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1 Introduction

In Quantum Field Theories (QFTs) with a mass gap, it is assumed that the Poincaré group
has a unitary action in the Hilbert space of the theory leaving the vacuum invariant. It
is thus a ‘symmetry’ of the theory acting on the local observables in a bounded spacetime
region. Causality can also be formulated by requiring the local observables in spacelike
complements to commute.

But there are physically important theories with no mass gap, QED being a prime
example. In QED, because of infrared effects, there are uncountably many superselection
sectors, and Lorentz transformations map one such sector into another. Hence Lorentz
symmetry is spontaneously broken [12], just like the U(1) gauge group which is sponta-
neously broken in superconductivity or ferromagnetism.

There is an important theorem of Landau and Yang [2, 3] for Lorentz invariant theo-
ries: the decay of a massive spin 1 particle such as Z0 to two photons is forbidden. This
theorem is remarkable: its proof does not rely on principles of quantum field theory (QFT)
such as causality. This result is due to the fact that the Clebsch-Gordan series for the
tensor product of two irreducible Poincaré group representations of photons, when Bose
symmetrised, does not contain a massive spin one representation, as shown by Balachan-
dran, Jo and Marmo [4]. There are generalisations of this result to other decays [5] shown
there. For example, Z0 cannot decay into two massless neutrinos.

Thus, the Landau-Yang and related theorems use only Poincaré invariance and statis-
tics of identical particles and invokes no other principles of quantum field theory. There
are also experiments in non-linear optics which put limits on the rate of such Landau-Yang
selection rule violating processes [6–8]. The observation of any one of these decays will
thus profoundly affect QFT.

On the other hand, it has been known for a long time that infrared effects in QED create
uncountably many superselection sectors and that the action of Lorentz transformations
interchanges these sectors. Hence by definition, Lorentz symmetry is spontaneously broken.

– 1 –



J
H
E
P
1
0
(
2
0
2
3
)
0
2
8

In a recent paper, Mund, Rehren and Schroer1 have reviewed these results and developed
a theory of ‘infrafields’ which can serve as order parameters for this symmetry breaking.
Given these results and developments, it is natural to ask if a model for say Z0 → 2γ decay
can be formulated using the infrafields. In this paper, we argue that this can be done and
an explicit decay rate can be derived. We emphasize that the mechanism of Z0 → 2γ
decay that we are discussing does not invoke any Beyond Standard Model (BSM) physics
as happens with extra generations of fermions ( see e.g. [9]) or by requiring explicit Lorentz
violating new interactions ( see e.g. [10] for a recent review ). Rather it arises because of
the infrared structure of QED itself.

In the subsequent sections, we review the construction of infrafields and their response
to gauge transformations. Then we formulate an interaction for Z0 → 2γ which is invariant
under “small” or Gauss law-generated gauge transformations which is not Lorentz invariant
and compute the rate for the above decay.

2 The infrafield

Such fields first acquired a prominent role in the quantum field theory of massless ‘contin-
uous spin’ particles which occur in the work of Wigner [13]. Their momenta are lightlike
and future pointing so that no known physical principle forbids their existence. But Yng-
vason [11] first proved that local quantum fields do not exist for such particles. It was later
shown that ‘fields localised on cones’ do exist for these particles. These fields were later
adapted to QED for its formulation entirely on a Hilbert space, avoiding indefinite metric
constructions altogether. They relied on the axial gauge and Dirac’s construction of gauge
invariant fields.

The Wilson line from x to ∞ in the spacelike direction η gives the infrafield ϕ, the
above Wilson line for charge q being eiqϕ(x,η). Then, under a U(1) gauge transformation
eiχ, the Wilson line

W (x, η) = eiq
∫∞

0 Aµ(x+τη)ηµdτ ≡ eiqϕ(x,η)

transforms as

W (x, η) → eiqχ(η∞)W (x, η)e−iqχ(x), η∞ := lim
τ→∞

τη.

This transformation suggests the interpretation that W carries a charge, say −q at x and
q at η∞. If ψ is a charge q field, then following Dirac [14] and Mandelstam [15], we see
that W (x, η)ψ(x) is small gauge invariant, but still has a charge q blip at η∞.

If ψ is a field of charge q , then as Dirac observed, the field eiqϕ(x,η)ψ(x) is invariant
under local or small gauge transformations. It can be smeared in x with test functions
localised in a finite region containing x without spoiling small gauge invariance. But
acting on the vacuum, it produces only a charge q blip at infinity. So it produces surface
excitations at infinity. That is the case even if x is smeared.

We want to choose η so that Aµη
µ does not produce negative norm states acting on

the vacuum. That requires that this field has only spacelike components in µ. Hence ηµ is
1See ref. [1] and references therein.
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chosen to be along a spacelike direction. In the mostly minus metric convention, it follows
that η.η = −κ2, with κ real. But unlike in the axial gauge, we do not fix the direction of η.

For fixed κ, this is a deSitter space with a spherical boundary for finite η. But W (x, η)
is invariant under the scalings η → cη, c > 0. So we can fix κ so that a compactification
with a spherical boundary is a preferred choice of spacelike boundaries.

Under standard Lorentz transformations Λ of Aµ , not only the argument, but also
the index µ of Aµ gets transformed, so that

Λ : ϕ(x, η) → ϕ(Λx,Λη).

Hence, η as well gets transformed in the “escort” field ϕ(x, η).

3 A model interaction for Z0 → 2γ

We need the interaction to have the following properties:

1. It should be gauge invariant under small gauge transformations.

2. The net charge at infinity should add up to zero so that charge conservation is
maintained. So we want to preserve global U(1) invariance.

For the escort field of charge q, the operator

: eiqϕ(x,η) : : e−iqϕ(x,η′) :

is invariant under small gauge transformations and has zero net charge. Also Z0
µ(x) is

neutral under this U(1). Hence if fµ is a vector-valued test function, a Gauss law-invariant
interaction with zero net charge is

d fµ(x)Z0
µ(x) : eiqϕ(x,η) : : e−iqϕ(x,η′) : (3.1)

with an interaction strength d.
A natural choice for fµ(x) is hµ where hµ is a chosen polarisation vector for Zµ in its

rest system. This choice is suggested as we will calculate the decay in the Zµ rest system.
We can also smear just Z0

µ with a scalar function f(x) and use a fixed vector hµ for this po-
larization vector. But our preferred choice in this paper is (3.1). Finally we have also the op-
tion of smearing the variables η and η′ , but we will avoid it for now. The process which lets
us avoid the Landau-Yang theorem by means of the escort fields is sumarized in figure 1.

4 Calculation of the amplitude using the mode expansion of the escort
field

We can obtain the mode expansion of eiϕ from that of Aµ ( following Mund et al. [1]):

Aµ(x) =
∫
d̃k
[
aµ(k)e−ik·x + a†µ(k)eik·x

]

– 3 –
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Figure 1. Diagram associated to the decay of Z0 into two γs in the presence of escort fields.

with the Lorentz invariant phase space (LIPS) measure:

d̃k = d3k

(2π)3 2|k| .

Although the operator Aµ(x) is defined only on an indefinite metric (Krein) space ,
that is not the case for Aµη

µ as ηµ is spacelike.
One then defines

ϕ(x, η) =
∫ ∞

0
dτAµ(x+ ητ)ηµdτ.

Expanding ϕ(x) ( using (+,-,-,-) metric), one gets, using the “iϵ” prescription,

ϕ(x, η) =
∫
d̃kηµ

[
aµ(k)e−ik·x

∫ ∞

0
dτ e−i[(k.η)−iϵ]τ

+a†µ(k)eik·x
∫ ∞

0
dτ ei[(k.η)+iϵ]τ

]
= i

∫
d̃k ηµ

[
aµ(k)

η · k − iϵ
e−ik·x −

a†µ(k)
η · k + iϵ

eik·x
]

= i

∫
d̃k
[
χk(η)e−ik·x − χ†

k(η)e
ik·x
]

where
χk(η) ≡

a(k) · η
k.e− iϵ

.

Therefore
ϕ(x, η) = i

[∫
d̃k
(
χk(η)e−ik·x − χ†

k(η)e
ik·x
)]
.

Now
: eiqϕ(x,η) := eq

∫
d̃kχ†

k
eik·x

e−q
∫

d̃kχke−ik·x

Accordingly

: eiqϕ(x,η) : : e−iqϕ(x,η′) := eq
∫

d̃kχ†
k

eik·x
e−q

∫
d̃kχke−ik·x

e−q
∫

dk̃′χ†
k′e

ik′·x
eq
∫

dk̃′χk′e
−ik′·x

– 4 –
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As Baker-Campbell-Haussdorf formula gives us

eMeN = eM+N+ 1
2 [M,N ]+··· ⇒ eMeN = eNeMe[M,N ]

where in the last step we have assumed [M,N ] is a c-number,

: eiqϕ(x,η) :: e−iqϕ(x,η′) := eq
∫

d̃kχ†
k

eik·x
e−q

∫
dk̃′χ†

k′e
ik′·x

e−q
∫

d̃kχke−ik·x
eq
∫

dk̃′χk′e
−ik′·x

e∆(η,η′,x).

(4.1)
Now

∆(η, η′, x) = q2
∫ ∫

d̃kdk̃′[χk, χ
†
k′ ]e−i(k−k′)·x (4.2)

But
[χk, χ

†
k′ ] = [χk(η), χ†

k′(η′)] = (e · e′) (2π)
32Ekδ

3(k − k′)
(k.η + iϵ)(k′.η′ − iϵ) (4.3)

Hence,

∆(η, η′, x) = q2(η · η′)

×
{∫ ∫

d̃kd̃k′(2π)32Ekδ
3(k⃗ − k⃗′) e−i(k−k′)·x

(k.η + iϵ)(k′.η′ − iϵ)

}

= q2
∫
d̃k

1
(k.η + iϵ)(k.η′ − iϵ) ≡ q2Q(η, η′)

ends up being independent of x. Note that in the last step, we have carried out the k′

integration.
The integralQ(η, η′) can be rewritten ( using Feynman-Schwinger parameterization ) as

Q(η, η′) =
∫
d̃k

∫ 1

0
dλ

(η · η′)
[λ(k · η + iϵ) + (1− λ)(k · η′ − iϵ)]2

=
∫
d̃k

∫ 1

0
dλ

(η · η′)
[k · η′ + λk.(η − η′)− iϵ(1− 2λ))]2

= (η · η′)
2(2π)3

∫ ∞

0
kdk

∫ 1

0
dλ

∫
dΩk

1
[k.(η′ + λ(η − η′)) + iϵ(1− 2λ)]2

.

Using the identity ∫
dΩn̂

1
(n̂ · a⃗+ b)2 = 4π

(b2 − a⃗ · a⃗) ,

we get

Q(η, η′) = (η.η′)
(2π)2

∫ ∞

0

1
k
dk

∫ 1

0

dλ

[(2λ2 − 2λ+ 1) + 2λ(1− λ)η.η′]2

where the limit ϵ→ 0+ has been employed. The k integral is logarithmically divergent and
needs both an ultraviolet and infrared momentum cutoff, MUV and mIR respectively:

Q(η, η′) = (η.η′)
(2π)2 ln

(
MUV
mIR

)∫ 1

0

dλ

[(2λ2 − 2λ+ 1) + 2λ(1− λ)η.η′]2

≡
ln
(

MUV
mIR

)
(2π)2 S(η · η′)

– 5 –
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Figure 2. The plot of the eS(η,η′) vs (η · η′).

Note that the UV part of the logarithmic divergences of
∫ 1

kdk can alternatively be absorbed
by the renormalization of the electric charge:

∆ = 3
2

(
1− q2

q2
R

)
S(η · η′) = 3

2

(
1− 4π

137q2
R

)
S(η · η′)

Thus the c-number factor appearing in (4.1) takes the form

e∆(η,η′) = e

3
2

(
1− 4π

137q2
R

)
S(η·η′)

(4.4)

where we have dropped the x argument in ∆(η, η′, x) as it is independent of x.
A plot of the function eS(η,η′) is shown in figure 2 Note that when η = η′ so that η ·η′ =

−1 , the factor e∆ vanishes. That is, as long as we remain in the same “superselection”
sector, the Landau-Yang theorem is validated. But as long as η ̸= η′ there is a none-zero
probability for the decay of Z0 into two photons.

Let us recall that the decay width of a particle of mass mA at rest into two identical
massless particles is given by the formula:

Γ = 1
32πm2

A

|A|2. (4.5)

Now we are interested in the product of matrix elements:

⟨k1, ε1; k2, ε2| : eiqϕ(x,η) :: e−iqϕ(x,η′) : |0⟩γ⟨0|f · Z|Z, h⟩Z

= −q2e∆(η,η′)
∫ ∫

d̃kdk̃′⟨k1, ε1; k2, ε2|χ†
kχ

†
k′ |0⟩γ × ⟨0|f · Z|Z, h⟩

∫
d4xeik·xeik′·xe−iP.x

= −q2e∆(η,η′)
[ (η · ε1)
(η · k1 + iϵ)

(η′ · ε2)
(η′ · k2 + iϵ) +

(η · ε2)
(η · k2 + iϵ)

(η′ · ε1)
(η′ · k1 + iϵ)

]
(f · h)

– 6 –



J
H
E
P
1
0
(
2
0
2
3
)
0
2
8

where ε1,2 are the polarization vectors of the photons with the momenta k1, k2 respectively,
while h is the polarization/spin vector associated with the Z0 boson.

The above result confirms the claim that escort field can allow decays which are forbid-
den in the Standard Model. In particular the decay of Z0 into two photons is now possible
for any value of η · η′ except for η · η′ = −1 where we recover the standard Landau-Yang
result. The reason being that in this case the two branches of escort field cancel out.

Decay of Z0 into two photons could in principle be observable in collider experiments.
Observation of such an event will have profound consequences and can be interpreted as
evidence of the novel infrared structure of QED. On the other hand, limits on decay width
of this process from collider data can constrain the Lorentz violation that we have discussed
in the paper.

Violation of the Landau-Yang theorem by the inclusion of the escort field allows for
study of other interesting physics phenomena. Not only one has the possibility of studying
novel and rare decays in atomic physics but also its impact in the cosmology for instance
in the mapping of the 21cm hydrogen line. We hope to address to some of this phenomena
using this framework in the future.
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A Dependence of the amplitude on (η · η′)

We give a closed expression for the integral encountered in the text:

F (η · η′):=
∫ 1

0

1
(2(η · η′)(1− λ)λ+ (2λ2 − 2λ+ 1))2 dλ

This integration can be done using the identity

∫ 1

0

dλ

[(2λ2 − 2λ+ 1) + 2λ(1− λ)η · η′]2 = 1
1 + η · η′

+
2 tan−1

(√
1−η·η′

1+η·η′

)
(1 + η · η′)

√
1− (η · η′)2

Parameterizing A = η · η′ = − cosΘ (as both of them are spacelike vectors), one gets
a simplified expression

F (Θ) =
1 + Θ

sin Θ
1− cosΘ

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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