhead does not compromise the cycle time of
the accelerator.

5. Experimental evaluation

This section describes the simulation framework used to obtain ex-
perimental results. Then, results are presented and discussed, including
the impact on CNN accuracy of voltage underscaling and the energy
consumption of our proposed techniques. After that, a sensitivity study
to the number of faults is introduced. Finally, the effectiveness of our
approach is evaluated under the CIFAR-10 input dataset.

5.1. Simulation environment

Similarly to previous frameworks like Ares [9], our fault-injection
framework is built on top of the TensorFlow 2.5.0 library [37], which
executes high-level CNN descriptions specified in Python. In particular,
our framework snoops the output activation values to be provided as in-
put values to the following network layer and modifies them according
to the faulty memory bitmap. In this way, we model activation memory
operation as if the activation memory would have been exposed to
permanent bitcell faults. The snoop stage also performs flipping and
patching operations to the corresponding activation words as discussed
in Section 4.

Additionally, our framework has been also extended to model the
dataflow of the baseline CNN accelerator architecture introduced in
Section 2.1, incorporating the proposed Flip-and-Patch technique in the
memory ports. Similarly to other recent works [38–40], our framework
accurately calculates the execution time (in processor cycles), assuming
7

an access latency of one and three cycles for the patching cache and f
activation/weights memories, respectively. These latency penalties are
consistent with the timing results provided by CACTI-P at a clock
frequency of 1 GHz [36]. The systolic PE array accounts for one-cycle
penalty for each partial sum and accumulation in a PE.

Apart from performance results (i.e., CNN accuracy and execu-
tion time), our framework also provides statistics of read/write mem-
ory accesses required to estimate energy consumption. These results
are combined with the energy numbers per memory access obtained
with CACTI-P (see Table 2) to estimate overall energy consumption.
Refer to Section 3 for a description of CNN benchmarks and input
dataset.

5.2. Impact on accuracy

Fig. 10 depicts the normalized accuracy of different fault-tolerant
mechanisms in activation memories supplied at 0.54 V with respect to a
fault-free operation mode with 𝑉𝑑𝑑 over 𝑉𝑚𝑖𝑛. Base refers to the baseline
scheme without any fault protection. I-A ECC implements an iso-area
SECDED ECC protection with respect to the proposed approach, that
is, with an equivalent bit-cost. In this way, the activation memory is
protected at a granularity of 8-byte blocks. Label ECC refers to a higher
fault protection at a granularity of 2-byte activation words. That is, 5
ECC bits are required for a 16-bit activation. Label Flip refers to the
flipping technique alone, whereas F+P applies to both flipping and
atching techniques in conjunction.

Accuracy is severely affected for the baseline approach due to the
igh number of permanent faults, falling down to 32.5% on average.
esults are consistent with those discussed in Section 3. I-A ECC ex-
eriences a marginal accuracy improvement (if any) with respect to
he baseline, whereas ECC at a finer granularity improves the accu-
acy, reaching the original (fault-free) value in DenseNet and ResNet.
owever, the average accuracy is almost cut in half with respect to the
riginal value.

On the other hand, turning HO activations into LO activations
llows the flipping technique to boost the accuracy at least up to
7.2% (VGG16) for every benchmark. However, the presence of L&HO
ctivations prevents the flipping technique from reaching the original
ccuracy. The combination of flipping and patching techniques over-
omes this limitation, obtaining nearly the original accuracy in all the
enchmarks.

Notice too that, counter-intuitively, F+P obtains slightly less accu-
acy than Flip in MobileNet despite the latter approach incorporates
&HO activations. In line with previous work [41], small variations
n CNN parameters (e.g., L&HO activations) may actually improve the
ccuracy of the model.

.3. Deviation in softmax probability array

With the aim to provide more insights on the accuracy of the
ifferent approaches, this section focuses on the probability array of
he softmax function of CNN applications. This function establishes the
inal output of a CNN, assigning a probability to every class of the
ataset. In this probability array, the addition of every term sums up
o 1, and the probability value of one class usually dominates over the
thers, that is the top-1 prediction of the network. Unlike the previous
ection, this section does not focus exclusively on the top-1 accuracy
alue but on the probabilities of all the dataset classes.

𝐷 =
𝑁−1
∑

𝑖=0
|𝑃𝑃𝐴[𝑖] − 𝑂𝑃𝐴[𝑖]| (1)

In particular, we define the softmax deviation (SD) metric as Eq. (1).
D accumulates the absolute probability differences for 𝑁 dataset
lasses between the proposed probability array (PPA) obtained with a
ault-tolerant approach and the original probability array (OPA) of the

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.
Fig. 10. Normalized accuracy of different approaches at 𝑉𝑑𝑑 = 0.54 V with respect to a conventional fault-free operation mode (𝑉𝑑𝑑 ≥ 𝑉𝑚𝑖𝑛).
Fig. 11. Distribution of softmax deviation (SD) at 𝑉𝑑𝑑 = 0.54 V with respect to a conventional fault-free operation mode (𝑉𝑑𝑑 ≥ 𝑉𝑚𝑖𝑛).
conventional (fault-free) design. Note that SD ranges from 0 (exactly
the same probability arrays) and 2 (both PPA and OPA are completely
biased to different classes).

Fig. 11 shows the SD distributions as box-and-whisker plots for
the entire input dataset. The top and bottom whiskers represent the
maximum and minimum softmax deviations, respectively, whereas the
top and bottom box edges specify the 75th and 25th percentiles of
the distribution. Finally, the line within the box refers to the median
value.

The baseline and IA-ECC approaches show wide SD distributions. In
fact, for most applications, including CNNs with moderate
(e.g., AlexNet or DenseNet) and high (e.g., MobileNet or Inception)
accuracy loss, there are input images where the obtained probability
array is exactly the same as the original array, or completely biased to
different classes. This confirms that permanent faults impact differently
on the softmax classifier depending on the input image.

SD distributions help appreciate accuracy differences between ECC
and the proposed techniques. In particular, whereas all these ap-
proaches show a 100% top-1 accuracy in DenseNet and ResNet
(Fig. 10), SD distributions are wider for ECC, that is, this approach
has larger softmax probability deviations with respect to the proposed
techniques. In turn, slight SD differences can be seen between Flip and
F+P for these applications.

Finally, note that Inception and SqueezeNet are the only CNNs
where F+P obtains a relatively large top whisker. In this case, for a
few input images, Flip-and-Patch obtains different softmax probability
arrays than the fault-free approach, but it still preserves nearly the
8

average original top-1 accuracy (Fig. 10).
5.4. Energy consumption

The end-objective of this work is reducing energy consumption of
activation memories by aggressively lowering the supply voltage be-
yond the capability of DVS solutions, while preserving the application
accuracy. This section quantifies the energy savings of the proposed
Flip-and-Patch technique. In addition, energy consumption of the state-
of-the-art ThUnderVolt technique is also shown. The next subsection
briefly describes this approach. Then, energy results are discussed.

5.4.1. ThUnderVolt approach
ThUnderVolt is a framework designed to enable aggressive voltage

underscaling in CNN accelerators [11]. In particular, ThUnderVolt
detects and recovers from timing errors affecting the PE array. This
approach is based on the observation that the timing error rate sig-
nificantly varies across layers of a given CNN. In this way, contrary to
our approach operating at a fixed supply voltage level (𝑉𝑑𝑑 = 0.54 V)
for the entire inference process, ThUnderVolt proposes a dynamic per-
layer voltage underscaling scheme to mitigate the impact on accuracy
of such errors, adjusting 𝑉𝑑𝑑 from 0.6 V to 0.54 V at run time.

Despite the primary focus of ThUnderVolt is on reducing timing
errors in logic circuitry, we adapt the proposed voltage-underscaling
fitting algorithm to the activation memories of the accelerator, reducing
the impact of permanent faults. More precisely, we carefully select the
most aggressive supply voltage for each layer, ensuring that the original
accuracy is preserved. Such a fine-grain supply voltage setup per layer
requires a large profiling effort that not only depends on several faulty

bitmaps (one for each 𝑉𝑑𝑑 value) but also on each CNN application.

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.

t

d
C
o

s
a
o
t
e
w

c
a

s
c
a
S
o
t
t
c
a
w
f
t
n

a
e
n
b

Fig. 12. Normalized energy consumption of an activation memory powered at 0.6 V with DVS, at a variable supply voltage with ideal ThUnderVolt (iTUV), and at 0.54 V with
he proposed Flip-and-Patch (F+P) technique.
In this work, we compare Flip-and-Patch against an ideal ThUn-
erVolt approach that not only assumes a detailed profiling for every
NN benchmark but also discards the non-trivial timing and energy
verheads associated with per-layer 𝑉𝑑𝑑 transitions [42]. These factors

collectively establish ThUnderVolt as an ideal approach for reducing
𝑉𝑑𝑑 below 𝑉𝑚𝑖𝑛.

5.4.2. Results
Fig. 12 plots the normalized energy consumption of an enhanced

activation memory supplied at faulty 0.54 V with the proposed F+P
technique compared to a conventional activation memory powered at
safe 0.6 V using DVS. The ideal ThUnderVolt (iTUV) approach varies
𝑉𝑑𝑑 from 0.6 V to 0.54 V depending on the requirement of each layer.
Energy is classified as either leakage or dynamic consumption. In turn,
dynamic energy is split into read and write operations in the activation
memory. For each type of energy, label Ovh refers to the overhead of
the proposed F+P approach as discussed in Section 4.3.

The contribution of leakage expenses over the total energy con-
umption varies among CNNs and mainly depends on the memory
ccess pattern. That is, applications like SqueezeNet, with a high reuse
f activations within the PE array, perform less accesses to the activa-
ion memory and consequently mitigate the contribution of dynamic
xpenses. DenseNet, Inception, and VGG19 are the only benchmarks
here the leakage contribution of F+P, including the leakage overhead,

noticeably surpasses such a type of energy for iTUV. This is mainly
due two main reasons. First, like SqueezeNet, these CNNs exhibit a
high reuse of activations. Second, DenseNet and Inception are the two
deepest CNNs and the execution time has a remarkable impact on the
leakage expenses. Compared to DVS, the leakage overhead of F+P is
ompensated by the leakage savings provided by the 𝑉𝑑𝑑 reduction in
ll the benchmarks.

The 𝑉𝑑𝑑 reduction has a greater impact on dynamic energy savings,
ince these expenses grow quadratically with 𝑉𝑑𝑑 . In this sense, appli-
ations with a poor activation reuse (high dynamic consumption), such
s VGG16, obtain a larger reduction of overall energy consumption.
imilarly to the leakage energy, compared to DVS, the dynamic energy
verhead of F+P is largely compensated in all the studied benchmarks
hanks to underscaling 𝑉𝑑𝑑 . The same effect can be appreciated, for all
he benchmarks except DenseNet and ResNet, comparing the dynamic
ontributions of iTUV and F+P. In these two applications, iTUV takes
dvantage over F+P because the majority of layers operate at 0.54 V
ithout hurting the accuracy of the network. Finally, reads are more

requent than write operations for all the analyzed CNNs, since activa-
ions of a given layer are usually read several times according to the
umber of weight filters applied to the input data but written just once.

Overall, the average energy savings of Flip-and-Patch are by 3.2%
nd 10.5% compared to ideal ThUnderVolt and DVS, respectively. Such
nergy savings might seem relatively low; however, recall that: (i)
either timing nor energy overheads are assumed for ideal ThUnderVolt
ecause of supply voltage adjustment at run time, and (ii) 𝑉 just
9

𝑑𝑑
reduces from 0.6 V to 0.54 V. Further supply voltage reductions are
not possible since the assumed real hardware platform stops operating
(see Section 2.2). Compared to a conventional accelerator powered at
nominal supply voltage (0.9 V), the average energy savings are as much
as 46.6%.

5.5. Sensitivity analysis

This section aims to quantify the potential impact on accuracy
resulting from more challenging reliability scenarios that future tech-
nologies may face. These scenarios could be the result of either a
deeper voltage underscaling beyond 0.54 V or the assumption that fu-
ture technology nodes will exhibit more pronounced process variation
effects.

Specifically, we have generated scenarios with two, three, and four
times more faulty bit cells than the former reliability scenario assumed
in previous experiments. To do this, we applied the real memory faulty
bitmap (see Section 2.2) several times on the activation memories. In
this way, the 4× reliability scenario consists of 1.8% of LO activations,
1.8% of HO activations, and 0.014% of L&HO activations.

Fig. 13 illustrates the raw accuracy in the former reliability scenario
(1×) and prospective ones (2×, 3×, and 4×). As expected, accuracy
drops with the number of faults. AlexNet, DenseNet, ResNet, and
VGG19, where the ECC-based and even the baseline scheme obtain
relatively moderate accuracy losses under the 1× scenario, significantly
degrade the accuracy under more faults, providing a random guessing
in DenseNet. On the other hand, the flipping technique alone and
combined with patching maintain the original accuracy value in these
applications regardless of the reliability scenario.

For the remaining benchmarks, flipping alone does not hold the
original accuracy mainly due to a significant number of L&HO activa-
tions, obtaining a large accuracy degradation for Inception,
SqueezeNet, VGG16, and Xception. Nevertheless, the combination of
both flipping and patching boosts the accuracy close to the original
value. The accuracy loss of F+P in these applications is exclusively
attributed to the high number of LO activations (both original LO
activations and those HO activations transformed to LO activations with
the flipping approach), since the patching cache is large enough to store
all the L&HO activations, including those of the 4× reliability model
(see Section 4.2). On the other hand, in MobileNet and ZFNet, F+P
achieves the original accuracy regardless of the number of faults.

5.6. CIFAR-10 dataset

With the aim to investigate the generality of Flip-and-Patch, this
section evaluates our proposed approach under an alternative input
dataset for image classification: CIFAR-10 [43]. For every studied
CNN benchmark, Table 3 summarizes the minimum number of integer
and fraction bits for activations that ensure the same accuracy as
a 32-bit floating point (IEEE-754) representation and the obtained

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.

C

Fig. 13. Raw accuracy for different fault-tolerant approaches under 1×, 2×, 3×, and 4× reliability scenarios. The horizontal red line represents the original accuracy of each neural
network.
Fig. 14. Normalized accuracy of baseline and Flip-and-Patch approaches at 𝑉𝑑𝑑 = 0.54 V with respect to a conventional fault-free operation mode (𝑉𝑑𝑑 ≥ 𝑉𝑚𝑖𝑛) for colorectal and
IFAR-10 datasets.
Table 3
Activation quantization and accuracy of the studied CNN benchmarks for Colorectal
and CIFAR-10 datasets.

Benchmark Colorectal CIFAR-10

Activation rep. Accuracy Activation rep. Accuracy
(integer, fraction) (integer, fraction)

AlexNet 4 bits, 4 bits 0.89 4 bits, 5 bits 0.71
DenseNet 3 bits, 5 bits 0.92 9 bits, 5 bits 0.84
Inception 8 bits, 6 bits 0.79 8 bits, 8 bits 0.86
MobileNet 4 bits, 9 bits 0.88 4 bits, 6 bits 0.59
ResNet 4 bits, 4 bits 0.81 5 bits, 5 bits 0.72
SqueezeNet bits, 4 bits 0.93 4 bits, 7 bits 0.71
VGG16 3 bits, 8 bits 0.81 3 bits, 9 bits 0.80
VGG19 8 bits, 2 bits 0.94 2 bits, 8 bits 0.77
Xception 7 bits, 6 bits 0.90 7 bits, 5 bits 0.78
ZFNet 4 bits, 6 bits 0.83 4 bits, 8 bits 0.62

accuracy value under CIFAR-10. For comparison purposes, the table
also includes the results for the colorectal cancer histology dataset used
in the previous experiments. The new dataset consists of 6,500 test
images.

As observed, for a given CNN benchmark, the number of integer and
fraction bits is quite similar for the two studied datasets. Differences
represent at most three bits apart from DenseNet and VGG19. On the
10
other hand, in all the benchmarks except Inception, the accuracy value
is lower for CIFAR-10 with respect to the colorectal dataset. This is
mainly due to the number of training epochs has been significantly
reduced for CIFAR-10. Nevertheless, this gives us the opportunity to
evaluate Flip-and-Patch under CNN applications with a relatively low
accuracy.

Fig. 14 shows the normalized accuracy for baseline and Flip-and-
Patch approaches supplied at 0.54 V with respect to a fault-free op-
eration mode with 𝑉𝑑𝑑 > 𝑉𝑚𝑖𝑛 for the two different datasets. In most
benchmarks, differences between datasets are small. Without any fault-
protection mechanism, the baseline scheme suffers a significant accu-
racy degradation. On the other hand, F+P nearly reaches the original
accuracy in all the benchmarks. The most notable difference between
datasets can be found in DenseNet, where the accuracy of the baseline
scheme dramatically drops in CIFAR-10. This is mainly due to, in such
a dataset, the required number of integer bits to represent activations
scales up to 9 bits. On average, the normalized accuracy for baseline
and Flip-and-Patch is 28.5% and 99.6%, respectively, for CIFAR-10.

6. Related work

This section classifies prior work into approaches focusing on CNN
accelerators supplied at 𝑉 below 𝑉 , patching techniques for
𝑑𝑑 𝑚𝑖𝑛

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.
general-purpose microprocessors, recent approaches exploiting redun-
dant logic or algorithm-based fault tolerant strategies, and software
techniques consisting of clipping algorithms.

6.1. CNN accelerators

State-of-the-art approaches for CNN accelerators focus their effort
on determining which parameters of the neural networks are most
sensitive to the final output. Once these parameters are identified,
an attempt is made to protect them in order to avoid large accuracy
deviations when reducing the supply voltage during the inference
process.

ThUnderVolt characterizes which layers of the CNNs are most sus-
ceptible to faults, and consequently, each layer defines a different
supply voltage in order to minimize the impact on accuracy [11]. See
Section 5.4.1 for further details.

Salami et al. identify the most vulnerable CNN layers and modify
the placement algorithm of an FPGA compilation process to make sure
that those layers are not stored in faulty memory blocks [3]. Similarly
to this work, we identify faulty blocks with a memory test prior to the
deployment of the device in the field. However, unlike Salami et al.,
our proposed approach does not depend on the characteristics of neural
networks neither alters the placement algorithm of an FPGA.

Zhang et al. expose the training process of the neural network to per-
manent faults with the aim to compute a set of weights that hides the
impact on accuracy of faults during the inference process [10]. How-
ever, similarly to the above works, this solution is tailored to a specific
neural network architecture and requires programmer intervention.

Finally, word and bit masking techniques have been proposed to
deal with transient faults in weight memories [8] and registers within
the PE array [44]. In particular, they reset faulty weights to zero,
protect the sign bit assuming the same logic value of the adjacent bit,
or protect the remaining bits assuming the same logic value of the sign
bit. However, these mechanisms detect faults at bit level by monitoring
circuit delays with the use of Razor double-sampling methods, which
may incur significant power consumption.

6.2. Patching techniques for general-purpose processors

In the context of CPU superscalar processors, idle entries of pipeline
structures like trace caches, MSHR, or store queues have been exploited
as patching entries storing reliable replicas of faulty L1 cache con-
tents [28]. This solution complicates the design and verification of
the processor, since memory consistency management is propagated to
such pipeline structures.

Patching has also been used in GPU register files. GR-Guard ex-
ploits dead registers containing useless data to store useful data from
faulty registers [29]. Dead registers are identified at run time with
the assistance of the compiler and modifications to the instruction
set. Alternatively, DC-Patch leverages the observation that registers
are compressible at run time, and allocates compressed data to faulty
registers, avoiding the use of defective bitcells [45].

6.3. Redundant logic and algorithm-based fault tolerance

Li et al. propose hardening mechanisms that detect and correct tran-
sient faults at run time with the addition of Triple Modular Redundant
(TMR) logic to the conventional data path [46]. To reduce the TMR
overhead, Libano et al. only protect those CNN layers identified as more
vulnerable to faults [47].

Algorithm-Based Fault Tolerant (ABFT) approaches have been
shown as an effective alternative to full redundant system solutions for
CNN accelerators. These techniques compute checksums for input data,
store them with the original data, perform the original and redundant
computation, verify outputs, and correct transient faults at run time.
To eliminate the overhead of fault correction, recent studies focus on
11
convolution operations, detecting faults at run time with the goal of
overclocking the system [48] or exploiting the inherent characteristics
of fixed-point arithmetic [49]. Santos et al. have also employed ABFT
strategies in the context of GPU systems [50]. Additionally, they
redesign the maxpool layers of CNNs to mitigate the impact of transient
faults.

6.4. Clipping algorithms

Software clipping algorithms identify long numerical deviations in
CNN parameters as a consequence of faults and mitigate their contri-
bution to the output. Ozen and Orailoglu employ regularization terms
during the training process to penalize outlier weights and minimize
the loss function [41]. Other works profile the CNN applications and
modify their architecture, adding layers that restrict outlier parameters
to a defined numerical range during the inference process [51,52].

7. Conclusions and future work

This work has explored the possibility of drastically reducing the
supply voltage of activation memories in CNN inference accelerators
to save energy consumption. To address the impact on CNN accuracy
of bitcell permanent faults as a consequence of supply voltage under-
scaling, this work has proposed a couple of low-cost microarchitectural
mechanisms based on flipping and patching approaches. These mecha-
nisms are a consequence of a characterization study that identified the
impact on accuracy of different fault patterns in activation memories.

The flipping technique transforms the representation of those acti-
vations with a low number of faults, whereas the patching technique
provides a fault-free backup storage for those activations with a high
number of faults. Contrary to state-of-the-art approaches, the proposed
Flip-and-Patch technique does not add any burden to the programmer
neither depend on specific characteristics of CNN applications.

Experimental results have shown that, compared to a conventional
CNN accelerator supplied at a safe voltage of 0.6 V, an enhanced
accelerator supplied at 0.54 V with Flip-and-Patch reduces the average
energy consumption of activation memories by 10.5%, while maintain-
ing the original (fault free) accuracy with a negligible impact on system
performance (less than 0.05% for every application). Compared to the
state-of-the-art ThUnderVolt approach, which dynamically adjusts the
supply voltage at run time and assuming neither timing nor energy
overheads for its implementation, the average energy savings are by
3.2%.

As future directions, we plan to study the applicability of Flip-
and-Patch in weight memories and other AI accelerators such as those
employed to speed up the inference process of transformer networks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

All authors acknowledge support from grants (1)
PID2019-105660RB-C21 and PID2022-136454NB-C22 from Agencia
Estatal de Investigación (AEI), Spain, and (2) gaZ: T58_23R research
group from Dept. of Science, University and Knowledge Society, Gov-
ernment of Aragon, Spain. The funding agencies had no role in study
design, data collection and analysis, decision to publish, or preparation

of the manuscript.

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.
References

[1] J. Leng, Y. Zu, V.J. Reddi, GPU voltage noise: Characterization and hierarchical
smoothing of spatial and temporal voltage noise interference in GPU archi-
tectures, in: Proceedings of the IEEE 21st International Symposium on High
Performance Computer Architecture, 2015, pp. 161–173.

[2] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose, V.J. Reddi, Safe limits on voltage
reduction efficiency in GPUs: A direct measurement approach, in: Proceedings
of the 48th Annual IEEE/ACM International Symposium on Microarchitecture,
2015, pp. 294–307.

[3] B. Salami, O. S. Unsal, A. Cristal Kestelman, Comprehensive evaluation of supply
voltage underscaling in FPGA on-chip memories, in: Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture, 2018, pp.
724–736, http://dx.doi.org/10.1109/MICRO.2018.00064.

[4] C. Wilkerson, H. Gao, A.R. Alameldeen, Z. Chishti, M. Khellah, S. Lu, Trading off
cache capacity for reliability to enable low voltage operation, in: Proceedings of
the ACM/IEEE 35th Annual International Symposium on Computer Architecture,
2008, pp. 203–214.

[5] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, J. Hoe, Multi-bit error tolerant
caches using two-dimensional error coding, in: Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture, 2007, pp. 197–209.

[6] J. Tan, Q. Wang, K. Yan, X. Wei, X. Fu, Saca-FI: A microarchitecture-level
fault injection framework for reliability analysis of systolic array based CNN
accelerator, Elsevier Future Gener. Comput. Syst. 147 (2023) 251–264.

[7] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, H.-J. Yoo, UNPU: An energy-efficient
deep neural network accelerator with fully variable weight bit precision, IEEE
J. Solid-State Circuits 54 (2019) 173–185.

[8] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S.K. Lee, J.M. Hernández-
Lobato, G.-Y. Wei, D. Brooks, Minerva: Enabling low-power, highly-accurate deep
neural network accelerators, in: Proceedings of the 43rd International Symposium
on Computer Architecture, 2016, pp. 267–278.

[9] B. Reagen, U. Gupta, L. Pentecost, P. Whatmough, S.K. Lee, N. Mulholland,
D. Brooks, G.-Y. Wei, Ares: A framework for quantifying the resilience of
deep neural networks, in: Proceedings of the 55th ACM/ESDA/IEEE Design
Automation Conference, 2018, pp. 1–6.

[10] J.J. Zhang, T. Gu, K. Basu, S. Garg, Analyzing and mitigating the impact
of permanent faults on a systolic array based neural network accelerator, in:
Proceedings of the IEEE 36th VLSI Test Symposium, 2018, pp. 1–6.

[11] J. Zhang, K. Rangineni, Z. Ghodsi, S. Garg, ThUnderVolt: Enabling aggressive
voltage underscaling and timing error resilience for energy efficient deep learning
accelerators, in: Proceedings of the 55th ACM/ESDA/IEEE Design Automation
Conference, 2018, pp. 1–6.

[12] Y. Toca-Díaz, N. Landeros Muñoz, R. Gran Tejero, A. Valero, On fault-tolerant
microarchitectural techniques for voltage underscaling in on-chip memories of
CNN accelerators, in: Proceedings of the 26th Euromicro Conference on Digital
System Design, 2023, pp. 138–145.

[13] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012)
1097–1105.

[14] F.N. Iandola, M.W. Moskewicz, S. Karayev, R.B. Girshick, T. Darrell, K. Keutzer,
DenseNet: Implementing efficient ConvNet descriptor pyramids, 2014, CoRR
abs/1404.1869, URL http://arxiv.org/abs/1404.1869.

[15] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-ResNet
and the impact of residual connections on learning, in: Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, AAAI Press, 2017, pp.
4278–4284.

[16] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, H. Adam, MobileNets: Efficient convolutional neural networks for
mobile vision applications, 2017, CoRR abs/1704.04861, URL http://arxiv.org/
abs/1704.04861.

[17] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5mb
model size, 2016, CoRR abs/1602.07360.

[18] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, 2014, CoRR abs/1409.1556.

[19] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 1251–1258.

[20] M.D. Zeiler, R. Fergus, Visualizing and Understanding Convolutional Networks,
in: Springer Lecture Notes in Computer Science, vol. 8689, 2014.

[21] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, O.
Temam, DaDianNao: A machine-learning supercomputer, in: Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014,
pp. 609–622.

[22] N.P. Jouppi, C. Young, N. Patil, D.A. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J.
Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T.V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C.R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S.
Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
12
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A.
Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A.
Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, D.H. Yoon, In-datacenter performance analysis of a tensor
processing unit, in: Proceedings of the 44th Annual International Symposium on
Computer Architecture, 2017, pp. 1–12.

[23] K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami, A. Yazdanbakhsh, An
evaluation of edge TPU accelerators for convolutional neural networks, in:
Proceedings of the IEEE International Symposium on Workload Characterization,
2022, pp. 79–91.

[24] A. Samajdar, Y. Zhu, P.N. Whatmough, M. Mattina, T. Krishna, SCALE-sim:
Systolic CNN accelerator, 2018, CoRR abs/1811.02883, URL http://arxiv.org/
abs/1811.02883.

[25] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M.A. Horowitz, W.J. Dally, EIE:
Efficient inference engine on compressed deep neural network, in: Proceedings of
the 43rd International Symposium on Computer Architecture, 2016, pp. 243–254.

[26] P. Judd, J. Albericio, T. Hetherington, T.M. Aamodt, A. Moshovos, Stripes:
Bit-serial deep neural network computing, in: Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture, 2016, pp. 1–12.

[27] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, H. Esmaeilzadeh,
Bit fusion: Bit-level dynamically composable architecture for accelerating deep
neural network, in: Proceedings of the ACM/IEEE 45th Annual International
Symposium on Computer Architecture, 2018, pp. 764–775.

[28] D.J. Palframan, N. Kim, M.H. Lipasti, iPatch: Intelligent fault patching to improve
energy efficiency, in: Proceedings of the IEEE 21st International Symposium on
High Performance Computer Architecture, 2015, pp. 428–438.

[29] J. Tan, S.L. Song, K. Yan, X. Fu, A. Marquez, D. Kerbyson, Combating the
reliability challenge of GPU register file at low supply voltage, in: Proceedings
of the 25th International Conference on Parallel Architectures and Compilation
Techniques, 2016, pp. 3–15.

[30] A. Chatzidimitriou, G. Panadimitriou, D. Gizopoulos, S. Ganapathy, J. Kala-
matianos, Assessing the effects of low voltage in branch prediction units, in:
Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software, 2019, pp. 127–136.

[31] ARM, ARM11 MPCore™ Processor. Revision: r2p0. Technical Reference Manual,
Tech. Rep., ARM Limited, 2008.

[32] J.N. Kather, C.-A. Weis, F. Bianconi, S.M. Melchers, L.R. Schad, T. Gaiser, A.
Marx, F.G. Zöllner, Multi-class texture analysis in colorectal cancer histology,
Nat. Sci. Rep. 6 (2016).

[33] M.A. Hanif, M. Shafique, DNN-life: An energy-efficient aging mitigation frame-
work for improving the lifetime of on-chip weight memories in deep neural
network hardware architectures, in: Proceedings of the Design, Automation &
Test in Europe Conference & Exhibition, 2021, pp. 729–734.

[34] S. Salamin, G. Zervakis, O. Spantidi, I. Anagnostopoulos, J. Henkel, H. Amrouch,
Reliability-aware quantization for anti-aging NPUs, in: Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition, 2021, pp. 1460–1465.

[35] N. Landeros Muñoz, A. Valero, R. Gran Tejero, D. Zoni, Gated-CNN: Combating
NBTI and HCI aging effects in on-chip activation memories of convolutional
neural network accelerators, Elsevier J. Syst. Archit. 128 (2022) 1–13.

[36] R. Balasubramonian, A.B. Kahng, N. Muralimanohar, A. Shafiee, V. Srinivas,
CACTI 7: New tools for interconnect exploration in innovative off-chip memories,
ACM Trans. Archit. Code Optim. (ISSN: 1544-3566) 14 (2) (2017).

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O.
Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-scale machine learning on heterogeneous distributed systems, 2016, CoRR
abs/1603.04467, arXiv:1603.04467.

[38] A. Parashar, P. Raina, Y.S. Shao, Y.-H. Chen, V.A. Ying, A. Mukkara, R. Venkate-
san, B. Khailany, S.W. Keckler, J. Emer, Timeloop: A systematic approach to DNN
accelerator evaluation, in: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, 2019, pp. 304–315.

[39] L. Mei, H. Liu, T. Wu, H.E. Sumbul, M. Verhelst, E. Beigne, A uniform
latency model for DNN accelerators with diverse architectures and dataflows, in:
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition,
2022, pp. 220–225.

[40] T. Hotfilter, P. Schmidt, J. Höfer, F. Kreß, T. Harbaum, J. Becker, An analytical
model of configurable systolic arrays to find the best-fitting accelerator for a
given DNN workload, in: Proceedings of the DroneSE and RAPIDO: System
Engineering for Constrained Embedded Systems, 2023, pp. 73–78.

[41] E. Ozen, A. Orailoglu, SNR: Squeezing numerical range defuses bit error
vulnerability surface in deep neural networks, ACM Trans. Embed. Comput. Syst.
20 (5s) (2021).

http://refhub.elsevier.com/S0141-9331(24)00018-8/sb1
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb1
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb1
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb1
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb1
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb1
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb1
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb2
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb2
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb2
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb2
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb2
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb2
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb2
http://dx.doi.org/10.1109/MICRO.2018.00064
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb4
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb4
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb4
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb4
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb4
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb4
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb4
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb5
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb5
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb5
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb5
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb5
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb6
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb6
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb6
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb6
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb6
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb7
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb7
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb7
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb7
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb7
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb8
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb8
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb8
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb8
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb8
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb8
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb8
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb9
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb9
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb9
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb9
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb9
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb9
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb9
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb10
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb10
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb10
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb10
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb10
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb11
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb11
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb11
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb11
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb11
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb11
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb11
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb12
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb12
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb12
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb12
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb12
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb12
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb12
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb13
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb13
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb13
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb13
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb13
http://arxiv.org/abs/1404.1869
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb15
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb15
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb15
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb15
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb15
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb15
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb15
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb19
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb19
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb19
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb19
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb19
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb20
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb20
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb20
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb21
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb21
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb21
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb21
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb21
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb21
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb21
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb22
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb23
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb23
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb23
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb23
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb23
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb23
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb23
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
http://arxiv.org/abs/1811.02883
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb25
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb25
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb25
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb25
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb25
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb26
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb26
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb26
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb26
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb26
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb27
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb27
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb27
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb27
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb27
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb27
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb27
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb28
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb28
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb28
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb28
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb28
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb29
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb29
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb29
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb29
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb29
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb29
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb29
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb30
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb30
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb30
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb30
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb30
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb30
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb30
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb31
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb31
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb31
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb32
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb32
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb32
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb32
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb32
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb33
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb33
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb33
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb33
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb33
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb33
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb33
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb34
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb34
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb34
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb34
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb34
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb35
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb35
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb35
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb35
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb35
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb36
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb36
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb36
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb36
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb36
http://arxiv.org/abs/1603.04467
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb38
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb38
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb38
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb38
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb38
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb38
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb38
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb39
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb39
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb39
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb39
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb39
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb39
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb39
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb40
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb40
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb40
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb40
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb40
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb40
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb40
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb41
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb41
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb41
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb41
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb41

Microprocessors and Microsystems 106 (2024) 105023Y. Toca-Díaz et al.
[42] J. Park, D. Shin, N. Chang, M. Pedram, Accurate modeling and calculation
of delay and energy overheads of dynamic voltage scaling in modern high-
performance microprocessors, in: Proceedings of the ACM/IEEE International
Symposium on Low-Power Electronics and Design, 2010, pp. 419–424.

[43] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Tech.
Rep., University of Toronto, 2009.

[44] B. Salami, O.S. Unsal, A.C. Kestelman, On the resilience of RTL NN accelerators:
Fault characterization and mitigation, in: Proceedings of the 30th International
Symposium on Computer Architecture and High Performance Computing, 2018,
pp. 322–329.

[45] A. Valero, D. Suárez-Gracia, R. Gran-Tejero, DC-patch: A microarchitectural fault
patching technique for GPU register files, IEEE Access 8 (2020) 173276–173288.

[46] G. Li, S.K.S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, S.W. Keckler,
Understanding error propagation in deep learning neural network (DNN) acceler-
ators and applications, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2017.

[47] F. Libano, B. Wilson, J. Anderson, M.J. Wirthlin, C. Cazzaniga, C. Frost, P. Rech,
Selective hardening for neural networks in FPGAs, IEEE Trans. Nucl. Sci. 66 (1)
(2019) 216–222.

[48] T. Marty, T. Yuki, S. Derrien, Safe overclocking for CNN accelerators through
algorithm-level error detection, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 39 (12) (2020) 4777–4790.

[49] S.K.S. Hari, M.B. Sullivan, T. Tsai, S.W. Keckler, Making convolutions resilient
via algorithm-based error detection techniques, IEEE Trans. Dependable Secure
Comput. 19 (4) (2022) 2546–2558.

[50] F.F.d. Santos, P.F. Pimenta, C. Lunardi, L. Draghetti, L. Carro, D. Kaeli, P. Rech,
Analyzing and increasing the reliability of convolutional neural networks on
GPUs, IEEE Trans. Reliab. 68 (2) (2019) 663–677.

[51] L.-H. Hoang, M.A. Hanif, M. Shafique, FT-ClipAct: Resilience analysis of deep
neural networks and improving their fault tolerance using clipped activation, in:
Proceedings of the 23rd Conference on Design, Automation and Test in Europe,
2020, pp. 1241–1246.

[52] Z. Chen, G. Li, K. Pattabiraman, A low-cost fault corrector for deep neural
networks through range restriction, in: Proceedings of the 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2021, pp. 1–13.

Yamilka Toca-Díaz received the B.S. and M.S. degrees in
Computer Science from Universidad de Camagüey, Cuba,
in 2007 and 2013, respectively. She is currently working
toward the Ph.D. degree in Computer Engineering at the
Department of Computer Science and Systems Engineering,
Universidad de Zaragoza, Spain. Her research interests in-
clude the design of machine learning accelerators with a
focus on reliability.
13
Reynier Hernández Palacios graduated in Computer Sci-
ence at University of Camagüey, Cuba. He received the
M.S. degree in Applied Computer Science from the same
institution in 2016. From 2009 to 2015, he was a part-
time Instructor Professor at the University of Camagüey,
where he is currently a researcher and software developer.
He is affiliated to the Unión de Informáticos de Cuba,
where he teaches courses, conferences, and workshops on
a regular basis. He has led research in the area of Artificial
Intelligence related to Tourism, Health, and Patrimony. His
research interests include deep learning, cloud computing,
parallel and highly scalable architectures, and algorithmic
efficiency.

Rubén Gran Tejero graduated in Computer Science from
University of Zaragoza, Spain. He received his Ph.D. from
Polytechnic University of Catalonia (UPC), Spain, in 2010.
He is currently an Associate Professor in the Department of
Computer Science and Systems Engineering at University of
Zaragoza. He has been Program Committee Member of sev-
eral conferences and workshops in the area: IPDPS, HPCS,
and PMBS. His research interests include hard real-time sys-
tems, hardware for reducing worst-case execution time and
energy consumption, efficient processor microarchitecture,
and effective programming for parallel and heterogeneous
systems.

Alejandro Valero received the Ph.D. degree in Computer
Engineering from Universitat Politècnica de València, Spain,
in 2013. From 2013 to 2015, he was a visiting researcher
with Northeastern University, Boston, MA, USA, and Uni-
versity of Cambridge, UK. From 2016 to 2021, he was
an Assistant Professor with the Department of Computer
Science and Systems Engineering, Universidad de Zaragoza,
Spain. Since 2021, he has been an Associate Professor with
the same department and institution. His Ph.D. research
was recognized with multiple awards, including the 2012
Intel Doctoral Student Honor Award and the Gold Medal
in the 2013 ACM Student Research Competition (SRC)
held in ICS-27. He has been Technical Program Committee
Member of several conferences, workshops, and research
competitions, including DATE, ICCD, PMBS, and ACM SRC
Grand Finals. His research interests include GPU and ASIC
architectures, memory hierarchy design, energy efficiency,
and fault tolerance. Prof. Valero is a member of the Aragon
Institute of Engineering Research (I3A) and the HiPEAC
European NoE.

http://refhub.elsevier.com/S0141-9331(24)00018-8/sb42
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb42
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb42
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb42
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb42
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb42
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb42
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb43
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb43
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb43
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb44
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb44
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb44
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb44
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb44
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb44
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb44
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb45
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb45
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb45
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb46
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb46
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb46
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb46
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb46
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb46
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb46
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb47
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb47
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb47
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb47
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb47
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb48
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb48
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb48
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb48
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb48
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb49
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb49
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb49
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb49
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb49
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb50
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb50
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb50
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb50
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb50
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb51
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb51
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb51
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb51
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb51
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb51
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb51
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb52
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb52
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb52
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb52
http://refhub.elsevier.com/S0141-9331(24)00018-8/sb52

	Flip-and-Patch: A fault-tolerant technique for on-chip memories of CNN accelerators at low supply voltage
	Introduction
	Background
	Baseline CNN Accelerator Architecture
	Reliability Model

	Characterization Study
	Proposed Approach: Flip-and-Patch
	Flipping Technique
	Patching Technique
	Power, Energy, Area, and Timing Overhead

	Experimental Evaluation
	Simulation Environment
	Impact on Accuracy
	Deviation in Softmax Probability Array
	Energy Consumption
	ThUnderVolt Approach
	Results

	Sensitivity Analysis
	CIFAR-10 Dataset

	Related Work
	CNN Accelerators
	Patching Techniques for General-Purpose Processors
	Redundant Logic and Algorithm-Based Fault Tolerance
	Clipping Algorithms

	Conclusions and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

