
Journal of Symbolic Computation 42 (2007) 1142–1154
www.elsevier.com/locate/jsc
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Abstract

Latin squares can be seen as multiplication tables of quasigroups, which are, in general, non-
commutative and non-associative algebraic structures. The number of Latin squares having a fixed iso-
topism in their autotopism group is at the moment an open problem. In this paper, we use Gröbner bases to
describe an algorithm that allows one to obtain the previous number. Specifically, this algorithm is imple-
mented in SINGULAR to obtain the number of Latin squares related to any autotopism of Latin squares of
order up to 7.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A quasigroup (Albert, 1943) is a nonempty set G endowed with a product ·, such that if any
two of the three symbols a, b, c in the equation a · b = c are given as elements of G, the third
one is uniquely determined as an element of G. This is equivalent to saying that G is endowed
with left and right division. Specifically, quasigroups are, in general, non-commutative and non-
associative algebraic structures. Two quasigroups (G, ·) and (H, ◦) are isotopic (Bruck, 1944) if
there are three bijections α, β, γ from H to G, such that γ (a ◦b) = α(a) ·β(b), for all a, b ∈ H.

The triple Θ = (α, β, γ ) is called an isotopism from (G, ·) to (H, ◦).
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Table 1
Number of Latin squares of order 2 ≤ n ≤ 7

n 2 3 4 5 6 7

Nn 2 12 576 161280 812851200 61479419904000


L1 =

 1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1


Θ = ((12)(34), (23), ε) ∈ I4((0, 2, 0, 0), (2, 1, 0, 0), (4, 0, 0, 0))

⇒ LΘ
1 =

(
2 4 1 3
1 3 2 4
4 2 3 1
3 1 4 2

)

Fig. 1. Isotopism permuting 1st with 2nd and 3rd with 4th rows and 2nd with 3rd columns.

The multiplication table of a quasigroup is a Latin square. A Latin square L of order n is an
n × n array with elements chosen from a set of n distinct symbols {x1, . . . , xn}, such that each
symbol occurs precisely once in each row and each column. The set of Latin squares of order n is
denoted by L S(n). The number of Latin squares of order n is denoted by Nn (Table 1). A partial
Latin square, P , of order n, is a n × n array with elements chosen from a set of n symbols, such
that each symbol occurs at most once in each row and in each column. The set of partial Latin
squares of order n is denoted as P L S(n). An exhaustive study as regards Latin squares and their
applications is given by Laywine and Mullen (1998).

In this paper, for any given n ∈ N, we denote by [n] the set {1, 2, . . . , n}. Specifically, we
assume that the set of symbols of any Latin square of order n is [n]. The symmetric group on
[n] is denoted by Sn . Given a permutation δ ∈ Sn , there is defined the set of its fixed points
Fix(δ) = {i ∈ [n] | δ(i) = i}. The cycle structure of δ is the sequence lδ = (lδ1, lδ2, . . . , lδn),
where lδi is the number of cycles of length i in δ, for all i ∈ {1, 2, . . . , n}. On the other
hand, given L = (li, j ) ∈ L S(n), the orthogonal array representation of L is the set of n2

triples {(i, j, li, j ) | i, j ∈ [n]}. The previous set is identified with L and then one writes
(i, j, li, j ) ∈ L , for all i, j ∈ [n]. Analogously, any P ∈ P L S(n) will be identified with the
set {(i, j, li, j ) | i, j ∈ [n], li, j 6= ∅}. Given σ ∈ S3, one defines the conjugate Latin square
Lσ
∈ L S(n) of L , such that if T = (i, j, li, j ) ∈ L; then (πσ(1)(T ), πσ(2)(T ), πσ(3)(T )) ∈ Lσ ,

where πi gives the i th coordinate of T , for all i ∈ [3]. In this way, each Latin square L has six
conjugate Latin squares associated with it: L I d

= L , L(12)
= L t , L(13), L(23), L(123) and L(132).

Since a Latin square is the multiplication table of a quasigroup, an isotopism of a Latin square
L ∈ L S(n) is therefore a triple Θ = (α, β, γ ) ∈ In = Sn × Sn × Sn . In this way, α, β and γ

are permutations of rows, columns and symbols of L , respectively. The resulting square LΘ is
also a Latin square and it is said to be isotopic to L (Fig. 1). In particular, if L = (li, j ), then
LΘ
= {(i, j, γ (lα−1(i),β−1( j)) | i, j ∈ [n]}. If γ = ε, the identity map on [n], Θ is called

a principal isotopism. The cycle structure of an isotopism Θ = (α, β, γ ) ∈ In is the triple
(lα, lβ , lγ ), where lδ is the cycle structure of δ, for all δ ∈ {α, β, γ }. The set of isotopisms of
Latin squares of order n having (lα, lβ , lγ ) as their cycle structures is denoted by In(lα, lβ , lγ ).

An isotopism which maps L to itself is an autotopism. (ε, ε, ε) is called the trivial autotopism.
The possible cycle structures of the set of non-trivial autotopisms of Latin squares of order up to
11 have been obtained by Falcón (in press). The stabilizer subgroup of L in In is its autotopism
group, U(L) = {Θ ∈ In | LΘ

= L}. Given L ∈ L S(n), Θ = (α, β, γ ) ∈ U(L) and σ ∈ S3, it is
verified that Θσ

= (πσ(1)(Θ), πσ(2)(Θ), πσ(3)(Θ)) ∈ U(Lσ ), where πi gives the i th component
of Θ , for all i ∈ [3]. Given Θ ∈ In , the set of all Latin squares L such that Θ ∈ U(L)
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is denoted by L S(Θ) and the cardinality of L S(Θ) is denoted by ∆(Θ). The computation of
∆(Θ) for any isotopism Θ ∈ In is at the moment an open problem having relevance in secret
sharing schemes related to Latin squares and only studied in some cases where Θ is a principal
autotopism (Falcón, 2006).

Although ∆(Θ) can be studied in a combinatorial way, in this paper we see that Gröbner bases
turn out to be useful for obtaining this number. Specifically, given a Θ = (α, β, γ ) ∈ In , we see
that, if kα ≤ n is the number of cycles of α, then L S(Θ) can be obtained starting from a set of
Latin rectangles of order kα ·n, that is to say, a set of kα×n arrays, with elements chosen from [n],
such that each symbol occurs precisely once in each row. This set of Latin rectangles can be seen
as the vector space associated with the solution of an algebraic system of polynomial equations
related to the isotopism Θ , which can be solved using Gröbner bases (Buchberger, 1965). We
follow the ideas implemented by Bayer (1982) (see also Adams and Loustaunau (1994)) to solve
the problem of an n-colouring a graph, since every Latin square of order n is equivalent to an
n-coloured bipartite graph Kn,n (Laywine and Mullen, 1998). A similar argument has been used
by Gago et al. (2006) (see also Martı́n-Morales (2006)) to give an algorithm for solving Sudokus,
which are indeed particular cases of Latin squares.

The structure of the paper is as follows. In Section 2, we study the set of Latin squares having
an isotopism with a given cycle structure in their autotopism group. Specifically, we prove that
∆(Θ) only depends on the cycle structure of Θ . In Section 3, we use Gröbner bases to define an
algorithm that allows one to obtain ∆(Θ). Finally, in Section 4, this algorithm is implemented in
SINGULAR (Greuel et al., 2005) to get the number of Latin squares of order ≤ 7 related to any
autotopism.

2. Cycle structures of Latin square autotopisms

Every permutation of Sn can be written as the composition of pairwise disjoint cycles. So,
from now on, given Θ = (α, β, γ ) ∈ In , we will assume that, for all δ ∈ {α, β, γ },

δ = Cδ
1 ◦ Cδ

2 ◦ · · · ◦ Cδ
kδ

, (1)

where:

(i) For all i ∈ [kδ], one has Cδ
i = (cδ

i,1 cδ
i,2 · · · cδ

i, λδ
i
), with λδ

i ≤ n and cδ
i,1 = min j {cδ

i, j }.

If λδ
i = 1, then Cδ

i is a cycle of length 1 and so cδ
i,1 ∈ Fix(δ).

(ii)
∑

i λδ
i = n.

(iii) For all i, j ∈ [kδ], one has λδ
i ≥ λδ

j whenever i ≤ j .
(iv) Given i, j ∈ [kδ], with i < j and λδ

i = λδ
j , one has cδ

i,1 < cδ
j,1.

From now on, for a given δ ∈ {α, β, γ } and i ∈ [kδ], we will write a ∈ Cδ
i if there exists

j ∈ [λδ
i ] such that a = cδ

i, j . The following results hold:

Proposition 1. Let Θ = (α, β, γ ) ∈ In be such that ∆(Θ) > 0. Let L = (li, j ) ∈ L S(Θ) be
such that all the triples of one of the following two Latin subrectangles of L are known:

(i) RL =

{
(cα

r,1, cβ
s,v, l

cα
r,1,c

β
s,v

) | r ∈ [kα], s ∈ [kβ ] and v ∈

{
[λ

β
s ], if λα

r > 1,

[1], if λα
r = 1.

}
.

(ii) R′L =

{
(cα

r,u, cβ

s,1, l
cα

r,u ,cβ
s,1

) | r ∈ [kα], s ∈ [kβ ] and u ∈

{
[λα

r ], if λ
β
s > 1,

[1], if λ
β
s = 1.

}
.
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Then, all the triples of L are known.

Proof. We will prove the result in the case where the elements of RL are known; the other
case follows analogously. Let (i, j, li, j ) ∈ L be such that i 6∈ Fix(α) and let r0 ∈ [kα],

u0 ∈ [λ
α
r0
], s0 ∈ [kβ ] and v0 ∈ [λ

β
s0 ] be such that cα

r0,u0
= i and cβ

s0,v0 = j . From

the hypothesis, the triple (cα
r0,1

, β1−u0(cβ
s0,v0), l

cα
r0,1,β

1−u0 (cβ
s0,v0 )

) is known. Thus, li, j =

l
cα

r0,u0
,cβ

s0,v0
= γ u0−1(l

cα
r0,1,β

1−u0 (cβ
s0,v0 )

) and therefore, the triple (i, j, li, j ) is known.

Alternatively, let (i, j, li, j ) ∈ L be such that i ∈ Fix(α) and let r0 ∈ [kα], s0 ∈ [kβ ]

and v0 ∈ [λ
β
s0 ] be such that cα

r0,1
= i and cβ

s0,v0 = j . From the hypothesis, the triple

(cα
r0,1

, cβ

s0,1
, l

cα
r0,1,c

β
s0,1

) is known. Thus, li, j = l
cα

r0,1,c
β
s0,v0
= γ v0−1(l

cα
r0,1,c

β
s0,1

) and therefore,

the triple (i, j, li, j ) is known. �

Proposition 2. Let (lα, lβ , lγ ) be the cycle structure of a Latin square isotopism and let us
consider Θ1 = (α1, β1, γ1),Θ2 = (α2, β2, γ2) ∈ In(lα, lβ , lγ ). Then, ∆(Θ1) = ∆(Θ2).

Proof. Since Θ1 and Θ2 have the same cycle structure, we can consider the isotopism Θ =
(σ1, σ2, σ3) ∈ In , where:

(i) σ1(c
α1
i, j ) = cα2

i, j for all i ∈ [kα1 ] and j ∈ [λα1
i ],

(ii) σ2(c
β1
i, j ) = cβ2

i, j for all i ∈ [kβ1 ] and j ∈ [λβ1
i ],

(iii) σ3(c
γ1
i, j ) = cγ2

i, j for all i ∈ [kγ1 ] and j ∈ [λγ1
i ].

Now, let us see that ∆(Θ1) ≤ ∆(Θ2). If ∆(Θ1) = 0, the result is immediate. Otherwise, let
L1 = (li, j ) ∈ L S(Θ1) and let us see that LΘ

1 = (l ′i, j ) ∈ L S(Θ2). Specifically, we must prove that

(α2(i), β2( j), γ2(l ′i, j )) ∈ LΘ
1 , for all (i, j, l ′i, j ) ∈ LΘ

1 . So, let us consider (i0, j0, l ′i0, j0
) ∈ LΘ

1

and let r0 ∈ [kα2 ], u0 ∈ [λ
α2
r0 ], s0 ∈ [kβ2 ], v0 ∈ [λ

β2
s0 ], t0 ∈ [kγ2 ] and w0 ∈ [λ

γ2
t0 ] be such that

cα2
r0,u0 = i0, cβ2

s0,v0 = j0, and cγ2
t0,w0
= l ′i0, j0

. Thus,

(cα1
r0,u0

, cβ1
s0,v0

, cγ1
t0,w0

) = (σ−1
1 (i0), σ

−1
2 ( j0), σ

−1
3 (l ′i0, j0)) ∈ L1.

Next, since L1 ∈ L S(Θ), we have that (α1(c
α1
r0,u0), β1(c

β1
s0,v0), γ1(c

γ1
t0,w0

)) ∈ L1. Therefore,

(α2(i0), β2( j0), γ2(l
′

i0, j0)) = (α2(c
α2
r0,u0

), β2(c
β2
s0,v0

), γ2(c
γ2
t0,w0

))

= (σ1(α1(c
α1
r0,u0

)), σ2(β1(c
β1
s0,v0

)), σ3(γ1(c
γ1
t0,w0

)) ∈ LΘ
1 .

Analogously, it is verified that L
(σ−1

1 ,σ−1
2 ,σ−1

3 )

2 ∈ L S(Θ1), for all L2 ∈ L S(Θ2), and hence, the
result follows. �

From Proposition 2, the number of Latin squares having a fixed isotopism Θ ∈ In in its
autotopism group only depends on the cycle structure of Θ . Hence, from now on, ∆(lα, lβ , lγ )

will denote the number of Latin squares having a fixed autotopism Θ ∈ In(lα, lβ , lγ ) in its
autotopism group. Specifically, the following results are verified:

Proposition 3. Let (lα, lβ , lγ ) be the cycle structure of a Latin square autotopism Θ = (α, β, γ )

and let us consider σ ∈ S3. Then, ∆(lα, lβ , lγ ) = ∆(lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)), where πi
gives the i th component of Θ , for all i ∈ [3].
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Proof. Since Θ is a Latin square autotopism, we must have ∆(Θ) > 0. Let L ∈ L S(Θ)

and consider the isotopism Θσ
= (πσ(1)(Θ), πσ(2)(Θ), πσ(3)(Θ)); then it is verified that

Θσ
∈ In(lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)) and Lσ

∈ L S(Θσ ). Thus, ∆(Θ) ≤ ∆(Θσ ). Moreover, if

L ′ ∈ L S(Θσ ), then L ′σ
−1
∈ L S(Θ). Therefore, ∆(Θ) = ∆(Θσ ) and thus, from Proposition 2,

∆(lα, lβ , lγ ) = ∆(lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)). �

Corollary 4. (lα, lβ , lγ ) is the cycle structure of a Latin square autotopism if and only if there
exists a permutation σ ∈ S3 such that (lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)) is the cycle structure of a
Latin square autotopism, such that kπσ(1)(Θ) ≤ kπσ(2)(Θ) ≤ kπσ(3)(Θ).

Proof. Since (lα, lβ , lγ ) is the cycle structure of a Latin square autotopism if and only if
∆(lα, lβ , lγ ) > 0, the result is an immediate consequence of Proposition 3. �

Remark 5. From Proposition 2 and Corollary 4, if we want to obtain the number ∆(Θ) related
to an autotopism Θ = (α, β, γ ) ∈ In , we can suppose that kα ≤ kβ ≤ kγ . Otherwise, we would
find a permutation σ ∈ S3 such that (lπσ(1)(Θ), lπσ(2)(Θ), lπσ(3)(Θ)) is the cycle structure of a
Latin square autotopism, such that kπσ(1)(Θ) ≤ kπσ(2)(Θ) ≤ kπσ(3)(Θ), and we would work with
the autotopism Θσ . Moreover, from Proposition 2, we can suppose that the autotopism Θ is such
that cδ

r,1 = r , for all r ∈ [kα] and for all δ ∈ {α, β, γ }.

To simplify the calculation of ∆(Θ), it is useful to study first the symmetry of the autotopism
Θ . Specifically, we can find a partial Latin square P ∈ P L S(n) such that there exists cP > 0
verifying that ∆(Θ) = cP · |L SP (Θ)|, where L SP (Θ) = {L ∈ L S(Θ) | P ⊆ L}. The number
cP will be called the P-coefficient of symmetry of Θ . The following result is immediate:

Lemma 6. Let Θ ∈ In . Given i, j ∈ [n], it is verified that

L S(Θ) =
⊔

k∈[n]

L S{(i, j,k)}(Θ) =
⊔

k∈[n]

L S{(i,k, j)}(Θ) =
⊔

k∈[n]

L S{(k,i, j)}(Θ).

∆(Θ) =
∑
k∈[n]

|L S{(i, j,k)}(Θ)| =
∑
k∈[n]

|L S{(i,k, j)}(Θ)| =
∑
k∈[n]

|L S{(k,i, j)}(Θ)|. �

The following results will be useful in our study:

Proposition 7. Let Θ = (α, β, γ ) ∈ In be such that ∆(Θ) > 0 and lα1 · l
β

1 > 0 and let us
consider L0 = (li, j ) ∈ L S(Θ). Let i ∈ Fix(α) and j ∈ Fix(β). Then, li, j ∈ Fix(γ ). As a
consequence, ∆(Θ) is a multiple of the number of Latin squares of order lα1 .

Proof. It is enough to observe that γ (li, j ) = lα(i),β( j) = li, j . To prove the consequence, let

us observe that, from Theorem 1 of McKay et al. (2007), since lα1 · lβ1 > 0, we must have

lα = lβ = lγ . Specifically, lα1 = lβ1 = lγ1 is the number of fixed points of α, β and γ . Therefore,
the subsquare R0 = (ri, j ) of L0 verifying that its row indices are fixed points of α and its
column indices are fixed points of β must be a Latin subsquare of L0 with elements chosen from
the set Fix(γ ) of fixed points of γ . Moreover, if we interchange in L0 the subsquare R0 with any
Latin subsquare R1 ∈ L S(lα1 ) of the same order with elements chosen from Fix(γ ), we obtain a
different Latin square of L S(Θ). Indeed, it must be that |L SR0(Θ)| = |L SR1(Θ)| and, therefore,
we finally obtain that ∆(Θ) = Nlα1

· |L SR0(Θ)|. �
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Theorem 8. Let Θ = (α, β, γ ) ∈ In be a non-trivial autotopism verifying the conditions
of Remark 5 such that ∆(Θ) > 0. Given δ ∈ {α, β, γ }, let hδ be the cardinality of the set
{i ∈ [n] | lδi > 0}. The following assertions are verified:

(a) If hα = hβ = 1, then ∆(Θ) = n · |L S{(1,1,1)}(Θ)|.

(b) Let us suppose that there exists i0 ∈ [n] \ {1} such that lαi0
= lβi0

6= 0. If lα1 = lβ1 > 0 and
hα = hβ = 2, then

∆(Θ) =

lαi0
−1∏

k=0

(n − lα1 − k · i0)
2
· |L S{(i,i,kα),(kα,i,i) | i∈[kα−lα1 ]}

(Θ)|.

∆(Θ) =

lαi0
−1∏

k=0

(n − lα1 − k · i0)
2
· |L S{(i,i,kα),(i,kα,i) | i∈[kα−lα1 ]}

(Θ)|.

Proof. Let L = (li, j ) ∈ L S(Θ). The first assertion is immediate because, in this case,
|L S{(1,i,1)}(Θ)| = |L S{(1, j,1)}(Θ)|, for all i, j ∈ [n]. Let us see the second assertion. We

will prove the first expression; the other one follows analogously. Since lα1 · lβ1 > 0 and Θ
verifies the conditions of Remark 5, it must be that kα ∈ Fix(α) = Fix(β) = Fix(γ ). Now,
from Proposition 7 and the symmetry of Θ , |L S{(1,i,kα)}(Θ)| = 0 for all i ∈ Fix(β) and
|L S{(1,i,kα)}(Θ)| = |L S{(1, j,kα)}(Θ)| for all i, j 6∈ Fix(β). Thus, from Lemma 6, ∆(Θ) =

(n−lα1 )·|L S{(1,1,kα)}(Θ)|. Now, it must be that |L S{(1,1,kα),(2,i,kα)}(Θ)| = 0 for all i ∈ Fix(β)∪Cβ

1

and |L S{(1,1,kα),(2,i,kα)}(Θ)| = |L S{(1,1,kα),(2, j,kα)}(Θ)| for all i, j 6∈ Fix(β) ∪ Cβ

1 . So, ∆(Θ) =

(n − lα1 ) · (n − lα1 − i0) · |L S{(1,1,kα),(2,2,kα)}(Θ)|. Analogously, it can be proven that ∆(Θ) =∏lαi0
−1

k=0 (n− lα1 −k · i0) · |L S{(i,i,kα) | i∈[kα−lα1 ]}
(Θ)|. Let P = {(i, i, kα) | i ∈ [kα− lα1 ]} ∈ P L S(n).

Next, it must be that lkα,1 6∈ Fix(γ ) and |L SP∪{(kα,1,i)}(Θ)| = |L SP∪{(kα,1, j)}(Θ)|, for all

i, j 6∈ Fix(γ ). So, ∆(Θ) = (n − lα1 ) ·
∏lαi0

−1

k=0 (n − lα1 − k · i0) · |L SP∪{(kα,1,1)}(Θ)|. Now, it
must be that lkα,2 6∈ Fix(γ ) ∩ Cγ

1 and |L SP∪{(kα,1,1),(kα,2,i)}(Θ)| = |L SP∪{(kα,1,1),(kα,2, j)}(Θ)|,

for all i, j 6∈ Fix(γ ) ∩ Cγ

1 . So, ∆(Θ) = (n − lα1 ) · (n − lα1 − i0) ·
∏lαi0

−1

k=0 (n − lα1 − k · i0) ·

|L SP∪{(kα,1,1),(kα,2,2)}(Θ)|. Analogously, it can be finally proven that ∆(Θ) =
∏lαi0

−1

k=0 (n − lα1 −
k · i0)

2
· |L SP∪{(kα,i,i) | i∈[kα−lα1 ]}

(Θ)|. �

3. Gröbner bases and Latin square autotopisms

Gröbner bases can be used to obtain the set L S(n) of Latin squares of order n by following
the ideas of Bayer (1982) (see also Adams and Loustaunau (1994)), since every Latin square
of order n is equivalent to an n-coloured bipartite graph Kn,n (Laywine and Mullen, 1998). In
particular, given a generic Latin square L = (li, j ) ∈ L S(n), we can consider the set of n2

variables {xi, j | i, j ∈ [n]}, where xi, j corresponds to the triple (i, j, li, j ) ∈ L , for all i, j ∈ [n].
Then, we define

F(x) =

n∏
m=1

(x − m), G(x, y) =
F(x)− F(y)

x − y
.

Thus, given i, i ′, j, j ′ ∈ [n] such that i 6= i ′ and j 6= j ′, it must follow that F(li, j ) =
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0 = G(li, j , li ′, j ) = G(li, j , li, j ′), because L ∈ L S(n). Thus, if we define the following ideal of
Q[x] = Q[x1,1, . . . , xn,n]:

I = 〈 F(xi, j ), G(xi, j , xi ′, j ), G(xi, j , xi, j ′) | i, i ′, j, j ′ ∈ [n], i 6= i ′ and j 6= j ′ 〉

generated by n2
+
∑

(i, j)∈[n]×[n]((n− i)+ (n− j)) polynomials, it is verified that the set of zeros
of I , denoted by V (I ), corresponds to the set L S(n).

Remark 9. Once we know that the polynomial F(x1,1) ∈ I , it is easy to see that the rest of the
polynomials F(xi, j ), (i, j) 6= (1, 1), are redundant, so we can delete them. The ideal I can be
generated by 1+

∑
(i, j)∈[n]×[n]((n − i)+ (n − j)) polynomials.

Remark 10. It is well know that, as ideals I produced by Latin squares are radical (Cox et al.,
1997, Ch. 2, Prop. 2.7.), the number of elements in V (I ) is equal to the dimension of the Q-
vector space Q[x]/I , and this number can be computed with any Gröbner basis with respect to
any term ordering.

Now, let Θ = (α, β, γ ) ∈ In(lα, lβ , lγ ) be a Latin square autotopism verifying the conditions
of Remark 5. In this section, we are interested in obtaining the number ∆(Θ). The following set
will be useful:

SΘ =

{
(i, j) | i ∈ [kα], j ∈

{
[n], if i 6∈ Fix(α),

[kβ ], if i ∈ Fix(α).

}
.

Remark 11. From Proposition 1, we can eliminate some of the polynomials defining the above-
defined ideal I to obtain the Latin squares of L S(Θ). In particular, if we consider the first case of
that result, we can restrict our study to those polynomials in which there only appear some of the
(kα − lα1 ) · n+ lα1 · kβ variables xi, j , where (i, j) ∈ SΘ . Hence, we are interested in the following
ideal of Q[xi, j | (i, j) ∈ SΘ ]:

I ′ = 〈 F(x1,1), G(xi, j , xi ′, j ), G(xi, j , xi, j ′) | i, i ′ ∈ [kα], j, j ′ ∈ [n], i 6= i ′ and j 6= j ′ 〉

+ 〈G(xi, j , xi ′, j ), G(xi, j , xi, j ′) | i ∈ Fix(α), i ′ ∈ [n], j, j ′ ∈ [kβ ], i 6= i ′ and j 6= j ′ 〉.

Next, let P = (pi, j ) ∈ P L S(n) be such that pi, j = ∅ for all (i, j) 6∈ SΘ and let cP
be the P-coefficient of symmetry of Θ . Thus, we know that ∆(Θ) = cP · |L SP (Θ)| and we
will calculate |L SP (Θ)| starting from the set of solutions of an algebraic system of polynomial
equations related to Θ and P . Specifically, we obtain Algorithm 1.

Proof (Correctness of Algorithm 1).

(i) Given a partial Latin square P ∈ P L S(n) such that pi, j = ∅, for all (i, j) 6∈ SΘ , we
will consider the vector v such that

v(i−1)·n+ j =

{
pi, j , if pi, j 6= ∅,

0, if pi, j = ∅,
and i 6∈ Fix(α), j ∈ [n]

v(kα−lα1 )·n+(i−kα+lα1−1)·kβ+ j =

{
pi, j , if pi, j 6= ∅,

0, if pi, j = ∅,
and i ∈ Fix(α), j ∈ [kβ ]

(ii) The first definition of I ′ corresponds to the ideal defined in Remark 11. The second
one is obtained by adding the polynomials associated with the filled cells of P .
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Algorithm 1. LST (computing the number of Latin squares having a fixed isotopism)

Input: Θ = (α, β, γ ) ∈ In , an isotopism verifying the conditions of Remark 5;
kα , the number of cycles of α;

v =
(
v1, v2, . . . , v(kα−lα1 )·n+lα1 ·kβ

)
corresponding to triples of a partial

Latin square P ∈ P L S(n) such that pi, j = ∅, for all (i, j) 6∈ SΘ ;
c, the P-coefficient of symmetry of Θ .

Output: ∆(Θ), the number of Latin squares having Θ as an autotopism;

I ′ := 〈 F(x1,1), G(xi, j , xi ′, j ), G(xi, j , xi, j ′ ) | i, i ′ ∈ [kα], j, j ′ ∈ [n], i 6= i ′and j 6= j ′ 〉+
〈G(xi, j , xi ′, j ), G(xi, j , xi, j ′ ) | i ∈ Fix(α), i ′ ∈ [n], j, j ′ ∈ [kβ ], i 6= i ′and j 6= j ′ 〉 ;

I ′ := I ′ + 〈 xi, j − vi, j | (i, j) ∈ SΘ , vi, j 6= 0 〉 ;
G I ′ := Gröbner basis of I ′ with respect to any term ordering;
t := dimQ(Q[x]/I ); F t is the cardinality of V (I ′)
SOL := V (I ′); F list of all elements in V (I ′)
Delta := 0; F the output is c · Delta
for l = 1 to t do

L := the n × n array associated with SOL[ l ]; F see Proposition 1
if L is a Latin square then

Delta← Delta+ 1;
end if

end for
return c · Delta;

(iii) From Proposition 1, we are not interested in V (I ′), but in the subset {RL | L ∈
L SP (Θ)} ⊆ V (I ′), because its cardinality is equal to |L SP (Θ)|. Thus, finally, once
we have obtained V (I ′), we must check how many of its elements are in the previous
subset. Specifically:

(iii.1) Given an element of V (I ′), we follow the proof of Proposition 1 to define the
n × n array associated with it.

(iii.2) Then, the array obtained belongs to the set L SP (Θ) if and only if it is a Latin
square.

(iv) The final output is therefore ∆(Θ) = cP · |L SP (Θ)|. �

Let us see some examples:

Example 12. Let Θ = ((1234), (1234), (12)) ∈ I4((0, 0, 0, 1), (0, 0, 0, 1), (2, 1, 0, 0)). Let us
define

F(x) =

4∏
m=1

(x − m), G(x, y) =
F(x)− F(y)

x − y
.

Then, let us consider the ideal of Q[x11, x12, x13, x14]:

I ′ = 〈F(x11), G(x11, x12), G(x11, x13), G(x11, x14),

G(x12, x13), G(x12, x14), G(x13, x14)〉.

The following is a Gröbner basis of I ′ with respect to the degree reverse lexicographical
ordering:

{x3
13 + x2

13x14 + x13x2
14 + x3

14 − 10x2
13 − 10x13x14 − 10x2

14 + 35x13 + 35x14 − 50,

x2
12 + x12x13 + x2

13 + x12x14 + x13x14 + x2
14 − 10x12 − 10x13 − 10x14 + 35,

x4
14 − 10x3

14 + 35x2
14 − 50x14 + 24, x11 + x12 + x13 + x14 − 10}.
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It can be proven that the algebraic system of polynomial equations given by the previous
Gröbner basis has 24 solutions. However, only 8 of them correspond to a Latin square, by
following the proof of Proposition 1. Therefore, ∆(Θ) = 8. Moreover,

∆((0, 0, 0, 1), (0, 0, 0, 1), (2, 1, 0, 0)) = 8.

Example 13. Let Θ = (ε, (12345), (12345)) ∈ I5((5, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 0, 1)).
In this case, kα = 5 > 1 = kβ = kγ . Let us consider, for example, the permutation
(13) ∈ S3 and let us define the principal isotopism Θ ′ = Θ (13)

= ((12345), (12345), ε) ∈

I5((0, 0, 0, 0, 1), (0, 0, 0, 0, 1), (5, 0, 0, 0, 0)). From Proposition 3, we have that ∆(Θ) =

∆(Θ ′). Let us define

F(x) =

5∏
m=1

(x − m), G(x, y) =
F(x)− F(y)

x − y
.

Then, let us consider the ideal of Q[x11, x12, x13, x14, x15]:

I ′ = 〈F(x11), G(x11, x12), G(x11, x13), G(x11, x14), G(x11, x15), G(x12, x13),

G(x12, x14), G(x12, x15), G(x13, x14), G(x13, x15), G(x14, x15)〉.

The following is a Gröbner basis of I ′ with respect to the degree reverse lexicographical
ordering:

{x3
13 + x2

13x14 + x13x2
14 + x3

14 + x2
13x15 + x13x14x15 + x2

14x15 + x13x2
15 + x14x2

15 + x3
15

−15x2
13 − 15x13x14 − 15x2

14 − 15x13x15 − 15x14x15 − 15x2
15 + 85x13 + 85x14

+ 85x15 − 225, x2
12 + x12x13 + x2

13 + x12x14 + x13x14 + x2
14 + x12x15 + x13x15

+ x14x15 + x2
15 − 15x12 − 15x13 − 15x14 − 15x15 + 85, x5

15 − 15x4
15 + 85x3

15
−225x2

15 + 274x15 − 120, x4
14 + x3

14x15 + x2
14x2

15 + x14x3
15 + x4

15 − 15x3
14 − 15x2

14x15

−15x14x2
15 − 15x3

15 + 85x2
14 + 85x14x15 + 85x2

15 − 225x14 − 225x15 + 274,

x11 + x12 + x13 + x14 + x15 − 15}.

It can be proven that the algebraic system of polynomial equations given by the previous
Gröbner basis has 120 solutions. Indeed, each one of them corresponds to a Latin square,
by following the proof of Proposition 1. Therefore, ∆(Θ) = ∆(Θ ′) = 120. Moreover,
∆((5, 0, 0, 0, 0), (0, 0, 0, 0, 1), (0, 0, 0, 0, 1)) = 120.

Remark 14. In the previous examples, the Gröbner basis obtained has the same number
of elements as variables. However, this does not happen in general. So, for example, the
Gröbner basis that we obtained corresponding to the autotopism Θ = ((134), (134), (134)) ∈

I4((1, 0, 1, 0), (1, 0, 1, 0), (1, 0, 1, 0)) with respect to the degree reverse lexicographical has
nine elements, but there are only six variables.

4. Number of Latin squares related to a cycle structure of order ≤ 7

Let Θ = (α, β, γ ) ∈ In be a Latin square autotopism of order up to 7 verifying the conditions
of Remark 5. In this section, Algorithm 1 is implemented to obtain the number ∆(Θ) in a
procedure for the computer algebra system for polynomial computations SINGULAR 3-0-2. A
Singular library called latinSquare.lib has been created and it is available on the Internet.1 The

1 http://www.personal.us.es/raufalgan/LS/latinSquare.lib.

latinSquare.lib
latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
http://www.personal.us.es/raufalgan/LS/latinSquare.lib
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Table 2
Number of Latin squares related to autotopisms of In , for 2 ≤ n ≤ 5

n lα lβ lγ Θ ∈ In(lα, lβ , lγ ) P cP ∆
r.t.
(s)

2 (0,1) (0,1) (2,0) ((12), (12), ε) – 1 2 0

3
(0,0,1) (0,0,1)

(0,0,1) ((123),(123),(123)) – 1 3 0
(3,0,0) ((123),(123),ε) – 1 6 0

(1,1,0) (1,1,0) (1,1,0) ((13),(13),(13)) – 1 4 0

4 (0,2,0,0) ((1234),(1234),(12)(34)) – 1 8 0
(0,0,0,1) (0,0,0,1) (2,1,0,0) ((1234), (1234),(14)) – 1 8 0

(4,0,0,0) ((1234),(1234),ε) – 1 24 0
(0,2,0,0) ((13)(24),(13)(24),(13)(24)) {(1, 1, 1)} 4 32 0

(0,2,0,0) (0,2,0,0) (2,1,0,0) ((13)(24), (13)(24),(14)) {(1, 1, 1)} 4 32 0
(4,0,0,0) ((13)(24),(13)(24), ε) {(1, 1, 1)} 4 96 0

(1,0,1,0) (1,0,1,0) (1,0,1,0) ((134), (134),(134)) {(2, 2, 2)} 1 9 0

(2,1,0,0) (2,1,0,0) (2,1,0,0) ((14),(14),(14))
{(2, 2, 2),

(2, 3, 3)}
2 16 0

5
(0,0,0,0,1) (0,0,0,0,1)

(0,0,0,0,1) ((12345),(12345),(12345)) {(1, 1, 1)} 5 15 0
(5,0,0,0,0) ((12345),(12345),ε) {(1, 1, 1)} 5 120 0

(1,0,0,1,0) (1,0,0,1,0) (1,0,0,1,0) ((1345), (1345),(1345))
{(1, 1, 2),

(2, 2, 2)}
4 32 1

(1,2,0,0,0) (1,2,0,0,0) (1,2,0,0,0) ((15)(24),(15)(24),(15)(24))

{(1, 1, 3),

(1, 3, 1),

(2, 2, 3),

(2, 3, 2),

(3, 3, 3)}

64 256 2

(2,0,1,0,0) (2,0,1,0,0) (2,0,1,0,0) ((145), (145),(145))

{(1, 1, 3),

(1, 3, 1),

(2, 2, 2),

(2, 3, 3),

(3, 2, 3),

(3, 3, 2)}

18 144 0

authors are going to submit this library to the Singular distribution. The main procedure has
been called LST, from the initials of “Latin Squares of Theta”. Specifically, LST depends on the
permutations α, β and γ , given respectively by the n-vectors A = [α(1), α(2), . . . , α(n)], B =
[β(1), β(2), . . . , β(n)], and C = [γ (1), γ (2), . . . , γ (n)]. LST also depends on the number kα of
cycles of α, denoted by k A, on a vector v corresponding to a partial Latin square P ∈ P L S(n)

and on the P-coefficient of symmetry, denoted by c. From (Falcón, in press), it is verified that
kα ≤ 5 and if lα1 · l

β

1 > 0, then kα = kβ and lα1 = lβ1 ≤ 3.
Let us see in the following example how to use this library in SINGULAR.

Example 15. To compute, for example, ∆((0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1), (4, 1, 0, 0, 0, 0)),
let us consider the autotopism Θ((123456), (123456), (16)) and P = {(1, 1, 1)} ∈ P L S(6).

LIB "latinSquare.lib";

intvec A = 2,3,4,5,6,1;

intvec B = 2,3,4,5,6,1;

intvec C = 6,2,3,4,5,1;

int kA = 1;

intvec v = 1,0,0,0,0,0;

int c = 6;

LST(A,B,C,kA,v,c);

//-> 288
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Table 3
Number of Latin squares related to autotopisms of I6

Θ ∈ I6((0, 0, 0, 0, 0, 1), (0, 0, 2, 0, 0, 0), (0, 3, 0, 0, 0, 0)) P cP ∆
r.t.
(s)

((123456), (156)(234), (16)(25)(34)) {(1, 1, 1)} 6 288 2

lα = lβ lγ Θ ∈ In (lα, lβ , lγ ) P cP ∆
r.t.

(s)

(0, 0, 0, 0, 0, 1)

(0, 0, 2, 0, 0, 0) ((123456), (123456), (156)(234)) {(1, 1, 1)} 6 72 2

(1, 1, 1, 0, 0, 0) ((123456), (123456), (156)(24)) {(1, 1, 1)} 6 72 2

(2, 2, 0, 0, 0, 0) ((123456), (123456), (15)(26)) {(1, 1, 1)} 6 144 2

(3, 0, 1, 0, 0, 0) ((123456), (123456), (156)) {(1, 1, 1)} 6 144 2

(4, 1, 0, 0, 0, 0) ((123456), (123456), (16)) {(1, 1, 1)} 6 288 2

(6, 0, 0, 0, 0, 0) ((123456), (123456),ε) {(1, 1, 1)} 6 720 3

(0, 0, 2, 0, 0, 0)

(0, 0, 2, 0, 0, 0) ((156)(234), (156)(234), (156)(234))

{(1, 1, 1), (1, 2, 2),

(2, 3, j), (2, 5, i)}
(i 6= 2; j 6= 5)

54 1296 55

(3, 0, 1, 0, 0, 0) ((156)(234), (156)(234), (156))
{(1, i, i), (1, 5, j),

(2, 1, 2)}i∈[n]; j=3,4,6
162 5184 28

(6, 0, 0, 0, 0, 0) ((156)(234), (156)(234), ε) {(1, i, i)}i∈[n] 720 25920 9

(1, 0, 0, 0, 1, 0) (1, 0, 0, 0, 1, 0) ((13456), (13456), (13456)) {(i, i, 2))}i=1,2 5 75 7

(2, 2, 0, 0, 0, 0) ((16)(25)(34), (16)(25)(34), (16)(25))

1 6 ∗ ∗ ∗ ∗

6 ∗ i ∗ j ∗

∗ ∗ ∗ k ∗ l


(i, j 6= 6; k, l ∈ [n])

96 36864 252

(0, 3, 0, 0, 0, 0) (4, 1, 0, 0, 0, 0) ((16)(25)(34), (16)(25)(34), (16))

1 6 3 4 5 2
6 ∗ ∗ ∗ ∗ 4
3 ∗ ∗ ∗ ∗ 5

 13824 110592 2

(6, 0, 0, 0, 0, 0) ((16)(25)(34), (16)(25)(34), ε)

1 2 3 4 5 6
2 ∗ i ∗ ∗ ∗

∗ ∗ ∗ ∗ j ∗


(i 6= 2, 3; j 6= 2, 5)

2880 460800 92

(2, 0, 0, 1, 0, 0) (2, 0, 0, 1, 0, 0) ((1456), (1456), (1456))

3 ∗ 1 ∗ ∗ ∗

∗ 2 3 ∗ ∗ ∗

∗ 3 2 ∗ ∗ ∗

 32 768 2

(2, 2, 0, 0, 0, 0) (2, 2, 0, 0, 0, 0) ((16)(25), (16)(25), (16)(25))


4 ∗ ∗ 1 i ∗

∗ 4 ∗ 2 ∗ j
∗ ∗ 4 3 ∗ ∗

∗ ∗ 3 4 ∗ ∗


(i 6= 1, 4; j 6= 2, 4)

128 20480 137

(3, 0, 1, 0, 0, 0) (3, 0, 1, 0, 0, 0) ((156), (156), (156))


2 ∗ ∗ ∗ ∗ ∗

∗ 2 3 4 ∗ ∗

∗ 3 4 2 ∗ ∗

∗ 4 2 3 ∗ ∗

 36 2592 1

Therefore, ∆((0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1), (4, 1, 0, 0, 0, 0)) = ∆(Θ) = 288.
Alternatively, to compute ∆((2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0)), we have used

intvec A = 6,5,3,4,2,1;
intvec B = 6,5,3,4,2,1;
intvec C = 6,5,3,4,2,1;
int kA,c = 4,128;
int i,j,a; intvec v;
for (i=2; i<=6; i++)
{

for (j=1; j<=6; j++)
{

if (i!=4 and j!=4 and j!=2)
{

v = 4,0,0,1,i,0,0,4,0,2,0,j,0,0,4,3,0,0,3,4;
a = a + LST(A,B,C,kA,v,c);

}
}

}
print(a);

//-> 20480
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Table 4
Number of Latin squares related to autotopisms of I7

Θ ∈ I7((0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 0, 1), (7, 0, 0, 0, 0, 0, 0)) P cP ∆
r.t.
(s)

((1234567), (1234567), ε) {(1, 1, 1)} 7 5040 17

lα = lβ = lγ Θ ∈ In (lα, lβ , lγ ) P cP ∆
r.t.

(s)

(0, 0, 0, 0, 0, 0, 1) ((1234567), (1234567), (1234567)) {(1, 1, 1)} 7 133 5

(1, 0, 0, 0, 0, 1, 0) ((134567), (134567), (134567))
{(1, 1, 2), (1, 2, 1),

(2, 2, 2)}
36 288 4

(1, 0, 2, 0, 0, 0, 0) ((167)(245), (167)(245), (167)(245))


3 ∗ ∗ ∗ i ∗ j

∗ 3 ∗ k ∗ l ∗

1 2 3 ∗ ∗ ∗ ∗


(i, j, k, l ∈ [n] \ {3})

324 42768 253

(1, 1, 0, 1, 0, 0, 0) ((1456)(27), (1456)(27), (1456)(27))


3 ∗ ∗ 2 ∗ 7 ∗

∗ 3 2 ∗ ∗ ∗ 7

1 7 3 ∗ ∗ ∗ ∗

 128 512 3

(2, 0, 0, 0, 1, 0, 0) ((14567), (14567), (14567))

{(1, 1, 3), (2, 2, 2),

(2, 3, 3), (3, 1, 1),

(3, 2, 3), (3, 3, 2)}

50 4000 16

(1, 3, 0, 0, 0, 0, 0) ((17)(26)(35), (17)(26)(35), (17)(26)(35))


4 i ∗ j ∗ k ∗

∗ 4 l ∗ p ∗ q

r ∗ 4 ∗ ∗ ∗ ∗

1 2 3 4 ∗ ∗ ∗


(i 6= 2, 4;

j, k, p, q 6= 4, 6;

l 6= 3, 4; r 6= 1, 4)

2304 6045696 4512

(3, 0, 0, 1, 0, 0, 0) ((1567), (1567), (1567))


2 ∗ ∗ ∗ ∗ ∗ ∗

∗ 2 3 4 ∗ ∗ ∗

∗ 3 4 2 ∗ ∗ ∗

∗ 4 2 3 ∗ ∗ ∗

 36 41472 53

(3, 2, 0, 0, 0, 0, 0) ((17)(26), (17)(26), (17)(26))



5 4 1 2 6 7 3

∗ ∗ 2 1 7 ∗ j

i ∗ 5 4 3 ∗ ∗

∗ ∗ 3 5 4 ∗ ∗

∗ ∗ 4 3 5 ∗ ∗


(i 6= 3, 4, 5; j = 4, 5, 6)

27648 1327104 40

Therefore, ∆((2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0), (2, 2, 0, 0, 0, 0)) = 20480.

To finish this section, we have used the previous procedure and the results of Section 2 to
obtain, in Tables 2–4, the number of Latin squares of order up to 7 having a given autotopism
in their autotopism groups. For each case, we show the autotopism, partial Latin squares and
coefficient of symmetry used. The running time (r.t.) is measured in seconds and has been taken
from an Intel Core 2 Duo Processor T5500, 1.66 GHz with Windows Vista operating system. We
follow the classification of such autotopisms given by Falcón (in press).

5. Final remarks

The algorithm given in Section 3 can be used to obtain the number of Latin squares related
to autotopisms of Latin squares of any order. However, after applying it to the 36 possible cases
of autotopisms of Latin squares of order 8 or to the 22 possible ones of order 9, we have seen
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that, in order to improve the time of computation, it is convenient to combine Gröbner bases
with some combinatorial tools improving the results of Section 2, specifically, with autotopisms
Θ = (α, β, γ ) in which kα > 3. So, for example, the computation corresponding to cycle
structures (lα, lβ , lγ ), where lα = lβ = (0, 4, 0, 0, 0, 0, 0, 0) would turn out to be too expensive
using this method.
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