000131788 001__ 131788
000131788 005__ 20240219150722.0
000131788 0247_ $$2doi$$a10.1002/lpor.202300589
000131788 0248_ $$2sideral$$a137263
000131788 037__ $$aART-2024-137263
000131788 041__ $$aeng
000131788 100__ $$aPorta-Velilla, Luis
000131788 245__ $$aGrain Orientation, Angle of Incidence, and Beam Polarization Effects on Ultraviolet 300 ps-Laser-Induced Nanostructures on 316L Stainless Steel
000131788 260__ $$c2024
000131788 5060_ $$aAccess copy available to the general public$$fUnrestricted
000131788 5203_ $$aLaser‐induced periodic surface structures (LIPSS) represent a unique route for functionalizing materials through the fabrication of surface nanostructures. Commercial AISI 316L stainless steel (SS316L) surfaces are laser treated by ultraviolet 300 ps laser pulses in a laser line scanning (LLS) approach. Processing parameters are optimized (pulse energy of 2.08 µJ, pulse repetition frequency of 300 kHz, and suitable laser scan and sample displacement rates) for the generation of low spatial frequency LIPSS over a large 25 × 25 mm2 area. Different angles of incidence of the laser radiation (0°, 30°, and 45°) and different linear laser beam polarizations (s and p) produce a plethora of rippled surface morphologies at distinct grains. Scanning electron microscopy and 2D Fourier transforms, together with calculations of the optical energy deposited at the treated surfaces using Sipe's first‐principles electromagnetic scattering theory, are used to study and analyze in detail these surface morphologies. Combined with electron backscattering diffraction, analyses allow associating site‐selectively various laser‐induced‐surface morphologies with the underlying crystalline grain orientation. Resulting grain orientation maps reveal a strong impact of the grain crystallographic orientation on LIPSS formation and point toward possible strategies, like multi‐step processes, for improving the manufacturing of LIPSS and their areal coverage of polycrystalline technical materials.
000131788 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T54-23R$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/PID2020-113034RB-I00
000131788 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000131788 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000131788 700__ $$0(orcid)0000-0003-4839-5286$$aMartínez, Elena
000131788 700__ $$aFrechilla, Alejandro$$uUniversidad de Zaragoza
000131788 700__ $$0(orcid)0000-0002-9687-4903$$aCastro, Miguel$$uUniversidad de Zaragoza
000131788 700__ $$0(orcid)0000-0002-0500-1745$$ade la Fuente, Germán Francisco
000131788 700__ $$aBonse, Jörn
000131788 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, Luis Alberto$$uUniversidad de Zaragoza
000131788 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000131788 773__ $$g18, 2 (2024), 2300589 [21 pp.]$$pLaser & Photonics Reviews$$tLaser & Photonics Reviews$$x1863-8880
000131788 8564_ $$s5629242$$uhttps://zaguan.unizar.es/record/131788/files/texto_completo.pdf$$yVersión publicada
000131788 8564_ $$s2797539$$uhttps://zaguan.unizar.es/record/131788/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000131788 909CO $$ooai:zaguan.unizar.es:131788$$particulos$$pdriver
000131788 951__ $$a2024-02-19-13:26:21
000131788 980__ $$aARTICLE