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NECKLACE THEORY ON FLOWER CONSTELLATIONS

Daniel Casanova ∗, Martı́n Avendaño†, and Daniele Mortari‡

Theory of Flower Constellations has been improved with the 2-D and 3-D Lattice
Flower Constellations. However, placing a satellite in each admissible location is
not an optimal way to design a constellation. The necklace theory considers con-
stellations whose satellites are subsets of the satellites of a Lattice Flower Con-
stellation, keeping all its symmetries, in order to reduce the cost of the mission.
Mathematically, these subsets are parameterized by necklaces (describing which
satellites in the first orbit of the underlying constellation we keep), and a shifting
parameter that controls the phasing between subsequent orbits.

INTRODUCTION

Constellations of satellites have been used for a variety of space missions (e.g., global navigation
systems, communications, observations, reconnaissance, etc.) and the improvement and design of
new constellations are a current topic used to reduce the cost of the missions as much as possible.

General theories to design satellite constellations with symmetric distribution of satellites in-
clude the classic Walkers constellations [1] and the more recent Flower constellations [2]. The
philosophic difference between Walker constellations and the original Flower Constellations is the
reference frame selected where to build symmetric distributions of satellites: while Walker’s choose
the inertial reference frame, a generic rotating reference frame is selected in the theory of Flower
Constellations.

The original theory of Flower Constellations (FCs), first presented in [2], and then expanded
in details in [3, 4], was substantially improved with the 2-D Lattice FCs [5] making the theory
independent from any reference frame, inertial or rotating, and with minimal parametrization. More
recently, the 3-D Lattice FCs [6] extended the 2-D Lattice FCs theory to elliptical orbits subject to
the J2 effect due to the Earth oblateness.

The evolution of these theories is interesting for many reasons. First, the deep connection with
Number theory mathematical tools and properties (Chinese remainder theorem, theory of Lattices,
Hermite normal form, etc), second, the level of description using minimal parametrization, a prop-
erty useful to ensure to include all the potential symmetric solution, and third, the important practical
reason to include the J2 effect, making the constellation designers free to use any inclination when
selecting elliptical orbits. However, while from a mathematical point of view the theory appears
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to have reached the final level of maturity, from a practical point of view, a question arise. Since,
most of these symmetric configurations involve an unpractical high number of satellites, is it pos-
sible to select a subset of them and still obtaining symmetric distributions? This paper provides a
positive answer to this question and provides all the possible subsets keeping full symmetry in the
(Ω,M)-space [7].

At the heart of FCs the (Ω,M)-space, describing the distribution of the satellites in the 2-D
Lattice FCs [8]. The initial orbit is related with a necklace of Nm pearls representing the admissible
locations. A number of satellites (Nso) less than the number of pearls are distributed in the initial
necklace. The purpose is find the suitable shifting and a proper necklace to get the same initial
and final orbit to see the (Ω,M)-space as a 3-D torus and reduce the number of satellites in the
constellation.

FLOWER CONSTELLATIONS BACKGROUND

The evolution of the Theory of Flower Constellations

A Flower Constellation, as defined in [2] and [3, 4], is a set of Ns satellites following the same
(closed) trajectory with respect to a rotating frame fixed to the Earth. This condition implies that:

1. The period of revolution, Tp, of each satellite about the Earth is a rational multiple of the
period of rotation of the Earth, Td. That is, NpTp = NdTd for some positive (coprime)
integers Nd and Np.

2. The orbital parameters a, e, i and ω are the same for all the satellites.

3. The mean anomaly at epoch Mi and the right ascension of the ascending node Ωi of the orbit
of each satellite satisfy NpΩi ≡ −NdMi mod 2π.

The first item guarantees that the trajectory in the rotating frame is closed. The second and third item
are necessary and sufficient conditions to have all the satellites on the same trajectory (a complete
proof of this fact is given in [7]) and [8]).

Usually, when designing a Flower Constellation, the compatibility (or resonant) parameters Nd

and Np are decided first, which immediately determines the period of revolution Tp, and therefore
the semimajor axis a. After that, the orbital parameters e, i and ω are selected. Finally, the angles
Ωi and Mi are computed by the recursive sequence

Ω1 = M1 = 0,

Ωi+1 ≡ Ωi + 2π
Fn

Fd
,

Mi+1 ≡ Mi − 2π
NpFn + FdFh(i)

FdNd
,

where Fn and Fd are two coprime positive integers and Fh(i) is any sequence of numbers chosen in
the set {0, 1, . . . , Nd−1}. It is easy to show that this procedure always produces pairs (Ωi,Mi) con-
sistent with the equationNpΩi ≡ −NdMi mod 2π. For simplicity, the parameter Fh will be consid-
ered constant. Currently, a FC is specified by the six integer parameters (Nd, Np, Fd, Fn, Fh, Ns),
as well as the continuous parameters (e, i, ω). This is the approach followed so far in all the papers
on Flower Constellations and also in the simulation and visualization software FCVAT [9].
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It has been shown in [7, Thm 1], that the number of satellites in a Flower Constellation designed
under this procedure can not exceed NdFd/G satellites, where G = gcd(Nd, NpFn + FdFh). A
constellation with the maximum number of satellites allowed by this theorem is called either a
Secondary Path (as in [4]) or a Harmonic Flower Constellation (HFC)(following [7]). The location
of the satellites of a HFC in the (Ω,M) space is determined [7, Thm 2] by three invariants: the
number of inertial orbits Fd, the number of satellites per orbit Nso = Nd/G and the configuration
number Nc ∈ [0, Fd), given by the formula

Nc = En
Np Fn + Fd Fh

G
mod Fd,

where En and Ed are integers such that EnFn + EdFd = 1. The numbers Fd, Nso and Nc are
always coprime.

2-D Lattice Flower Constellations

The 2-D Lattice Flower Constellations, see [5], can be described by five integer parameters and
three continuous parameters. The integer parameters can be broken into two sets, the first describing
the phasing of the satellites and the second describing the orbital period (or semi-major axis). The
first set is {No, Nso, Nc} where No is the number of orbital planes, Nso is the number of satellites
per orbit, and Nc is a phasing parameter. The second set is {Np, Nd} which satisfies the compati-
bility equation

NpTp = NdTd, (1)

where Tp is the orbital period and Td is the period of the rotating reference frame (e.g., the sidereal
period of Earth’s rotation). This definition enforces the repeating space-track requirement.

The phasing parameters define the RAAN (Ω) and initial mean anomaly (M ) as

Ωij =
2πi

No
,

Mij =
2πj

Nso
− NcΩij

Nso
.

(2)

These equations can be rewritten in matrix notation as[
No 0
Nc Nso

] [
Ωij

Mij

]
= 2π

[
i
j

]
, (3)

where i = 0, . . . , No−1, j = 0, . . . , Nso−1 andNc ∈ [0, No−1]. Satellite (i, j) is the jth satellite
on the ith orbital plane.

The remaining parameters required to define the constellation are continuous parameters that are
the same for all orbits in the constellation: the inclination angle, the eccentricity, and the argument
of periapsis.

Note that since the 2-D Lattice Flower Constellation separate the satellite phasing from the or-
bit size, non-repeating space-tracks can be used without affecting the uniformity of the satellite
distribution.

Since all the satellites in a Lattice Flower Constellation have the same orbital parameters a, e,
i, and ω, it is enough to use the (Ω,M)-space to represent the location of the satellites. Figure 1
shows the distribution of satellites in the Lattice Flower Constellation with Nso = 6, No = 8, and
Nc = 2, obtained by solving Eq.(3).
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Figure 1. Distribution of satellites of a Lattice Flower Constellation in the (Ω,M)-space.

THE NECKLACE PROBLEM

The Necklace Theory

The necklace problem is a combinatorial problem which answer the following question: in how
many different arrangements of n pearls in a circular loop are there, assuming that each pearl come
in one of k different colors? Two arrangements that differ only by a rotation of the loop, are consider
the to be identical. The mathematical solution to this problem (see [10]) is a simple application of
Burnside’s counting theorem, and summarized by the following formula:

Nk(n) =
1

n

∑
d|n

ϕ(d)kn/d,

where the sum is taken over all the divisors d of n, and ϕ(d) is the number of integers in the interval
[1, d] that have no common prime factor with d∗.

Mathematically, each configuration will be represented as a subset G ⊆ {1, . . . , n}. The set of all
possible necklaces with n pearls and two colors will be written K(n). Figure 2 shows all possible
necklaces using three pearls of two colors, i.e. the elements of K(3).

Algorithm 1 (provided in the appendix in pseudo-code), computes all possible necklaces involv-
ing a total of n pearls, of which w are white and n − w are black. In order to obtain all possible
necklaces with n pearls, it is necessary to call the algorithm with w = 0, . . . , n.

∗The function ϕ(d) is called Euler’s totient function. A simple computation shows that ϕ(1) = ϕ(2) = 1, ϕ(3) =
ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2, ϕ(7) = 6, etc.
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Figure 2. Mathematical representation of necklaces.

Symmetries of the necklaces

Let G be a necklace such as G ∈ K(n). We say that G has a symmetry of length r if G and G + r
coincide modulo n.

As an example, consider the necklace G = {1, 3, 5, 7} ∈ K(8). What symmetries does it have?

• r = 2 is a symmetry, since G + 2 = {3, 5, 7, 9} is equivalent to G modulo 8.

• r = 4 and r = 8 are also symmetries, since {5, 7, 9, 11} and {7, 9, 11, 13} reduce to
{1, 3, 5, 7} modulo 8.

• r = 1 is not a symmetry, since {2, 4, 6, 8} and {1, 3, 5, 7} do not coincide modulo 8.

From the example it is easy to see that if r is a symmetry of a necklace, then any multiple of r is
also a symmetry. This remark motivates our following definition: for each necklace G ∈ K(n), the
symmetry number of G, denoted Sym(G), is the shortest of the symmetries of G. Note that Sym(G)
always divides n.

sym(G) = min{1 ≤ r ≤ n : G + r ≡ G (mod n)} (4)

Algorithm 2 (provided in the appendix) can be used to find all the symmetries and the symmetry
number of a given necklace.
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NECKLACES AND 2-D FLOWER CONSTELLATIONS

The basic idea is the following: we start with a standard Lattice Flower Constellations (with
parameters Nso, No, and Nc), and instead of placing satellites in each admissible location (as given
by Eq. 2), we choose a subset of admissible locations G ⊆ {1, 2, . . . , Nso} for the satellites in
the first orbit, and then we duplicate this configuration for each subsequent orbit using a shifting
parameter (an integer k ∈ {1, . . . , Nso}). The subset G can be any necklace. Once G and the
shifting parameters are given, the constellation is automatically determined. Figure 3 shows how
the satellite in the second orbit corresponding to one given satellite in the first orbit, for different
values of the shifting parameter k.

Figure 3. The shifting depends on the value of k.

There are two simple details that have to be taken into account:

Consistency Due to the modular nature of the parameter Ω, the shifting has to be chosen in such
a way that the satellites in the orbit with Ω = 0 coincide with the satellites in the orbit with
Ω = 2π. This problem will be discussed in detail in the next subsection.

Minimality Sometimes, for the same G, there are two values of the shifting parameter generate the
same distribution of satellites in the (Ω,M)-space. This is solved by simple taking 1 ≤ k ≤
Sym(G).

The constellations obtained by these procedure will be called “Necklace Flower Constellations”.

∆M -Shifting Between Subsequent Orbits

The first satellite (j = 0) in the zero or initial orbit (i = 0) is chosen, without loss of generality
M00 = 0 and Ω00 = 0. Taking into account (2) the mean anomaly of our satellite in the next orbit
will be:

M10 =
−2πNc

NoNso
. (5)
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Then, the amount ∆M , called ∆M -Shifting between subsequent orbits, will be:

∆M =
−2πNc

NoNso
+ k

2π

Nso
. (6)

This means that the mean anomalies of the satellites in the second orbit can be obtained by adding
∆M to the mean anomalies of the satellites of the first orbit. Similarly, the mean anomalies on the
third orbit are the mean anomalies on the second plus ∆M , and so on.

After a rotation of 360◦ of the initial orbit, the mean anomaly of the satellite will increase by:

No∆M = No

(
−2πNc

NoNso
+ k

2π

Nso

)
=

2π

Nso
(kNo −Nc). (7)

Admissible pair (G, k)

Let G be a necklace such as G ∈ K(Nso) and a shifting parameter k ∈ {1, . . . , Nso}, the pair
(G, k) is called admissible if the distribution of satellites in the initial orbit is invariant by the adding
No∆M to the mean anomaly of each satellite. By the definition of symmetry number, this condition
translates into Sym(G)|kNo−Nc. This equation represents the solution to the consistency problem.

Figure 4 shows an example of the constellation generated by an admissible pair (G, k). In this
case, the underlying Lattice Flower Constellation has parameters Nso = 9, No = 6, and Nc = 3.
The necklace is G = {1, 4, 6} that has symmetry number Sym(G) = 9, and the shifting parameter
is k = 2. Note that in this example we have 9|2 · 6− 3.

Figure 4. A necklace flower constellation generated by an admissible pair.
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As we mention before, the minimality problem is solved by restricting the range of values of k to
the interval [1, Sym(G)]. It is clear that (G, k) and (G, k′) will generate the same constellation if and
only if k − k′ is an integer multiple of Sym(G). This is impossible for two values in the proposed
interval.

Figure 5 shows an example of this situation: in the Lattice Flower ConstellationNso = 9,No = 6,
and Nc = 3, the necklace G = {1, 4, 7}, which has Sym(G) = 3, generates the same configuration
for k = 2, k = 5, and k = 8.

Figure 5. Different values of k can generate the same configuration.

At this point we can state our main result: each Necklace Flower Constellation correspond with
one (and only one) pair (G, k) with G ∈ K(Nso), 1 ≤ k ≤ Sym(G), and Sym(G)|kNo −Nc.

Figure 6 shows the only three possible constellations (according to our main result) induced by
the necklace G = {1, 4, 7, 10} ∈ K(12), which has symmetry number 3. The underlying Lattice
Flower Constellation has parameters Nso = 12, No = 9, and Nc = 3, so the three possible values
of k ∈ {1, 2, 3} are admissible.

Figure 6. All the possible different configurations with G = {1, 4, 7, 10}.
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The Diophantine Equation for the Shifting parameter

The admissibility condition for a pair (G, k), motivates us to study the diophantine equation
d|ak − b, where a, b, d are given (positive) integers and the unknown k takes integer values in the
range [1, d]. All the solutions can be obtained trivially by trial and error (since there are finitely
many possibilities for k), but we would like a more efficient procedure.

The number of solutions of this diophantine equation will be denoted Y (d, a, b), which can be
proven to be

Y (d, a, b) =

{
0 if gcd(d, a) - b

gcd(d, a) otherwise.
(8)

The idea is that, independently of the value of k, the product ak is always divisible by gcd(d, a), so
when gcd(d, a) - b, it is impossible to have gcd(d, a)|ak−b, and therefore we will never have d|ak−
b. In the case where gcd(d, a)|b, we can divide a, b, and d by gcd(d, a), and reduce the problem
to the equation d′|a′k − b′ where a′ = a/ gcd(d, a), b′ = b/ gcd(d, a, and d′ = d/ gcd(d, a). This
problem has only one solution in the interval [1, d′], since a′ and d′ have no common factor, and
therefore has d/d′ = gcd(d, a) solutions in the [1, d].

An efficient algorithm that implements this idea to compute the actual solutions of the equation
d|ak − b is given in the appendix (see algorithm 3).

THE TOTAL NUMBER OF NECKLACE FLOWER CONSTELLATIONS

From a mathematical point of view, it is interesting to compute the total number of Necklace
Flower Constellation that can be obtained from a Lattice Flower Constellation with parametersNso,
No, and Nc. This amount, denoted W (Nso, No, Nc), is exactly the number of admissible pairs, i.e.

W (Nso, No, Nc) = #{(G, k) : G ∈ K(Nso), 1 ≤ k ≤ sym(K), kNo ≡ Nc mod (sym(G))}.
(9)

If we denote X(d) the number of necklaces with symmetry number equal to d, then we can
rewrite the previous formula as:

W (Nso, No, Nc) =
∑
d|Nso

X(d)Y (d,No, Nc). (10)

It is apparent that we should write X(d,Nso) instead of X(d), since we are considering neck-
laces in K(Nso). However, it is clear that the number of necklaces with symmetry number d in
K(Nso) correspond one-to-one with the necklaces in K(d) with symmetry number d. This shows
that X(d,Nso) does not depend on Nso, as long as d|Nso. For practical purposes we can define
X(d) = X(d, d), i.e. the number of necklaces in K(d) with no symmetry of length smaller than d.
A simple corollary of this discussion is the formula∑

d|n

X(d) = N2(n), (11)

that follows from the fact that X(d) = X(d, n) for any d|n, and that any necklace in K(n) has a
symmetry number that divides n.

Consider two positive integers n and m. Denote (n : m∞) the integer obtained by removing all
the prime factors corresponding to the primes that appear in m. For instance, (120 : 70∞) = 3,
since 60 = 23 · 3 · 5 and the primes 2 and 5 appear in 70 = 2 · 5 · 7.
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Now we have all the tools needed to state our main counting result:

Theorem 1. Assume gcd(Nso, No, Nc) = 1. Then,

W (Nso, No, Nc) = N2(Nso : N∞o ),

regardless of the value of Nc.

Proof. We will use Eq. 10 to compute the value of W (Nso, No, Nc). In this equation, we have a
sum ranging over all divisors d of Nso. However, if the divisor d has a common factor with No,
then it can not have any common factor with Nc by our assumption gcd(Nso, No, Nc) = 1, and
therefore Y (d,No, Nc) = 0 according to Eq. 8. This means that it is enough to consider divisors
of (Nso : N∞o ). For any of these divisors, we have Y (d,No, Nc) = 1, since gcd(d,No) = 1. All
together this means that

W (Nso, No, Nc) =
∑

d|(Nso:N∞o )

X(d),

which is equal to N2(Nso : N∞o ) by Eq. 11.

We derive from Theorem 1, two particular cases of independent interest:

Theorem 2. If gcd(Nso, No) = 1, then W (Nso, No, Nc) = N2(Nso).

Proof. When Nso and No have no common factors, then (Nso : N∞o ) = Nso, since there are no
primes to remove from Nso. Knowing this, the result follows immediately from Theorem 1.

Theorem 3. If Nso|No and gcd(Nc, Nso) = 1, then W (Nso, No, Nc) = 2.

Proof. The assumption Nso|No, implies that all the primes in Nso appear in No, and therefore
(Nso : N∞o ) = 1. By Theorem 1, we conclude W (Nso, No, Nc) = N2(1) = 2.

While Theorem 1 is enough to deal with any Harmonic Flower Constellation (which are Lattice
Flower Constellations with the additional constrain gcd(Nso, No, Nc) = 1 as shown in [5]), it would
be nice to have a simple closed formula for W (Nso, No, Nc) that works in general. The following
two results represent one positive step in that direction, but are clearly not enough.

We start with a formula for X(d).

Theorem 4. For any positive integer d, we have

X(d) =
1

d

∑
e|d

µ(e)2d/e,

where µ is Moebius’ function†.

†The function µ(n) is zero when the factorization of n contains a prime number to a power greater than 1, and
otherwise, when n is the product of r different primes, is equal to (−1)r .
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Proof. The idea is to invert Eq. 11 using Moebius’ inversion formula:

X(d) =
∑
e|d

µ(d/e)N2(e) =
∑
e|d

∑
f |e

µ(d/e)
ϕ(f)

e
2e/f .

Writing r = e/f , and changing the order of summation, we get:

X(d) =
∑
r|d

2r

r

∑
f | d

r

µ

(
d

rf

)
ϕ(f)

f
.

Finally, the theorem of multiplicative arithmetic functions show that the second sum reduces to
µ(d/r)/(d/r), and therefore

X(d) =
∑
r|d

2r

r

µ(d/r)

d/r
=

1

d

∑
r|d

µ(d/r)2r,

as stated.

Now we can give a formula for W (Nso, No, Nc) in cases not included in Theorem 1 or any of its
corollaries.

Theorem 5. If Nso|No and Nso|Nc then, W (Nso, No, Nc) = 2Nso .

Proof. The key observation here is that for any divisor d of Nso, we have Y (d,No, Nc) = d, since
d also divides No and Nc. Using Eq. 10 and Theorem 4, we obtain:

W (Nso, No, Nc) =
∑
d|Nso

X(d)d =
∑
d|Nso

∑
e|d

µ(e)2d/e.

Writing d = ek, and changing the order of summation, the formula above reduces to:

W (Nso, No, Nc) =
∑
k|Nso

∑
e|Nso

k

µ(e)2k.

The sum
∑

e|r µ(e) is equal to 1 when r = 1 and 0 otherwise. In particular, the sum above (the
one depending on e) will vanish unless k = Nso. This shows that W (Nso, No, Nc) = 2Nso , as
claimed.

CONCLUSIONS

The cost of the missions is one of the most important factors to account when building a Con-
stellations of satellites. The theory of necklaces allows us to reduce the number of satellites in
a Flower Constellation without losing their symmetric character. Throughout the paper we have
shown what parameters are needed to define one of these objects (basically, a pair (G, k) consisting
of a necklace and a positive integer), and which constrains have to be imposed on these parameters
(a simple diophantine equation). We have also provided algorithms in pseudo-code, but ready to be
implemented, that enumerate all the possible Necklace Constellations that can be extracted from a
Lattice Constellation.
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APPENDIX: PSEUDOCODE OF THE PROPOSED ALGORITHMS

Algorithm 1 Find all the necklaces of Nm spots and Nso satellites
1: a = zeros(1, Nm)
2: b = []
3: neckrek(1, 1, 0, Nm, Nso) % Call to the recursive function neckrek(t,p,ones,Nm,Nso)
4: if ones <= Nso then
5: if t > Nm then
6: if mod (Nm, p) == 0 then
7: if sum(a) == Nso then
8: b(size(b, 1) + 1, :) = a(2, : end)
9: end if

10: end if
11: else
12: a(t+ 1) = a(t− p+ 1)
13: if a(t+ 1) > 0 then
14: neckrec(t+ 1, p, ones+ 1, Nm, Nso)
15: else
16: neckrec(t+ 1, p, ones,Nm, Nso)
17: end if
18: for j = a(t+ 1− p) + 1 : 1 do
19: a(t+ 1) = j
20: neckrec(t+ 1, t, ones+ 1, Nm, Nso)
21: end for
22: end if
23: end if
24: M = fliplr(b)
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Algorithm 2 Finds the symmetries of a necklaces matrix
1: [roll, Nm] = size(M)
2: [nod, d] = divisors(Nm)
3: N = zeros(roll, 1)
4: S = zeros(roll, nod)
5: for i = 0, . . . , roll do
6: cs = 0
7: for j = 1, . . . , nod do
8: sym = true
9: I = 1 : d(j)

10: for k = 1, . . . , ((Nm/d(j))− 1) do
11: I = I + k ∗ d(j)
12: if isequal(M(i, I),M(i, I )) == 0 then
13: sym = false
14: break
15: end if
16: end for
17: if sym == true then
18: cs = cs+ 1
19: S(i, cs) = d(j)
20: end if
21: end for
22: N(i) = cs
23: end for

Algorithm 3 All the solutions of the diophantine equation Ak +B ≡ 0 mod C

1: [d, x1, k1] = gcd(C,−A)
2: w = zeros(1, C + 1)
3: symmetry counter = 0
4: if mod (B, d) == 0 then
5: for lambda = −C : C do
6: k = (k1B

d ) + (lambda− 1)(Cd )
7: if k ≥ 0 && k < C then
8: symmetry counter = symmetry counter + 1
9: w(symmetry counter) = k

10: end if
11: end for
12: end if
13: w(symmetry counter + 1) = −1
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