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Abstract. This paper deals with the invariant RX called the RR-correction
term, which appears in the Riemann Roch and Numerical Adjunction Formulas

for normal surface singularities. Typically, RX = δtopX − δanX decomposes as

difference of topological and analytical local invariants of its singularities. The

invariant δtopX is well understood and depends only on the dual graph of a good

resolution. The purpose of this paper is to give a new interpretation for δanX ,

which in the case of cyclic quotient singularities can be explicitly computed
via generic divisors.

We also include two types of applications: one is related to the McKay

decomposition of reflexive modules in terms of special reflexive modules in
the context of the McKay correspondence. The other application answers two

questions posed by Blache [5] on the asymptotic behavior of the invariant RX

of the pluricanonical divisor.

Introduction

For a projective normal surface S the following generalized Riemann-Roch for-
mula can be proved (see e.g. [29, 7, 5])

(1) χ(OS(D)) = χ(OS) +
1

2
D · (D −KS) +RS(D),

where RS : Weil(S)/Cart(S) → Q is a map defined on the group of Weil divisors
up to Cartier. This invariant descends to a map RS,x : Weil(S, x)/Cart(S, x)→ Q
at each singular point x ∈ S. Moreover, RS can be recovered from the local
information as follows RS(D) =

∑
x∈Sing(S)RS,x(Dx), where Dx is the class of D

in the local surface (S, x).
One major breakthrough accomplished in [5, Thm. 2.1] is to provide an inter-

pretation of a closely related object. Consider σ : (S̃, E) → (S, x) a resolution of

S at x, where E is the exceptional part of the resolution, σ∗D = ED + D̂, D̂ is
the strict transform of D, ED is its exceptional part, and KS̃ (resp. KS) is the

canonical divisor of S̃ (resp. S). Then

(2) AS,x(D) := −RS,x(D +KS) =
1

2
ED(D̂ +KS̃)− h0(σ∗OD̂/OD).

Note that both summands depend on σ. Our purpose is to study this invariant for
good resolutions of (S,D). In that case

(3) δtop(D) :=
1

2
ED(D̂ +KS̃) = −1

2
ED(ED + ZS̃),
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E22 17R Grupo Consolidado Álgebra y Geometŕıa. The second author is also supported by FQM-
333, from Junta de Andalućıa.
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(ZS̃ is a numerical canonical cycle) and

(4) δan(D) := h0(σ∗OD̂/OD)

do not depend on σ. Denote by KS̃/S := KS̃ −σ∗KS the relative canonical divisor,

then the canonical cycle ZS̃ is numerically equivalent to −KS̃/S .

The invariant δtop(D) is in general a rational number which appears in the
literature in different disguises, such as χ(−ED) – see [24, Section 3]– and δ(D) –
see [12, Section 4.2]. We use this notation to indicate its topological nature since it
contributes to the genus of the normalization of D and it can be obtained directly
from the dual graph of the resolution. The invariant δan(D) however is a non-
negative integer which only depends on the abstract curve D. Our purpose in
this paper is to introduce a closely related invariant κ(D) which admits a more
geometrical interpretation, can be easily calculated in generic situations, and it
coincides numerically with δan(D) for quotient singularities. In a separate paper
we intend to analyze exactly in which extend both invariants coincide.

Roughly speaking, the invariant κ(D) measures the number of conditions on
meromorphic forms ϕ on S with poles along D so that their pull-back is logarithmic
and extends holomorphically to ED. This invariant was introduced in [11] for
smooth surfaces and in [27] to study the cohomology ring of complements of curves
in weighted projective planes. A similar invariant appeared before in the context
of quasi-adjunction ideals – see [19].

The main results of this paper can be summarized as follows. Let X = (S, x) a
cyclic quotient surface and consider D a divisor in X. Throughout this paper, and
unless otherwise stated divisor means Weil divisor. Define

(5) ∆X(D) := δtop(D)− κ(D).

In [11] it was shown that ∆X(·) is a well-defined rational-valued function ∆X :
Weil(X)/Cart(X)→ Q.

Theorem 0.1. If D is a divisor on X, then AX(D) = ∆X(D) and hence δan(D) =
κ(D).

This result allows one to compute the correction term AX(D) for any divisor D
via calculating ∆X(D′) = ∆X(D) for D′ a generic divisor such that D − D′ is
Cartier. In order to give this description consider the Hirzebruch-Jung resolution
of X and its associated numerical data q = [q1 = q, . . . , qn = 1] which is the
list of remainders in the Hirzebruch-Jung continued fraction expansion of d

q as

in Definition 1.4. Any non-Cartier divisor D in a cyclic quotient singularity of
order d has an associated index , say 0 < k < d. We associate a list of integers
[k] = [k1, . . . , kn] to k and q as the greedy X-decomposition of k defined as the
quotients of the divisions of

k = k1q1 + r1

r1 = k2q2 + r2

...

rn−1 = knqn + 0

– see section 2.

Theorem 0.2. If D is generic, then κ(D) = rD − 1 where rD is the number of
branches of D. Moreover, if D has index k 6= 0 in X and [k] = [k1, ..., kn] is the
X-greedy decomposition of k. Then rD =

∑
i ki.

Remark 0.3. Note that the local invariants ∆X(D), κ(D), δtop(D) and δan(D) can
be extended for any quotient singularity. However κ(D) = rD − 1 is not true in
general for non-cyclic singularities. It would be very interesting to obtain such
simple formulas for general quotient surface singularities.
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Corollary 0.4. Let D be a divisor of index k and D′ a generic divisor in its class,
then

∆X(D) = δtop(D′)−
∑
i

ki + 1.

To describe the next main result we introduce some notation and briefly re-
call some concepts on cyclic quotient surface singularities. Let X := C2/G, G ⊂
GL(2,C) be a cyclic quotient surface singularity. By McKay’s correspondence any
(indecomposable) reflexive module over OX is associated with an (irreducible)
representation of G – see [16, 17] and [32] for a general view of this geometric
correspondence. Since G is abelian, its irreducible representations coincide with
Hom(G,C∗) = Cd, the multiplicative group of d-th roots of unity. After fixing ζd
a generator of Cd, a local system ρk : G → C∗ is given as ρk(g) = ζkd for g ∈ G a
generator of G and its McKay corresponding module is denoted by OX(ζkd ), where
k = 0, . . . , d− 1 is called its index .

The elements of OX(ζkd ) can be interpreted as the germs f ∈ C{x, y} such that
f(g · (x, y)) = ρk(g)f(x, y) = ζkd f(x, y). The set of zeroes {f = 0} ⊂ X of such a
germ defines a divisor. These divisors are Cartier only if f is invariant under the
action of G, OX = OX(ζ0

d) = C{x, y}invG. Alternatively,

OX(ζkd ) := µ∗(O(C2,0) ⊗ Vρ∗k)G,

where µ : C2 → X is the canonical projection and Vρ∗k denotes the eigenspace
associated with the dual character ρ∗k – see [31].

Recall that a reflexive OX -module M is special if M ⊗ ωX is reflexive (c.f. [31,
Theorem 5]). The special McKay correspondence establishes the bijection between
the special indecomposable reflexive OX -modules and the special irreducible repre-
sentations.

Note that the modules OX(ζqid ) where qi appears in the Hirzebruch-Jung reso-
lution of X are exactly the special indecomposable reflexive modules by the special
McKay correspondence.

Our next goal will be to explicitly give the McKay decomposition of the reflexive
OX -modules OX(ζkd ) into special indecomposable reflexive OX -modules.

The McKay decomposition of OX(ζkd ) is given as follows.

Theorem 0.5. If k ∈ Z and [k] = [k1, . . . , kn] is the greedyX-decomposition of k,
then

OX(ζkd ) =

n⊗
i=1

OX(ζqid )
⊗ki .

Geometrically, the generic divisors in a special indecomposable reflexive OX -
module are the push forward of smooth irreducible curves intersecting the excep-
tional part of the resolution transversally, which will be called curvettes – see sec-
tion 1.6. The previous result can be understood as a decomposition of a generic
germ of index k 6= 0 as a product of curvettes.

Finally we present two applications of these main results.
In the first one, we give the McKay decomposition of the module of LR-loga-

rithmic forms Mnul
D associated with a generic divisor D. This module is the main

object studied in this paper and appears in the definition of the κ-invariant. To
define it, consider π : Y → X a minimal resolution of X and D̂ the strict transform
of D by π, then Mnul

D = π∗(ωY (D̂)). This module can be defined as the submodule
of 2-forms whose pull-back after resolution can be extended holomorphically over
the exceptional divisors. The following theorem states that if D is a generic Weil
divisor of index k, then Mnul

D coincides with ωX(k) = ωX ⊗OX(ζkd ).
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Theorem 0.6. If [k] = [k1, . . . , kn] is the greedyX-decomposition of k and c is the
Hirzebruch-Jung continued fraction of d

q , then

Mnul
D = ωX(k) =

⊗
OX(ζqid )

⊗(ki+ci−2)
.

As a consequence of this in Corollary 4.5 we give necessary conditions for Mnul
D to

be generated by monomials and characterize when it is a reflexive module, that is,
when Mnul

D coincides with the Auslander-Reiten translate τ(OX(ζkd )) = (OX(ζkd )⊗
ωX)∗∗ of OX(ζkd ), where k is the index of D – see [31].

As a second application, we solve two questions posed in [5, pg. 337] in the
affirmative. Both questions have to do with the correction term RX(kKX) =
−∆X((k− 1)KX) of the pluricanonical divisor. Let X = 1

d (1, q) with gcd(d, q) = 1
and denote by KX its canonical divisor. Let I := min{k ∈ N | kKX is Cartier} – it
can arithmetically be expressed as I = d

gcd(d,q+1) . Finally, consider the polynomial

function fI(x) = (x−1)(I−x)
I−1 . Blache asks the following two questions regarding the

map Z → Q defined by k 7→ RX(kKX). Note that this map has period I and
vanishes at 1 and I.

(1) Does the inequality |RX(kKX)| < fI(k) hold for all k = 2, . . . , I − 1?
(2) Is |RX((k + 1)KX)−RX(kKX)| < 1 for all k ∈ Z?

In particular, question (2) can be improved by showing

Proposition 0.7.

|RX((k + 1)KX)−RX(kKX)| < 1− lct(X,m),

where lct(X,m) is the log-canonical threshold of X with respect to the maximal
ideal m.

The paper is organized as follows: in section 1 we give the necessary definitions
and notation to set the concepts to be dealt with in this paper such as the space of
germs, curvettes, generic curves, δtop-invariant, κ-invariant, ∆X , Milnor number,
and Newton polygons. In section 2 we describe the invariants κX and ∆X and
the geometric interpretation of the McKay decomposition of eigenmodules via the
use of curvettes. In section 3 we prove the main Theorems 0.1,0.2, and 0.5. A
final section 4 is devoted to some interesting applications and examples of the main
results of this paper such as the McKay decomposition of Mnul

D for generic divisors
given in Theorem 0.6 and in section 4.4 answers to Blache’s conjectures on the RX
invariant of the pluricanonical divisor mentioned above.

1. Settings and Definitions

Let us recall some definitions and properties on quotient surfaces, embedded Q-
resolutions, and weighted blow-ups – see [3, 15, 18] for a more detailed exposition.

1.1. Quotient surface singularities. Let Cd be the cyclic group of d-th roots of
unity generated by a root of unity ζd. Consider a vector of weights (a, b) ∈ Z2 and
the action

(6)
Cd × C2 −→ C2,

(ζ, (x, y)) 7→ (ζa x, ζb y).

The set of all orbits C2/Cd is called a cyclic quotient space of type 1
d (a, b). Unless

otherwise stated, gcd(d, a) = gcd(d, b) = 1.
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1.2. Spaces of germs. Consider X = 1
d (a, b) and ρ : (C2, 0) → X the universal

abelian cover whose fibers are given by the cyclic action of order d on (C2, 0) as
defined in (6). The local ring O of functions on (C2, 0), admits a Cd-graduation
given by the characters of Cd

(7) O =
⊕
ζ∈Cd

OX(ζ) =

d−1⊕
k=0

OX(ζkd ),

where
OX(ζkd ) = {f ∈ O | f(ζ · (x, y)) = ζkf(x, y),∀ζ ∈ Cd},

for any k ∈ Z. The notation OX(ζkd ) is justified since its elements, even though
they do not define functions on X, determine a well-defined set of zeroes in X. In
other words, {(x, y) ∈ C2 | f(x, y) = 0} is invariant under the cyclic action given
in (6) and hence it defines a germ in X. This explains why OX(ζkd ) is also called
the eigenmodule associated with k (c.f. [30]). More precisely, it is the space of
eigenfunctions of the morphism ζ· : O → O defined by f(x, y) 7→ f(ζ · (x, y)) with
eigenvalue ζk. Each element in OX(ζkd ) defines a Weil divisor. Note that:

Properties 1.1.

(1) OX(ζ0
d) = OX is the ring of functions on X,

(2) x ∈ OX(ζad ) and y ∈ OX(ζbd),

(3) OX(ζk1

d ) = OX(ζk2

d ) whenever k1 ≡ k2 mod d,

(4) OX(ζkd ) is a finitely generated monomial OX-module, that is, OX(ζkd ) ⊂
C{x, y} can be generated over OX by a finite set of monomials.

(5) Hom(OX(ζk1

d ),OX(ζk2

d )) = OX(ζk2−k1

d ),

(6) (OX(ζkd ))∗ = OX(ζ−kd ),

(7) OX(ζk1

d )⊗OX(ζk2

d ) ⊂ (OX(ζk1

d )⊗OX(ζk2

d ))∗∗ = OX(ζk1+k2

d ).

Proof. Properties (1)-(3) are immediate. To prove (4) note that any germ in
OX(ζkd ), say f(x, y) =

∑
r,s ar,sx

rys satisfies that f(ζax, ζby) = ζkf(x, y), where ζ

is a primitive d-th root of unity. Hence ζar+bs = ζk for all i, j such that ar,s 6= 0,
that is, ar + bs ≡ k mod d and hence, each non-trivial monomial of f(x, y) is
in OX(ζkd ). Moreover, this module is generated by the finite set of monomials
{xrys | r, s ∈ {0, ..., d− 1}, ar + bs ≡ k mod d}.

In order to prove (5) note that multiplication by an element in OX(ζk2−k1

d ) in-

duces an element of Hom(OX(ζk1

d ),OX(ζk2

d )). It remains to show that all mor-

phisms are of this type. Consider ϕ ∈ Hom(OX(ζk1

d ),OX(ζk2

d )) and xr, ys ∈
OX(ζk1

d ) monomials such that ar ≡ bs ≡ k1 mod d – they exist since gcd(a, d) =
gcd(b, d) = 1. Then,

ϕ(xr) = h1(x, y) ∈ OX(ζk2

d ), ϕ(ys) = h2(x, y) ∈ OX(ζk2

d ).

Since both xd and xd−rys are invariant functions in ∈ OX , one has ϕ(xdys) = xdh2

and ϕ(xdys) = (xd−rys)h1. Therefore ysh1 = xrh2, which implies h1 = xrh and

h2 = ysh for a certain h ∈ OX(ζk2−k1

d ). This can done for all monomials inOX(ζk1

d ).

Using (3) this shows that ϕ is given as multiplication by an element in OX(ζk1

d ).
Property (6) is an immediate consequence of (5) and (1). Finally the equality

in (7) follows from (5) and (6) using that the functors Hom(M,−) and −⊗M are
adjoint. �

In light of Property (7) one has the following.

Definition 1.2. Given two reflexive OX -modules M and N we call

κX(M,N) = dimC
(M ⊗N)∗∗

M ⊗N
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the reflexiveness index of M and N .

This definition can be given for general modules and general quotient surface
singularities after factoring out the possible torsion in M ⊗ N . Note that in that
case κX(M,OX) = 0 if and only if M is reflexive and in addition κX(M,ωX) = 0
if and only if M is special – see [31, Theorem 5].

Following [15] and [34, Definition 1.16] we introduce two useful concepts in the
space of germs.

Definition 1.3. A germ f ∈ OX(ζkd ) is called quasi-smooth if there is another germ

g ∈ OX(ζ k̄d ) such that C{f, g} = O = C{x, y}. Moreover, a germ that admits an

equation of the type fngm ∈ OX(ζnk+mk̄
d ) for two quasi-smooth germs generating

O is said to be in Q-normal crossing.

Note that, if f ∈ OX(ζkd ) is a quasi-smooth germ, then k can only be either a
or b as in Property 2.

1.3. Embedded Q-resolutions and weighted blow-ups. An embedded Q-reso-
lution of a germ {f = 0} ⊂ 1

d (a, b) is a proper analytic map π : Y → 1
d (a, b) such

that:

(1) Y is an orbifold having abelian (cyclic) quotient singularities,
(2) π is an isomorphism over X \ {0} when restricted to Y \ π−1(0),
(3) π−1(f) is a Q-normal crossing divisor on Y .

As a key tool to construct embedded Q-resolutions we will recall toric transfor-
mations or weighted blow-ups in this context (see [26] as a general reference), which
can be interpreted as blow-ups of m-primary ideals.

The (p, q)-weighted blow-up is a birational morphism π : 1̂
d (a, b) → 1

d (a, b) that

can be described by covering 1̂
d (a, b) with two charts Û1 and Û2. More precisely, Û1

(and analogously for Û2) is of type e
pd (1, −q+a

′pb
e ) with a′a = b′b ≡ 1 mod (d) and

e = gcd(d, pb− qa), and the equations are given by

(8)
e
pd (1, −q+a

′pb
e ) −→ Û1,[

(xe, y)
]
7→ ((xp, xqy), [1 : y]ω)

In particular, if the determinant
∣∣ a b
p q

∣∣ = 0, then e = d and Û1 = 1
p (−d, q). The

discussion for the second chart is analogous.
The exceptional divisor E = π−1(0) is identified with P1

(p,q)/Cd. The singular

points are cyclic quotients and correspond to the origins of the charts.

1.4. Hirzebruch-Jung resolution. This is a classical well-known resolution of a
cyclic surface singularity X related to a Hirzebruch-Jung continued fraction. In
order to describe it, consider a cyclic quotient surface singularity X described as
X := 1

d (1, q). Note that this notation is not canonical since 1
d (1, q) = 1

d (1, q′),
where q′q = 1 mod d.

Definition 1.4. Let q0 := d, q1 := q, and define ci :=
⌈
qi−1

qi

⌉
as the round-up

of the fraction qi−1

qi
, where qi−1 = ciqi − qi+1, 1 ≤ i ≤ n such that qn = 1 and

cn = qn−1. The list c := [c1, . . . , cn = qn−1], (resp. q := [q1 = q, ..., qn = 1]) is
known as the Hirzebruch-Jung continued fraction (resp. remainder) of d

q .

Also note that
d

q
= c1 −

1

c2 − 1
c3−...

These numerical data encode all the necessary information of the resolution of
X as follows.
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Consider the (1, q)-weighted blow-up at the origin of X. One obtains an excep-

tional divisor Ẽ1 with self-intersection number −dq = − q0q1 . If q = 1 the new ambient

space is smooth, Ẽ1 = E1 isomorphic to P1, and the resolution process is over. If
q > 1, then Ẽ1 contains a singular point of type (q; 1,−d) which is equal to (q; 1, q2)
since −d ≡ q2 mod q. After a (1, q2)-weighted blow-up at this point one obtains

a new exceptional divisor Ẽ2 whose self-intersection number is − q1q2 . Note that the

strict transform of Ẽ1 becomes E1 – a divisor isomorphic to P1 in the smooth part
of the surface. Note that E2

1 = −c1. Repeating the same procedure one obtains

exceptional divisors Ẽi with Ẽ2
i = − qi−1

qi
. Once the surface is smooth the final

exceptional divisors E1, . . . , En form a bamboo-shaped graph where E2
i = −ci.

1.5. LR-Logarithmic eigenmodules. Let {f = 0} be a germ in X = 1
d (a, b)

with f ∈ OX(ζkd ) and consider D = (f) its associated Weil divisor. Following

Steenbrink [35], if X̃ = RegX is the regular part of X one can define Ω̃pX = i∗Ω
p

X̃
,

where i : X̃ ↪→ X. This has a natural OX -module structure. Equivalently Ω̃pX
can be seen as the push-forward of ΩpY via a resolution of X. Finally, this is also
isomorphic to the module of invariant p-forms on C2 by the cyclic action (6).

Let us now fix a Q-resolution π : Y → X of D.

Definition 1.5. ([28, 13]) The log-resolution logarithmic eigenmodule (LR for
short) of X w.r.t. π is

ΩpX(LR〈D〉) = π∗Ω̃
p
Y (log〈π∗D〉).

The null -submodule of X w.r.t. π, is defined as

Mnul
f,π = {h ∈ OX(ζk+w

d ) | π∗((h)− (f)− ωX) ≥ 0},

where w = −a− b mod d is the index of ωX , the canonical divisor on X.

Remark 1.6. Alternatively, Mnul
f,π can be seen as the OX -eigenmodule resulting as

a pull-back of Ω2
X(LR〈D〉) as follows. Multiplication by dx∧dy

f induces a morphism

(9)
ϕ : OX(ζk+w

d ) −→ Ω̃2
X [D]

h 7→ hdx∧dyf .

where Ω̃2
X [D] := (Ω̃2

X)(f). Hence h ∈Mnul
f,π if

h
dx ∧ dy

f
∈ ΩpX(LR〈D〉)

admits a holomorphic extension outside D̂ the strict transform of D under π. Note
that the quotient OX(ζk+w

d )/Mnul
f,π has the structure of a finite dimensional complex

vector space as long as f defines an isolated singularity.

The following integer number does not depend on the chosen resolution:

(10) κX(f) := dimC
OX(ζk+w

d )

Mnul
f

.

For instance, it is known (see [11, Chapter 2]) that if X = (C2, 0) and f is a

holomorphic germ, then κX(f) = δtop
X (f).
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1.6. Curvettes, valuations, and generic germs. In this section X = 1
d (1, q)

and the Hirzebruch-Jung resolution π described above will be fixed. Recall that π
is a composition of n weighted blow-ups centered at singular points. Consider Ei
the exceptional component obtained at the i-th blow-up according to π. Following
C.T.C. Wall [38], an Ei-curvette on X is the image of a smooth curve transversal to
Ei at a smooth point. The terminology curvette is due to P. Deligne [14], however
the definition followed here is slightly different.

If Γ = (VΓ, EΓ) denotes the dual resolution graph of X (a bamboo in this case),

Σ denotes the link of X, L := H2(X̃;Z) ∼= ⊕i∈VΓ
ZEi, L′ := H2(X̃,Σ;Z), and then

L′ is generated by the Ei-curvettes {E∗i }i∈VΓ
, where (E∗i , Ej) = δi,j . The vanishing

of H2(Σ;Z) makes L sit inside L′ in the relative homology long exact sequence as
follows:

0 → L = H2(X̃;Z) → L′ = H2(X̃,Σ;Z) → H1(Σ;Z) → 0
Ei 7→

∑
j(E

∗
j , Ei)E

∗
j

The first homology group of the link L′/L ∼= H1(Σ;Z) is the group of characters
on π1(X), which in the cyclic quotient case is Cd.

The Hirzebruch-Jung resolution introduced in section 1.1 defines valuations vi :
OX → Z ∪ {∞} associated with each exceptional divisor Ei, i = 1, ..., n by com-
puting the order of vanishing of a germ f ∈ OX along each exceptional divisor Ei
in the resolution process. Note that this definition can be naturally extended to
OX(ζkd ) as follows: vi(f) := 1

dvi(f
d), where fd ∈ OX . This results into a finite

family of maps: vi : OX(ζkd )→ 1
dZ ∪ {∞} satisfying

vi(h · f) = vi(h) + vi(f), ∀ h ∈ OX , f ∈ OX(ζkd ),

and

vi(f + g) ≥ min{vi(f), vi(g)}, ∀ f, g ∈ OX(ζkd ).

We will denote by v =
∑
i vi : ∪k(OX(ζkd ))∗ → ( 1

dZ)n the morphism v(f) = (vi(f))i.

The group ( 1
dZ)n has a partial order induced coordinatewise, namely

1

d
(i1, . . . , in) ≤ 1

d
(j1, . . . , jn)

if and only if im ≤ jm for all m = 1, . . . , n.

Definition 1.7. A germ D = {f = 0}, f ∈ OX(ζkd ) is called generic if v(f) is a
minimal element in v(OX(ζkd )) ⊂ ( 1

dZ)n with its induced partial order, that is, f is

minimal if v(g) ≤ v(f) implies v(g) = v(f) for any g ∈ OX(ζkd ).

Remark 1.8. As a side note, the word generic in the previous definition is consistent
with being generic with respect to a linear system in the following sense. Recall
that in the regular ring context X = C2, a set of germs S is called a linear system
if there exists an ideal I ⊂ OX such that D = {f = 0} ∈ S if and only if f ∈ I \{0}
– see [10, section 2.7]. One can extend this definition to the quotient singularity
case X = C2/G by asking that I ⊂ OX(ρ), for some ρ ∈ Ǧ ∼= Weil(X)/Cart(X) be
an OX -module. Given a generic germ D = {f = 0} of index k as above define Of
as the preimage If = v−1(v+(f))∩OX(ζkd ), where v+(f) = {ῑ ∈ ( 1

dZ)n | ῑ ≥ v(f)}.
Note that If ⊂ OX(ζkd ) is a OX -module.

An equivalent notion called minimal element was introduced by Némethi in [25,
section 10.3].

1.7. Newton polygon, Milnor number, and δ-invariant. A very useful tool
for the study of germs in (C2, 0) is the information encoded in the Newton polygon
of an equation. In the cyclic case, a natural extension of Newton polygons can be
defined. We will only give a brief description of it. A more detailed description
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of invariants such as Newton numbers will be given in a follow-up paper by the
authors.

Let D = {f = 0} be a germ with f ∈ OX(ζkd ). Define the Newton cloud (or
Newton support) of f =

∑
ar,sx

rys as

SL(f) = {(r, s) ∈ L | ar,s 6= 0} ⊂ L(k),

where L(k) := {(r, s) ∈ N2 | r + qs ≡ k mod d} and L := L(0) is the lattice of
exponents of monomials in OX . The collection of the compact faces of the boundary
of the convex hull of S̄L(f) := SL(f) + L is called the L-Newton polygon of f and
denoted by NL(f). This extends the notion of Newton polygon given in [30] for
functions on X. The following properties are an immediate consequence of the
definitions:

Proposition 1.9.

(1) NL(f1f2) = NL(f1)⊕NL(f2), where ⊕ denotes the Minkowski sum,
(2) The number of faces in NL(f) is an upper bound of the number of irreducible

branches of f ,
(3)

⋃
f∈OX(ζkd ) S̄L(f) = L(k),

(4) S̄L(f) ⊂ S̄L(g)⇒ v(g) ≤ v(f).

As a consequence one obtains the following interpretation of generic germs.

Proposition 1.10. If f ∈ OX(ζkd ) is a generic germ, then S̄L(f) = L(k).

In [12] we extended the concept of Milnor fiber and Milnor number of a curve
singularity allowing the ambient space to be a quotient surface singularity. Alter-
native generalizations of Milnor numbers can be found, for instance, in [6, 33, 36].
The Milnor number proposed here (cf. [12]) seems natural for surfaces and allows
for a generalization of the local δ-invariant and can be described in terms of a
Q-resolution of the curve singularity.

Our purpose is to define a Milnor number µX(D) associated with a Weil divisor
D on a quotient surface singularity X as a quotient of Milnor fibers.

Definition 1.11. Let D = (f) be a Cartier divisor in X = C2/G defined by a
function f : X → C. Then MX(D) := {f = t} ⊂ X is a well-defined hypersurface
called the Milnor fiber of f . In this case, the Milnor number of f can be defined as

(11) µX(D) := 1− χ(MX(D)).

In a more general situation, let D = (f) be a Weil divisor and

fG :=
∏
g∈G

f(g · x)

its associated Cartier divisor. Then the Milnor number of f is defined as

(12) µX(D) := 1− 1

|G|
χ(MX(fG)).

Also define the topological delta invariant δX of f as the rational number verifying

µX(D) = 2δX(f)− rX(f) + 1,

where rX(f) is the number of local branches of D at 0.

Also note that this definition of Milnor fiber does not coincide with [8] or [2]
since MX(D), µX , and hence δX depend on the embedding of D in X.

This definition matches the one presented in [12] since MX(D) does not contain
any orbifold point.
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Example 1.12. Note that, with this definition, δX(u) = 0 for u ∈ O∗X a unit in
the ring of functions on X. For instance, any quasi-smooth curve in 1

d (1, q) satisfies

that µX(D) = d−1
d – see [12]. However, according to the definition in [8], any

quasi-smooth curve coincides with their Milnor fiber and hence the Milnor number
is 0.

Remark 1.13. An equivalent definition of the Milnor number can be given as the
rational degree of the characteristic polynomial Z(t

1
d ) associated to the local mon-

odromy of Supp(D) ⊂ X – see [21, p. 962], cf. [1]. An alternative definition can be
given via the Z(t) series relative to a curve germ as defined by Campillo, Delgado,
Gusein-Zade [9] and Nemethi in [24] for rational surface singularities.

The following formula for the δ-invariant of the product will be useful in the
future.

Lemma 1.14 ([12, Corollary 4.8]). For any f1, f2 defining reduced Weil divisors
on X without common components, the following holds

δX(f1f2) = δX(f1) + δX(f2) + (f1, f2)X ,

where (f1, f2)X denotes the intersection multiplicity of f1 and f2 in X.

Recall that in our context (f1, f2)X can be defined as

(13) (f1, f2)X :=
1

|G|2
dimC

C{x, y}
〈fG1 , fG2 〉

,

where fGi is the function germ associated with the Weil divisor (fi) = Di, i = 1, 2
as in Definition 1.11. For a general definition see [23] or [18].

To end this section we will note that the δ-invariant defined here coincides with
the invariant δtop as defined in (3) for quotient surface singularities.

Proposition 1.15. If X is a quotient singularity and f ∈ OX(ρ) a ρ-invariant

germ, then δX(f) = δtopX (f).

Proof. This is an immediate consequence of the formula

δX(f) =
1

|G|
δC2(fG) +

1

2

(
rX −

r

|G|

)
,

(see [12, section 4.2]) where rX (resp. r) is the number of local branches of f (resp.
fG) in X (resp. C2). �

2. The invariant ∆X and combinatorics of curvettes

In this section we will define the basic arithmetic data associated with the cyclic
quotient singularity X and we will describe a generic germ for a given divisor
class k ∈Weil(X)/Cart(X). The main problem can be described as follows. Given

a resolution π : X̃ → X, a generic germ f ∈ OX(ζkd ), its associated divisor D = (f),

and the relative homology class of its strict transform [D̂] ∈ H2(X̃,Σ;Z) as in
section 1.6. One is interested in finding the non-negative coefficients ki ∈ Z≥0 such
that

[D̂] =
∑
i∈VΓ

kiE
∗
i =

∑
i∈VΓ

([D̂], E∗i )E∗i ∈ L′.

This will be useful in order to describe the invariant ∆X(k).
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2.1. The invariant ∆X . The invariants κX described in (10) and δtop
X can be

combined to define an invariant of the Weil divisor class as follows.

Proposition-Definition 2.1 ([27, 13]). Let X = 1
d (1, q) and f ∈ OX(ζkd ) reduced.

Then ∆X(f) := δtopX (f)− κX(f) defines a map

∆X : Weil(X)/Cart(X) ∼= Zd → Q,

that is, ∆X(f) = ∆X(g) for any f, g ∈ OX(ζkd ) reduced.

Moreover, ∆X(0) = 0 and ∆X(f) = d−1
2d if f defines a quasi-smooth germ.

Assuming D = {f = 0}, f ∈ OX(ζkd ), the isomorphism Weil(X)/Cart(X) ∼= Zd
will allow us to write ∆X(f), ∆X(D) or simply ∆X(k) depending on the context.
Alternatively, the choice of the isomorphism Weil(X)/Cart(X) ∼= Zd is equivalent
to the choice of a quasi-smooth germ, which determines the index of a Weil divisor.

A remarkable property of the map ∆X : Weil(X)/Cart(X) → Q is that it
characterizes a cyclic quotient surface singularity. Its proof requires an independent
result (Proposition 3.5) that will be shown later, but for exposition purposes we
present it here.

Proposition 2.2. Let D ∈ Weil(X)/Cart(X) be a quasi-smooth germ in a cyclic
quotient surface singularity X and denote by dk := ∆X(kD). Then, d0 = 0 and

X ∼=
1

d
(1, q),

where d := 1
1−2d1

and q := dd2 +1. In particular, ∆X(D) and ∆X(2D) characterize
the quotient singularity X.

Proof. Since ∆X(0) and ∆X(D) have already been discussed in Proposition-Defini-
tion 2.1, let us calculate ∆X(2D) in X = 1

d (1, q). By the definition of quasi-smooth

(see Definition 1.3) we can assume D ∈ OX(ζqd) and ∆X(2D) = δtop
X (f) − κX(f),

where f is any element in OX(ζ2q
d ). Note that fλ = y + λxq is quasi-invariant

of index ζqd . Hence f = (y + xq)(y − xq) ∈ OX(ζ2q
d ). Then Lemma 1.14 and

Remark 1.12 implies

δtop
X (f) =

d− 1

2d
+
d− 1

2d
+
q

d
,

since (f1, f−1)X = q
d . In order to compute κX(f), let us blow-up the origin of

1
d (1, q) with weights (1, q). In this case the blow-up is a Q-resolution and hence
Proposition 3.5 tells us that

κX(f) = #{(i, j) | i, j ≥ 1, 2q ≥ qi+ j ≡ 2q mod d}.

There is only one point in this set, namely (1, q′). Therefore ∆X(2D) = q−1
d .

Summarizing, one obtains

∆X(D) = d1 =
d− 1

2d
, ∆X(2D) = d2 =

q − 1

d
,

which proves the claim. �

2.2. Further numerical properties of cyclic quotient surface singularities.
Consider X = 1

d (1, q) a cyclic quotient surface singularity and recall from section 1.4
q0 := d, q = [q1 = q, q2, ..., qn−1, qn = 1], c = [c1, c2, ..., cn−1, cn = qn−1] as
described in section 1.3 such that qi−1 = ciqi − qi+1 for i = 1, . . . , n Note that
ci ≥ 2 for all 1 ≤ i ≤ n. Define q̄i as the smallest positive integer such that q1q̄i ≡ qi
mod d. This way one can define a new sequence q̄ = [q̄1 = 1, q̄2, ..., q̄n−1, q̄n].

We will describe some useful properties relating the sequences q, q̄, and c, which
will be used in the upcoming sections.
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Lemma 2.3. Let Xi = 1
qi

(1, qi+1) and (q̄Xi
)j denote the numbers q̄j associated

with the space Xi. Under the conditions above one has the following:

(1) q̄i = dqi

(
1

q0q1
+ · · ·+ 1

qi−1qi

)
,

(2) q̄i = ci−1q̄i−1 − q̄i−2,
(3) q̄jqi − qj q̄i = d · (q̄Xi

)j−i, ∀j ≥ i,
(4) qi = qq̄i − d · (q̄X1

)i−1,
(5) q̄i+1qi − qi+1q̄i = d,
(6) (q̄Xi)j(q̄Xi+1)j − (q̄Xi)j+1(q̄Xi+1)j−1 = 1.

Proof. Let Qi := dqi

(
1

q0q1
+ · · ·+ 1

qi−1qi

)
. Formulas (2)–(6), replacing q̄i by Qi,

are easily checked after some simple calculations. Hence q1Qi ≡ qi mod d. To end
the proof it is enough to show Qi < d for i = 1, . . . , n. Let us fix 1 ≤ i ≤ n, since
qj > qj+1, one obtains qj ≥ qi + (i− j) for j = 0, 1, . . . , i. Therefore,

Qi ≤ dqi
(

1

(qi + i)(qi + i− 1)
+

1

(qi + i− 1)(qi + i− 2)
+ · · ·+ 1

(qi + 1)qi

)
= dqi

(
2

(qi + i)(qi + i− 2)
+ · · ·+ 1

(qi + 1)qi

)
= · · · = dqi

i

(qi + i)qi
< d.

�

2.3. The X-decomposition of k. Consider now a vector with n non-negative
coordinates α = [α1, . . . , αn] ∈ (Z≥0)n. Then we define ‖α‖X := α · q. In this
context, if k ≡ ‖α‖X mod d, we will say α is an X-decomposition of k. We will
also define ‖α‖1 :=

∑
αi.

Remark 2.4. Consider D = {f = 0}, with f ∈ O(ζkd ), a germ in X and v :
∪k(O(ζkd ))∗ → 1

d (Zn) the morphism as defined in section 1.6. The vector α(f) :=
[0, dv1(f), . . . , dvn(f), 0] has integral coordinates. Note that ‖α(f)‖X ≡ k mod d.

From yet another point of view, an X-decomposition of k is a solution to the fol-
lowing coin change-making scenario: given an integer k and a sequence of coin val-
ues q = [q1, . . . , qn], one is interested in the amount of coins of each type [k1, . . . , kn]
that add up to k, that is, such that

∑
i kiqi = k.

Among all possible solutions to the coin change-making scenario, there is an
effective one following the greedy algorithm resulting from picking the largest value
coin which is not greater than the remaining amount. In our case, this results in
the following.

Definition 2.5. Let X = 1
d (1, q) be a surface and q defined as above, then the

greedy X-decomposition of k is the following list of integers [k1, ..., kn], resulting
from the quotients of the division of 0 ≤ k′ < d, k ≡ k′ mod d, by q, that is,
k′ = k1q1 + k′1, and k′i = ki+1qi+1 + k′i+1 for i ≥ 1.

The greedyX-decomposition of k will be denoted by [k]. Note ‖[k]‖1 :=
∑
ki =

[k] · 1 which will be simply denoted by ‖k‖1.
The following result will be useful for answering one of Blache’s questions and

it is related to the log canonical threshold of X with respect to the maximal ideal,
see section 4.4. Although its proof requires Theorem 0.5, it is presented here for
completeness.

Definition-Lemma 2.1. Define k̄ as the smallest positive integer such that k̄q ≡ k
mod d, cf. section 2.2. If [k] = [k1, . . . , kn], then k̄ =

∑
i=1 kiq̄i.

Proof. Since
∑n
i=1 kiq̄i satisfies the condition (

∑n
i=1 kiq̄i)q ≡ k mod d and by def-

inition k̄ is the smallest one verifying such a condition, k̄ ≤
∑n
i=1 kiq̄i. Assume by
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contradiction that k̄ <
∑n
i=1 kiq̄i. Then yk̄ is in OX(ζkd ) but not in ⊗ni=1OX(ζqid )

⊗ki

which is a contradiction by Theorem 0.5. �

Also, among all possible solutions to the coin change-making scenario, one can
state the following knapsack type problem called the coin change-making problem.

Problem 2.6 (Coin Change-Making Problem). Given k and q, find a solution α
to the coin change-making scenario which minimizes the number of coins, that is,
such that ‖α‖1 is minimal.

The greedy algorithm does not provide in general a solution to the coin change-
making problem, for instance, for k = 6 and q = [4, 3, 1] note that the greedy algo-
rithm provides the following solution to the change-making scenario [6] = [1, 0, 2]
which is not a solution to the problem since [0, 2, 0] uses fewer coins.

In our case however the answer is positive.

Lemma 2.7. Given a quotient surface X = 1
d (1, q) and q as above, the greedy

X-decomposition of k ∈ Z is a solution to the Coin Change-Making Problem 2.6.

Proof. The result is a direct consequence of the proof of the main result in [20]
(see also [22, Theorem p.4]) which we summarize here for convenience. Denote by
Opt(q, k) (resp. G(q, k)) the number of coins in a solution (resp. greedy candidate)
to the coin change-making problem for q and k. Denote by ci := d qi−1

qi
e. Then

Opt(q, k) = G(q, k) for all k if G(q, ciqi − qi−1) ≤ ci − 1 for all i = 1, . . . , n. In our
situation, ciqi − qi−1 = qi+1 and ci ≥ 2, hence G(q, ciqi − qi−1) = 1 and the result
follows. �

3. Proof of Main Theorems

In this section we plan to prove the main results of the paper: Theorems 0.1, 0.2,
and 0.5. Corollary 0.4 follows immediately from Theorems 0.1 and 0.2.

3.1. Proof of Theorem 0.1. In the introduction we have already discussed that
AX(D) = δtop

X (D)− δan
X (D) and ∆X(D) = δtop

X (D)− κX(D), see (2), (3), (4), (5).
Therefore AX(D) = ∆X(D) implies δan

X (D) = κX(D). Let us prove the former
equality. Consider k ≥ 1 + d+ q and choose a divisor D in the weighted projective
plane P2

w with w = (1, d, q) of degree k. On the one hand, according to [13, Theorem
1.1],

(14) Lw(k − 1− d− q) = gw,k −
∑

P∈Sing(P2
w)

∆P2
w,P

(k),

where Lw(`) is the dimension of the vector space of the w-quasi-homogeneous poly-

nomials of degree ` and gw,k = 1 + k(k−1−d−q)
2dq . On the other hand, due to (1), one

has
(15)

χ(P2
w,OP2

w
(D+KP2

w
)) = χ(P2

w,OP2
w

) +
D(D +KP2

w
)

2
+

∑
P∈Sing(P2

w)

RP2
w,P

(D+KP2
w

).

Note that χ(P2
w,OP2

w
(D+KP2

w
)) = Lw(k−1−d−q), χ(P2

w,OP2
w

) = 1,
D(D+KP2w

)

2 =
k(k−1−d−q)

2dq , and RP2
w,P

(D+KP2
w

) = −AP2
w,P

(D). Then, subtracting (14) and (15),

one obtains ∑
P∈Sing(P2

w)

(
∆P2

w,P
(k)−AP2

w,P
(k)
)

= 0.
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Since the weighted projective plane P2
w has two singular points of type 1

d (1, q) and
1
q (1, d), the previous equation reduces to

∆ 1
d (1,q)(k)−A 1

d (1,q)(k) = −∆ 1
q (1,d)(k) +A 1

q (1,d)(k).

If q = 1, then both ∆ 1
q (1,d)(k) and A 1

q (1,d)(k) are zero and ∆ 1
d (1,q)(k) = A 1

d (1,q)(k).

Otherwise, ∆ 1
d (1,q)(k) = A 1

d (1,q)(k) if and only if ∆ 1
q (1,d)(k) = A 1

q (1,d)(k). Since q is

strictly less than d and 1
q (1, d) = 1

q (1, d mod q) the claim follows by induction. �

3.2. Generic germs as a product of curvettes. As a preparation for Theo-
rem 0.2 our goal here is to describe the irreducible curvettes in X. We will provide
equations as quasi-invariant binomials. This description will be useful in order to
calculate their κ-invariant.

Lemma 3.1. The quasi-invariant germ f = xqi − yq̄i is a curvette in OX(ζqid ).

Proof. In order to show this result, we will use a recursive argument on the length
of the canonical resolution of X (see section 1.3). Let us perform the (1, q)-blow-up

of X. The strict transform of f is f̂ = xqi +y
qq̄i−qi

d ∈ OX̂(ζqid ), where X̂ = 1
q (1, q2).

By Lemma 2.3(4), f̂ = xq
′
j − yq̄

′
j where q′ = qX̂ and j = i− 1.

Hence it is enough to check the result for q1, equivalently that the Newton
polygon NL(q1) has only one compact face. This is immediate since NL(q) is the
L(k)-convex hull of {(0, 1)}+ L and {(q, 0)}+ L as in Figure 1 which has only one
compact face. �

(0, 1)

(q, 0)

NL(q)

Figure 1.

Remark 3.2. Note that f as above might not be irreducible as a germ in OC2 . For
instance, in X = 1

6 (1, 5) one has q = [5, 4, 3, 2, 1], q̄ = [1, 2, 3, 4, 5] and thus by

Lemma 3.1, x4 − y2 ∈ OX(ζ4
d) is irreducible in OX(ζ4

d). Note that neither x2 − y
nor x2 + y are quasi-invariant.

Proposition 3.3. Let X = 1
d (1, q) be a cyclic surface singularity and k an integer

0 ≤ k < d, then the germ

(16) f =

n∏
i=1

ki∏
j=1

(xqi − λijyq̄i) ∈ OX(ζkd ) ⊂ C{x, y},

with λij ∈ C∗ and λij1 6= λij2 , j1 6= j2 is generic in OX(ζkd ), where [k] = [k0, . . . , kn+1]
is the greedyX-decomposition of k and q̄i is the inverse class of qi modulo d. More-
over, any generic germ g ∈ OX(ζkd ) is such that NL(g) = NL(f) for an f as above.

Proof. Following the notation introduced in Remark 2.4 note that ‖α(f)‖X = k.
Assume g ∈ OX(ζkd ) is a germ such that v(g) ≤ v(f). To show the minimality of f it
is enough to prove that v(g) = v(f). On the one hand k ≡ ‖α(g)‖X ≤ ‖α(f)‖X = k
implies ‖α(g)‖X = k. On the other hand, by Lemma 2.7 α(f) is a solution to
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the coin change-making problem associated with ‖α‖X = k, that is, ‖α(f)‖1 is
minimal. Since ‖α(g)‖1 ≤ ‖α(f)‖1, one has ‖α(g)‖1 = ‖α(f)‖1, which together
with v(g) ≤ v(f), implies v(g) = v(f).

The moreover part is equivalent to proving NL(g) = NL(f) for any generic germ
g ∈ OX(ζkd ). This is a consequence of Proposition 1.10 since S̄L(f) = L(k) =
L(g). �

3.3. Calculation of κ(D) for generic germs. For better exposition the proof is
presented divided into several results. One of the key points is to write a generic
germs in terms of curvettes. Let us start with a technical result.

Let π : X̂ → X be the (p, q)-weighted blow-up defined in section 1.3. Let us
consider f ∈ OX(ζkd ) and denote by νp,q(f) the multiplicity of f(xp, yq).

Lemma 3.4. Under the conditions above

{(i, j) | pi+ qj ≤ νp,q(f), ai+ bj ≡ k mod d} =
{(i, j) | νp,q(f) ≥ pi+ qj ≡ νp,q(f) mod e, ai+ bj ≡ k mod d}.

Proof. Consider the system {pi + qj + ` = νp,q(f), ai + bj ≡ k mod d}. It will be
shown that e divides `. Since 0 6= f ∈ OX(ζkd ), there exist 0 6= (i0, j0) ∈ N2 such
that νp,q(f) = pi0 + qj0 with k = ai0 + bj0. Then,{

p(i− i0) + q(j − j0) ≡ −`,
a(i− i0) + b(j − j0) ≡ 0.

Multiplying the first equation by a and the second one by p, one obtains (aq −
pb)(j − j0) ≡ −a`, thus e := gcd(d, aq − pb) divides a`. Analogously, e divides b`
too and hence e|` because gcd(d, a, b) = 1. �

Proposition 3.5. Let κπ = #{(i, j) ∈ Z2 | i, j ≥ 1, pi+ qj ≤ νp,q(f), ai+ bj ≡ k
mod d}. Then,

(17) κX(f) = κπ +
∑

P∈E∩V (f̂)

κP (f̂).

Proof. Consider h ∈ OX(ζk+w
d ) and the 2-form ψ = h

dx ∧ dy
f

and let us calculate

the pull-back of ψ after the blowing-up π,

(18) ψ
π←− p

e
xN ĥ

dx ∧ dy
f̂

,

where N = (νp,q(h)− νp,q(f) + p+ q− e)/e and e = gcd(d, pb− qa), see section 1.3.

Thus h ∈ Mnul
f (k + w) if and only if N ≥ 0 and ĥ ∈ Mnul

f̂ ,P
for all P ∈ E ∩ V (f̂).

This proves

κX(f) = κ̃π +
∑

P∈E∩V (f̂)

κP (f̂),

where κ̃π = dimC

(
OX(ζk+w

d )

{h | νp,q(h)≥ νp,q(f)−p−q+e}

)
.

It remains to show that κ̃π = κπ. Since both OX -modules considered above are
monomial, the dimension of the quotient can be computed simply by counting the
monomials in OX(ζk+w

d ) not in {h ∈ OX(ζk+w
d ) | νp,q(h) ≥ νp,q(f) − p − q + e}.

Identifying each monomial xiyj with the integral point (i, j) in Z2
≥0, one obtains

κ̃π = #{(i, j) | i, j ≥ 0, pi+ qj < νp,q(f)− p− q + e, ai+ bj ≡ k − a− b mod d}
= #{(i, j) | i, j ≥ 1, pi+ qj < νp,q(f) + e, ai+ bj ≡ k mod d}
= #{(i, j) | i, j ≥ 1, pi+ qj ≤ νp,q(f), ai+ bj ≡ k mod d}.

The last equality is a direct consequence of Lemma 3.4. �
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3.4. Proof of Theorem 0.2. By the second part of Proposition 3.3 we can assume
that f has the form given in (16). Consider the (1, q)-weighted blow-up at 0 ∈ X
and denote by D̂ the strict transform of D := {f = 0} ⊂ X. By Proposition 3.5,

(19) κX(D) = κπ +
∑

P∈E∩D̂

κP (D̂),

where κπ := #{(i, j) ∈ Z2 | i, j ≥ 1, k ≥ i+qj ≡ k mod d}. The unique pairs (i, j)
satisfying both the inequality and the congruence are (k− q, 1), (k−2q, 2), . . . , (k−
jq, j) as long as k − jq > 0. Then,

κπ =

{
k1 − 1 if k = k1q,

k1 otherwise.

On the other hand, by construction, κP (D̂) 6= 0 only when P is the singular point
of type (q; 1, q2).

Equation (19) allows us to repeat the same arguments until X is smooth, see
section 1.3. The conclusion is that κX(f) =

∑n
i=1 ki − 1 = ‖k‖1 − 1, that is, the

number of local branches of f minus 1. �

3.5. Proof of Theorem 0.5. Since (OX(ζq0d ))k0 = OX , without loss of generality,
we can assume 0 ≤ k < d. Three cases can be distinguished.

Case 1. Note that if k = qi there is nothing to prove.
Case 2. If [k] = [0, . . . , 0, ki, 0, . . . , 0] it is enough to show that

I := dim
OX(ζkd )

⊗OX(ζqid )
⊗ki = 0,

that is, there are no L(k)-points under the polygon ⊕iNL(qi)
ki . In order to do this

consider f = (xqi − λ1y
q̄i) · · · (xqi − λkiyq̄i).

The (q̄i, qi)-blow-up π of X is a Q-resolution of f and thus, by Proposition 3.5,

(20) κX(f) = κπ +
∑

P∈E∩V (f̂)

κP (f̂) = κπ,

where κπ = #{(r, s) ∈ Z2 | r, s ≥ 1, kq̄i ≥ q̄ir + qis ≡ kq̄i mod d}.
Note that both I and κπ describe a certain number of L(k)-points as follows: let

s denote the number of points on the compact segment L of ⊕kiNL(qi), I1 (resp. I2)
the number of points on the x-axis (resp. y-axis) under or on L. Then I and κπ
are related by

(21) I + s = κπ + I1 + I2.

On the other hand it is clear that s = ki + 1. Also, I1 = 1 (and analogously by
symmetry I2 = 1). Therefore formula (21) becomes κπ = ki − 1 + I.

Finally, by Theorem 0.2 one has κX(f) = ki− 1. Since κX(f) = κπ by (20), one
obtains I = 0.

Case 3. In general, since 0 ≤ k < d one has the greedyX-decomposition of

k, namely [k] = [k1, ..., kn]. Again, we will show that I := dim
OX(ζkd )

⊗OX(ζ
qi
d )
⊗ki

= 0.

Assume k1 6= 0, otherwise the result will be proved by induction. Consider xr0ys0

a monomial in OX(ζkd ), that is, 0 ≤ r0 + qs0 ≡ k mod d. Note that the slope of
the compact segment in NL(qi) is − q̄iqi , hence the biggest slope among the compact

segments in
⊕
i,ki

NL(qi) is − q̄1q1 , and its corresponding line has equation i+ qj = k.

Note that xr0ys0 must be such that k ≤ r0 + qs0 ≡ k mod d. Therefore, after
substituting x 7→ x, y 7→ xqy one can construct the following monomial xk(xr1ys1),
where r1 = (r0 + q1s0−k)/d, s1 = s0, r1 + q2s1 ≡ k(1) mod q, k = k1q1 +k(1), and
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xr1ys1 ∈ OX1
(ζk

(1)

d ), X1 = 1
q1

(1, q2). Note that, given xr1ys1 ∈ OX1
(ζk

(1)

d ), one can

recover the original monomial in OX(ζkd ) by writing s0 := s1 and r0 := r1d+k−qs1.
Recursively, at the last step, one can use Case 2 to prove that such a monomial

must belong to OXn′ (ζ
k(n′)

d ), where n′ is the last non-zero entry of [k], namely,

[k0, k1, ..., kn′ , 0, ..., 0]. Hence, this implies that xr0ys0 ∈ ⊗OX(ζqid )
⊗ki . �

4. Applications and examples

We begin this section describing the canonical bundle of a cyclic quotient surface
singularity X. This description will allow us to give an alternative view on the
discrepancy divisor of X. Finally, the OX -eigenmodule of LR-logarithmic forms is
calculated for generic germs.

4.1. The canonical bundle of X. Recall that c = [c1, ..., cn] denotes the vector
of coefficients of the Hirzebruch-Jung continued fraction of d

q as defined in sec-

tion 2. Also recall that the canonical bundle is given by ωX = OX(KX) = OX(ζwd ),
where w := d− 1− q.

Proposition 4.1. Under the previous notation,

ωX =

n⊗
i=1

OX(ζqid )
⊗(ci−2)

.

Proof. The result will follow from Theorem 0.5 after calculating the greedyX-
decomposition of w = d− 1− q. Let us denote by [w] = [w1, . . . , wn] such decom-
position. Since d = c1q1 − q2 and c1 ≥ 2, one has

w1 = d− 1− q1 = (c1 − 2)q1 + (q1 − q2 − 1)

w1 = c1 − 2. Analogously, by induction assuming wi = ci − 2,

wi+1 = qi − qi+1 − 1 = (ci+1 − 2)qi+1 + (qi+1 − qi+2 − 1)

where qi = ci+1qi+1 − qi+2 (note that ci ≥ 2), which implies wi+1 = ci+1 − 2. �

4.2. Another view on the discrepancy of cyclic quotient surfaces. As a
consequence of Proposition 4.1 one can give an alternative proof of the formula
for the discrepancy divisor of a cyclic quotient singularity, cf. [4, 37]. Recall that,

given π : X̃ → X a resolution of the singularity X and E1, . . . , En the exceptional
divisors of the resolution, the discrepancy divisor (or relative canonical divisor)

KX̃/X =
∑
i εiEi associated with X̃ and π is given by the formula

(22) KX̃ = π∗(KX) +KX̃/X ,

where KX̃ is the canonical divisor on X̃ and KX = π∗(KX̃).
In case X = 1

d (1, q) and π is the Hirzebruch-Jung resolution described in sec-
tion 1.1, the canonical divisor KX is given by a Weil divisor f ∈ OX(ζwd ) =

OX(ζc−2
d ) (Proposition 4.1), therefore multiplying formula (22) by each Ej one

obtains the following vectorial equation

(0, . . . , 0) = (c1 − 2, . . . , cn − 2) + (ε1, . . . , εn)(Ei · Ej),
where cj − 2 = (f) · Ej and

∑
i εi(Ei · Ej) = KX̃/X · Ej . Since

Ei · Ej =


−ci if i = j

1 if |i− j| = 1

0 |i− j| > 1

one obtains εi = qi+q̄i
d − 1.
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Example 4.2. To continue Example 4.4 note that the discrepancy divisor associ-
ated with X = 1

14 (1, 11) is

−1

7
(E1 + 2E2 + 3E3 + 4E4 + 2E5) .

4.3. Proof of Theorem 0.6. The purpose of this section is to give a description
of Mnul

f for a generic f . Before we give the proof, the following technical result is
needed.

Lemma 4.3. Consider 0 ≤ k < d and [k] = [0, . . . , 0, kr, . . . , ks, 0 . . . , 0] its greedy
X-decomposition, where kr, ks 6= 0. Then the greedyX-decomposition of k + w is

[k + w] = [c∗ − 2, cr−1 − 1, kr − 1, k∗, ks − 1, cs+1 − 1, c∗ − 2].

Proof. We will consider two cases:

• Case 1. If k ≥ q+ 1, then k+w ≡ k− q− 1 mod d, with 0 ≤ k− q− 1 < d.
• Case 2. If k < q + 1, in which case k + w ≡ k + d − q − 1 mod d, with

0 ≤ k + d− q − 1 < d.

Before we prove the result for each case, let us note the following properties:

(1) α′j := [0, . . . , 0, cj − 1, cj+1 − 2, . . . , cn − 2] is a greedyX-decomposition of
‖α′j‖X = qj−1 − 1. The proof follows that of Proposition 4.1.

(2) αi := [c1 − 2, . . . , ci−1 − 2, ci − 1, 0, . . . , 0] is a greedyX-decomposition of
‖α′i‖X = d− q + qi+1.

(3) If α1 and α2 are X-decompositions, α1 is greedy , and α2 ≤ α1, then α2 is
greedy .

(4) If α = [a1, . . . , ai, 0, . . . , 0] (resp. β = [0, . . . , 0, bi+1, . . . , bn]) is a greedyX-
decomposition of a (resp. b) with b < qi, then α + β is a greedyX-decom-
position of a+ b.

In order to prove case 1, first note that k > q implies k1 > 0, that is r = 1
in the statement. Let us define β := [k1 − 1, k2, . . . , ks − 1, 0, . . . , 0] which is the
greedyX-decomposition of ‖β‖X = k−q1−qs = k−q−qs by (3). Using (4) above,
one can see that β+αs+1 = [k1−1, k2, . . . , ks−1, ks−1, cs+1−1, cs+2−2, . . . , cn−2]
is the required greedyX-decomposition of k − q − 1 = k + w.

In order to prove case 2, similarly as before, β := [0, . . . , 0, kr−1, kr+1, . . . , ks−1,
ks − 1, 0, . . . , 0] is the greedyX-decomposition of ‖β‖X = k − qr − qs by (3). Then
using (4) αr−1 + β + α′s+1 is the required greedyX-decomposition. �

Proof of Theorem 0.6. The inclusion OX(ζkd )⊗OX(ζwd ) ⊆Mnul
f is a consequence of

f being generic as follows. Since OX(ζkd )⊗OX(ζwd ) is generated by monomials it is
enough to show the result for its monomial generators. Consider h = xi1+i2yj1+j2 ,
where i1 + qj1 = k + m1d and i2 + qj2 = w + m2d for mi ≥ 0. Let us check
that the pull-back of the (1, q)-blow-up of hdx∧dyf can be extended holomorphically

to the exceptional divisor. Using formula (18) is it enough to check that N =
ν1,q(h)−ν1,q(f)+1+q−d

d is non-negative, that is, (i1 + i2) + q(j1 + j2)− k+ 1 + q− d =
(i1 +qj1−k)+(i2 +qj2− (d−q−1)) = md, where m = m1 +m2 ≥ 0. An induction
argument on the number of required blow-ups similar to the one used in Lemma 3.1
gives the result.

It remains to show that κ(f) is the reflexiveness index of OX(ζkd ) (see Defini-
tion 1.2), that is,

dimC
OX(ζk+w

d )

Mnul
f

= dimC
OX(ζk+w

d )

OX(ζkd )⊗OX(ζwd )
=: κX(OX(ζkd ), ωX).
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The left-hand side dimension is κX(f) which equals
∑n
i=1 ki − 1 by Theorem 0.2.

In other words, one needs to check

(23) κX(OX(ζkd ), ωX) =

n∑
i=1

ki − 1.

Let us denote by Γ1 (resp. Γ2) the Newton polygon associated with OX(ζk+w
d )

(resp. OX(ζkd )⊗OX(ζwd )). If Si ⊂ L(k + w) denotes the set of L(k + w)-points in
the first quadrant under Γi, i = 1, 2, then note that Si are both finite, S2 ⊂ S1, and
#(S2 \ S1) = κX(OX(ζkd ), ωX). The result will follow from counting #(S2 \ S1) =∑n
i=1 ki − 1. Let us write [k] = [0, . . . , 0, kr, . . . , ks, 0, . . . , 0], where kr, ks 6= 0. By

Lemma 4.3 we know

` := [k + w] = [c∗ − 2, cr−1 − 1, kr − 1, k∗, ks − 1, cs+1 − 1, c∗ − 2].

By Proposition 4.1, m := [k] + [w] = [k∗ + c∗ − 2]. Given an X-decomposition
α = [α1, . . . , αn], we will use the following notation:

‖α‖j :=

n∑
i=j

αiqi, and ‖α‖j :=

j∑
i=1

αiq̄i.

Note that (‖m‖j , ‖m‖j−1) denotes the coordinates of a vertex in Γ2 joining the

group of segments of slope − q̄j−1

qj−1
and the group of segments of slope − q̄jqj as shown

in Figure 2.

(‖m‖j , ‖m‖j−1)

Figure 2.

Let us show following:

(1) ‖m‖j = ‖`‖j , j = 1, . . . , r − 2,
(2) ‖m‖r−1 − ‖`‖r−1 = −q̄r−1,
(3) ‖m‖j = ‖`‖j , j = s+ 2, . . . , n,
(4) ‖m‖r − ‖`‖r = qr−1,
(5) ‖m‖j = ‖`‖j , j = 1, . . . , r − 1,
(6) ‖m‖j = ‖`‖j , j = s+ 2, . . . , n,

Equalities (1) and (3) are immediate since the first r − 1 (resp. last (n − s − 1))
coordinates of ` and m coincide. In order to obtain (4) note that:

‖m‖r − ‖`‖r = (cr − 1)qr +

s−1∑
i=r+1

(ci − 2)qi + (cs − 1)qs − qs+1.

Using ciqi = qi−1 + qi+1 one obtains the required formula. Also, in order to ob-
tain (5),

‖m‖1 − ‖`‖1 = ‖m‖j − ‖`‖j = −qr−1 + ‖m‖r − ‖`‖r.
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Analogous calculations prove (2) and (6). Equalities (1)-(6) show that Γ1 and Γ2

share the first r− 1 groups of segments of slopes − q̄jqj , j = 1, . . . , r− 2, and all but

one of the segments of slope − q̄r−1

qr−1
as shown in Figure 3.

(‖m‖r, ‖m‖r−1) = (‖`‖r + qr−1, ‖`‖r−1 − q̄r−1)

(‖`‖r, ‖`‖r−1)

Figure 3.

In particular, the difference #(S2 \ S1) is invariant if we assume

(24) ` := [0, . . . , 0, 1, kr − 1, k∗, ks − 1, 1, 0, . . . , 0]

and
m := [0, . . . , 0, 0, kr + cr − 1, k∗ + c∗ − 1, ks + cs − 1, 0, 0, . . . , 0].

Consider now the quadrilateralHr given by the vertices Pr = (‖`‖r, ‖`‖r−1), Pr+1 =
(‖`‖r+1, ‖`‖r), Qr = (‖m‖r, ‖m‖r−1), and Qr+1 = (‖m‖r+1, ‖m‖r). Note that
−−−→
PrQr = (qr − qr+1, q̄r+1 − q̄r),

−−−−→
PrPr+1 = (qr+1,−q̄r+1) (see Figure 4). A simple

Qr

Pr

Pr+1

Qr+1

A1
r

A2
r

(kr − 1)(qr,−q̄r)
(kr + cr − 2)(qr,−q̄r)

(qr−1 − qr, q̄r − q̄r−1)

(qr − qr+1, q̄r+1 − q̄r)

Figure 4.

calculation gives the area of this polygon Hr after decomposing it as a parallelogram
and a triangle (see Figure 4) as Ar = A1

r +A2
r, where

A1
r = (kr − 1)(q̄r, qr) · (qr−1 − qr, q̄r − q̄r−1) = (kr − 1)d

and
A2
r = 1

2 (qr − qr+1, q̄r+1 − q̄r) · (cr − 1)(q̄r, qr) =

1
2 (cr − 1)(q̄rqr − q̄rqr+1 + qr q̄r+1 − q̄rqr) = 1

2 (cr − 1)d,
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where Lemma 2.3 is used for these equalities. Hence Ar = 1
2d(2kr + cr − 3). Using

Pick’s Theorem for the lattice L(k + w) one obtains

Ar
d

=
1

2
Br + Ir − 1 =

1

2
(kr + kr + cr − 1) + Ir − 1,

where Br is the number of L(k + w)-boundary points on the polygon Hr, namely(
(kr−1)+1

)
+
(

(kr + cr−2)+1
)

and Ir is the number of L(k+w)-interior points

on Hr. Therefore

1

2
(2kr + cr − 3) =

1

2
(2kr + cr − 1) + Ir − 1

which implies Ir = 0. Analogously, one can prove that Ii = 0, where Ii is the
number of L(k+w)-interior points on Hi, the polygon determined by Pi, Pi+1, Qi,
and Qi+1, i = r + 1, . . . , s.

Finally, this implies that #(S2 \S1) can be calculated as the number minus two
of boundary L(k + w)-points on the Newton polygon given by ` in (24), that is,

Γ(`) = Γ(qr−1)⊕ Γ(qr)
kr−1 ⊕ (⊕s−1

i=r+1Γ(qi)
ki)⊕ Γ(qs)

ks−1 ⊕ Γ(qs+1),

which coincides with (‖`‖1 + 1)− 2 =
∑
i ki − 1 = ‖k‖1 − 1 as required. �

Example 4.4. Consider X = 1
14 (1, 11), then

q = [11, 8, 5, 2, 1]
c = [2, 2, 2, 3, 2]

We will calculate Mnul
h for a generic h ∈ OX(ζ10

d ). Note that [k + w] = [10 + 2] =
[1, 0, 0, 0, 1] and [k] + [w] = [0, 1, 0, 2, 0]. Therefore, by Theorems 0.5 and 0.6,

Mnul
h = OX(ζ8

d)⊗OX(ζ2
d)
⊗2

and OX(ζ12
d ) = OX(ζ11

d )⊗OX(ζ1
d). Finally,

κX(OX(ζ10
d ), ωX) = dimC

(OX(ζ10
d )⊗ ωX)∗∗

OX(ζ10
d )⊗ ωX

= dimC
OX(ζ11

d )⊗OX(ζ1
d)

OX(ζ8
d)⊗OX(ζ2

d)
⊗2 = 1,

which agrees with Theorem 0.2.

Corollary 4.5. For a given f ∈ OX(ζkd ) the module Mnul
f is monomial if f is

generic. Moreover Mnul
f is only reflexive if OX(ζkd ) is a special reflexive module,

that is, k = qi.

Proof. By Theorem 0.6 if f ∈ OX(ζkd ) is generic, then Mf = ωX ⊗ OX(ζkd ) which

is generated by monomials. For the moreover part, note that κX(OX(ζkd ), ωX) = 0
if and only if ωX ⊗OX(ζkd ) is reflexive, which, by (23) is equivalent to k = qi, that
is, OX(ζkd ) is a special reflexive OX -module – see [31, Theorem 5]. �

Remark 4.6. In general, Mnul
f is not monomial if f is not generic, even if it is a

product of curvettes on X, as the following examples shows.

Example 4.7. Let f = (x + y4)2 − y18 ∈ OX(ζ2
d) be a nongeneric germ in X =

1
5 (1, 4). Two consecutive blow-ups of weight (4, 1) and (1, 1) respectively serve as a
Q-resolution of (f, 0). This resolution allows one to use the recursive formula [12,
Theorem 4.5], which results in δX(f) = 13

5 . Let us calculate Mnul
f . One can easily

check that x2 − y8 ∈Mnul
f , since
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(x2 − y8)
dx ∧ dy

(x+ y4)2 − y18

x=ū1v̄4
1 , u1=ū1+1

y=v̄1, v1=v̄5
1

←− v̄8
1 (ū2

1 − 1)
dū1 ∧ dv̄5

1

v̄8
1((ū1 + 1)2 − v̄10

1 )
=

u1(u1 − 2)
du1 ∧ dv1

(u2
1 − v2

1)

u1=u2v2
v1=v2

←− u2 (u2v2 − 2)
du2 ∧ dv2

(u2 − 1)(u2 + 1)
.

Analogously one can also check that y13, x2 + xy4 ∈ Mnul
f . Using the curvette

h = x2 − y3 ∈ OX(ζ2
d), one obtains κX(2) = ‖2‖1 − 1 = 0 (Theorem 0.2). Also, it

is easy to check that δX(2) = 3
5 (via a (3, 2)-blow-up as a resolution as mentioned

above), hence ∆X(2) = δX(2)− κX(2) = 3
5 . Since ∆X(2) = 3

5 = δX(f)− κX(f) =
13
5 − κX(f), one obtains

κX(f) = 2 = dimC
OX(ζ2

d)

Mnul
f

≤ dimC
OX(ζ2

d)

C{x2 − y8, y13, x2 + xy4}
= 2.

Hence, Mnul
f = C{x2 − y8, y13, x2 + xy4}, which is not a monomial module.

4.4. Answers to Blache’s questions. Let X = 1
d (1, q) with gcd(d, q) = 1 and

denote by KX its canonical divisor. Let I := min{n ∈ N | nKX is Cartier} – it
can arithmetically be expressed as I = d

gcd(d,q+1) . Finally, consider the polynomial

function fI(x) = (x−1)(I−x)
I−1 . In one of his works, Blache asks the following two

questions concerning the map Z → Q defined by k 7→ RX(kKX), see [5, p. 337].
Note that this map has period I and vanishes at 1 and I.

(Bl-1) Does the inequality |RX(kKX)| < fI(k) hold for all k = 2, . . . , I − 1?
(Bl-2) Is |RX((k + 1)KX)−RX(kKX)| < 1 for all k ∈ Z?

As pointed out by Blache, after resolving the singularity X, Proposition 5.2 in [5]
allows one to calculate the explicit value of the previous function. However, the
meaning of his formula remains a little mysterious. Our geometric and topological
interpretation of the correction term provides a recursive formula giving a positive
answer to both questions. Our approach is as follows: recall that RX(kKX) =
−∆X(k(1+ q)), then we show recursive formulas for ∆X(k) using generic elements.
This is summarized in the following result, where {x} denotes the fractional part
of x and q′ is such that qq′ ≡ 1 mod d.

Proposition 4.8. Using the previous notation:

(1) ∆X(k + 1) = ∆X(k) + ∆X(1) +
{
kq′

d

}
− 1, ∀k 6≡ 0 mod d.

(2) ∆X(k + q) = ∆X(k) + ∆X(q) +
{
k
d

}
− 1, ∀k 6≡ 0 mod d.

(3) ∆X(k + 1 + q) = ∆X(k) +
{
k
d

}
+
{
kq′

d

}
− 1, ∀k 6≡ 0 mod d.

(4) ∆X(k(1 + q)) =
∑k−1
i=1

({ i(1+q)
d

}
+
{ i(1+q′)

d

})
− (k − 1), k = 1, . . . , d.

(5) ∆X((k + 1)(1 + q)) = ∆X(k(1 + q)) +
{k(1+q)

d

}
+
{k(1+q′)

d

}
− 1, ∀k 6≡ 0

mod d.

Proof. The proof of (3)–(5) follows from (1) and (2). The proof of (1) and (2) are
similar. Hence we will only show (2).

Let f ∈ OX(ζkd ) be generic. Due to Proposition 3.3, f =
∏n
i=1

∏ki
j=1(xqi −

λijy
q̄i) where

∑n
i=1 kiqi = (k mod d). By equation (5), since yf ∈ OX(ζk+q

d ), the
difference ∆X(k + q)−∆X(k) can be rewritten as follows

∆X(yf)−∆X(f) = δX(yf)− δX(f)− (κX(yf)− κX(f)).
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By Lemma 1.14, δX(yf)− δX(f) = δX(y) + (y, f)X . The κX -invariant of a quasi-
smooth curve is zero, see section 1.5, thus δX(y) = ∆X(y) = ∆X(q). From equa-

tion (13), the intersection multiplicity (y, f)X is
(y,f)C2

d =
{
k
d

}
.

It remains to show that κX(yf) − κX(f) = 1. Consider π : Y → X the (1, q)-
blow-up at the origin of X. After the blowing-up the curve y = 0 remains smooth

and it does not intersect the strict transform of f = 0 in Y , so κY (ŷf) = κY (f̂). By

Proposition 3.5, κX(yf) = κπ(yf) +κY (f̂) and κX(f) = κπ(f) +κY (f̂). Therefore
κX(yf)− κX(f) = κπ(yf)− κπ(f). By definition,

κπ(yf) = #{(i, j) ∈ Z2 | i, j ≥ 1, i+ qj ≥ ν1,q(f) + q, i+ qj ≡ k + q mod d},

which can be rewritten as κπ(yf) = #A, where A is the subset of Z2 defined by

A := {(i, j) | i ≥ 1, j ≥ 0, i+ qj ≥ ν1,q(f), i+ qj ≡ k mod d}.

Finally, consider the decomposition A = (A ∩ {j ≥ 1}) t (A ∩ {j = 0}). Note that
κπ(f) = #(A ∩ {j ≥ 1}) and A ∩ {j = 0} = {(k mod d, 0)}. This concludes the
proof of (2). �

4.5. Question (Bl-1). Assume k = 2, . . . , I−1. Let us denote by e := gcd(d, 1+q)
so that I = d/e. Consider the subgroup H of Z/Zd generated by 1+q. It has order I
and hence it can also be generated by e, that is, H = {0, e, 2e, . . . , (I−1)e} ⊂ Z/Zd.

To calculate
∑k−1
i=1 (i(1+q) mod d), one has to take k−1 non-zero pairwise different

elements in H and add them up. The minimum (resp. maximum) of all possible

choices is e + 2e + · · · + (k − 1)e = ek(k−1)
2 (resp. d − e + · · · + d − (k − 1)e =

d(k − 1) − ek(k−1)
2 ). Since the order of 1 + q−1 as an element of H is also e, the

same bound applies to
∑k−1
i=1 (i(1 + q−1) mod d). Therefore, by Proposition 4.8(4),

2

d
e
k(k − 1)

2
− (k − 1) ≤ ∆X(k(1 + q)) ≤ 2

d

(
d(k − 1)− ek(k − 1)

2

)
− (k − 1).

This shows that

|∆X(k(1 + q))| ≤ (k − 1)(I − k)

I
=
I − 1

I
fI(k)

for k = 1, . . . , I and this implies the required bound.
In Figure 5 one sees how the value of ∆X(k(1 + q)) fits the bound depending on

the singular type of X. In particular, the bound is sharp for X = 1
d (1, 1) as in the

left-hand side of the figure.

1 2 3 4 5 6 7 8

0.5

1

1.5

1 2 3 4 5 6 7 8

0.5

1

1.5

Figure 5. Comparison between ∆X(k(1 + q)) and (k−1)(I−k)
I for

X = 1
16 (1, 1) and X = 1

16 (1, 5) respectively.
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4.6. Question (Bl-2). Let k ∈ Z. If k(1 + q) ≡ 0 mod d, then ∆X((k + 1)(1 +
q)) −∆X(k(1 + q)) = 0. Otherwise, according to Proposition 4.8(5), the previous

difference can be expressed as
{k(2+q+q′)

d

}
− 1. Working out as above one obtains

that

|∆X((k + 1)(1 + q))−∆X(k(1 + q))| ≤ I − 1

I
fI(2) = 1− 2

I
,

as long as k(1 + q) 6≡ 0 mod d. This already gives a positive answer to question 2.
Although this bound is sharp by X = 1

d (1, 1), we were still able to find another in-
teresting bound using the log canonical threshold of X with respect to the maximal
ideal m, denoted by lct(X,m), see below.

Proof of Proposition 0.7. Let m := min{qi + q̄i}ni=1 and denote by i0 ∈ {1, . . . , n}
the index where this minimum is reached. Then lct(X,m) = m

d =
qi0+q̄i0

d ≥ 2
d , see

e.g. [37]. Let us write k(1 + q) mod d =
∑n
i=1 kiqi, then, by Definition-Lemma 2.1,

k(1 + q′) mod d =
∑n
i=1 kiq̄i and hence

(25) ∆X((k + 1)(1 + q))−∆X(k(1 + q)) =

n∑
i=1

ki
qi + q̄i
d
− 1 ≥ lct(X,m)− 1.

The letter inequality holds for all k ∈ Z. Now let us use Serre’s duality from [5] to
obtain an upper bound. Denote by ` = −(k + 2), then by Serre one has

∆X((k + 1)(1 + q))−∆X(k(1 + q)) = −
(

∆X((l + 1)(1 + q))−∆X(l(1 + q))
)

which is less than or equal to 1− lct(X,m) by equation (25).
This shows that |∆X((k+1)(1+q))−∆X(k(1+q))| ≤ 1− lct(X) < 1. Moreover,

the inequality is sharp if k(1 + q) ≡ qi0 mod d has a solution, that is, whenever
gcd(d, 1 + q) divides qi0 . �
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Departamento de Matemáticas, IUMA, Universidad de Zaragoza, C. Pedro Cerbuna

12, 50009 Zaragoza, Spain

E-mail address: jicogo@unizar.es

Centro Universitario de la Defensa-IUMA, Academia General Militar, Ctra. de

Huesca s/n., 50090, Zaragoza, Spain
E-mail address: jorge@unizar.es


	Introduction
	1. Settings and Definitions
	1.1. Quotient surface singularities
	1.2. Spaces of germs
	1.3. Embedded Q-resolutions and weighted blow-ups
	1.4. Hirzebruch-Jung resolution
	1.5. LR-Logarithmic eigenmodules
	1.6. Curvettes, valuations, and generic germs
	1.7. Newton polygon, Milnor number, and delta-invariant

	2. The invariant DeltaX and combinatorics of curvettes
	2.1. The invariant DeltaX
	2.2. Further numerical properties of cyclic quotient surface singularities
	2.3. The X-decomposition of k

	3. Proof of Main Theorems
	3.1. Proof of Theorem 0.1
	3.2. Generic germs as a product of curvettes
	3.3. Calculation of kappa for generic germs
	3.4. Proof of Theorem 0.2
	3.5. Proof of Theorem 0.5

	4. Applications and examples
	4.1. The canonical bundle of X
	4.2. Another view on the discrepancy of cyclic quotient surfaces
	4.3. Proof of Theorem 0.6
	4.4. Answers to Blache's questions
	4.5. Question (Bl-1).
	4.6. Question (Bl-2).

	References

