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Abstract. The Bernstein–Sato polynomial of a hypersurface is an important object with
many applications. However, its computation is hard, as a number of open questions and chal-
lenges indicate. In this paper we propose a family of algorithms called checkRoot for optimized
checking whether a given rational number is a root of Bernstein–Sato polynomial and in the
affirmative case, computing its multiplicity. These algorithms are used in the new approach
to compute the global or local Bernstein–Sato polynomial and b-function of a holonomic ideal
with respect to a weight vector They can be applied in numerous situations, where a multiple
of the Bernstein–Sato polynomial can be established. Namely, a multiple can be obtained by
means of embedded resolution, for topologically equivalent singularities or using the formula
of A’Campo and spectral numbers. We also present approaches to the logarithmic comparison
problem and the intersection homology D-module. Several applications are presented as well
as solutions to some challenges which were intractable with the classical methods. One of the
main applications is the computation of a stratification of affine space with the local b-function
being constant on each stratum. Notably, the algorithm we propose does not employ primary
decomposition. Our results can be also applied for the computation of Bernstein–Sato polyno-
mials for varieties. The examples in the paper have been computed with our implementation
of the methods described in Singular:Plural.

1. Introduction

Through the article we assume K to be a field of characteristic 0. By Rn we denote the ring
of polynomials K[x1, . . . , xn] in n variables over K and by Dn we denote the ring of K-linear
partial differential operators with coefficients in Rn, that is the n-th Weyl algebra [24]. The
ring Dn is the associative K-algebra generated by the partial differential operators ∂i and the
multiplication operators xi subject to relations

{∂ixj = xj∂i + δij, xjxi = xixj, ∂j∂i = ∂i∂j | 1 ≤ i, j ≤ n}.
That is, the only non-commuting pair of variables is (xi, ∂i); they satisfy the relation ∂ixi =
xi∂i +1. We use the Lie bracket notation [a, b] := ab− ba for operators a, b, then e.g. the latter
relation can be written as [∂i, xi] = 1. Finally, we denote by Dn[s] the ring of polynomials in
one variable s with coefficients in the n-th Weyl algebra, i.e. Dn[s] = Dn ⊗K K[s].

Let us recall Bernstein’s construction. Given a non-zero polynomial f ∈ Rn , we consider
M = Rn[s,

1
f
] · f s, the free Rn[s,

1
f
]-module of rank one generated by the formal symbol f s.

Then M has a natural structure of left Dn[s]-module. Here the differential operators act in a
natural way,

(1) ∂i(g(s, x) · f s) =

(
∂g

∂xi

+ sg(s, x)
∂f

∂xi

1

f

)
· f s ∈ M

Theorem 1.1 (Bernstein [4]). For every polynomial f ∈ Rn there exists a non-constant poly-
nomial b(s) ∈ K[s] and a differential operator P (s) ∈ Dn[s] such that

(2) P (s)f · f s = b(s) · f s ∈ Rn[s,
1

f
] · f s = M.
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The monic polynomial b(s) of minimal degree, satisfying (2) is called the Bernstein-Sato
polynomial or the (global) b-function. There is a more general notion of a b-function with
respect to given weights, see Sect. 2.3. By saying just b-function we will mean the Bernstein-
Sato polynomial.

This paper is organized as follows. In Section 2, the checkRoot family of algorithms for
checking rational roots of the global and local Bernstein-Sato polynomial is developed. We
also show how to compute the b-function of a holonomic ideal with respect to a certain weight
vector. In Section 3.1, we show how to obtain an upper bound in various situations: by using
an embedded resolution, for topologically equivalent singularities, by using A’Campo’s formula
and spectral numbers. In particular, we demonstrate a complicated example of (non-isolated)
quasi-ordinary singularity.

In Section 4.2 we discuss the possibilities to obtain integral roots of the b-function and apply
them to the computation of the minimal integral root in the context of Intersection Homology
D-module and Logarithmic Comparison Theorem. In Section 5 we present a new method for
computing the stratification of affine space, according to local Bernstein-Sato polynomials.

We want to stress, that Bernstein-Sato polynomials for most of the examples, presented in
this paper, cannot be computed by direct methods with any computer algebra system includ-
ing Singular:Plural [15]. Indeed, these examples were known as open challenges in the
community and here we present their solutions for the first time.

The examples in this paper have been computed on a PC with Intel Core i3–540 Processor
(4M Cache, 3.06 GHz) equipped with 4 GB RAM running Ubuntu 10.04 LTS Linux.

2. The checkRoot Family of Algorithms

For the sake of completeness, some of the ideas coming from [19] and [23, Ch. VIII], as well
as some results and their proofs have been included here. Several algorithms for computing the
b-function associated with a polynomial are known, see e.g. [30, 31, 32], [33], [6], [29], [36], [19].
However, from the computational point of view it is quite hard to obtain this polynomial in
general. Despite significant recent progress, only restricted number of examples can be actually
treated. In order to enhance the computation of the Bernstein-Sato polynomial via Gröbner
bases, we study the following computational problems.

(1) Obtain an upper bound for bf (s), that is, find B(s) ∈ K[s] such that bf (s) divides B(s).

B(s) =
d∏

i=1

(s− αi)
mi

(2) Check whether αi is a root of bf (s).
(3) Compute the multiplicity of αi as a root of bf (s).

There exist some well-known methods to obtain an upper bound for the Bernstein-Sato
polynomial of a hypersurface singularity once we know, for instance, an embedded resolution
of such singularity [17]. However, as far as we know, there is no algorithm for computing the
Bernstein-Sato polynomial from this upper bound. In this section we present algorithms for
checking whether a given rational number is a root of the Bernstein-Sato polynomial and for
computing its multiplicity. As a first application, using this idea, we could obtain bf (s) for
some interesting non-isolated singularities, see Example 3.3 below.

From the definition of the b-function it is clear that

(3) ⟨bf (s)⟩ = (AnnDn[s](f
s) + ⟨f⟩) ∩K[s].

In fact, this is another way of defining the Bernstein-Sato polynomial. This equation was used
to prove the main result of this section, namely Theorem 2.1.

Theorem 2.1. Let R be a K-algebra, whose center contains K[s]. Let q(s) ∈ K[s] be a poly-
nomial in one variable and I a left ideal in R satisfying I ∩K[s] ̸= 0. The following equalities
hold:
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(1)
(
I +R⟨q(s)⟩

)
∩K[s] = I ∩K[s] +K[s]⟨q(s)⟩,

(2)
(
I : q(s)

)
∩K[s] =

(
I ∩K[s]

)
: q(s),

(3)
(
I : q(s)∞

)
∩K[s] =

(
I ∩K[s]

)
: q(s)∞.

In particular, using I = AnnDn[s](f
s) + ⟨f⟩ ⊆ Dn[s] in the previous equation (3), we have

•
[
AnnDn[s](f

s) +Dn[s]⟨f, q(s)⟩
]
∩K[s] = ⟨bf (s), q(s)⟩ =

〈
gcd(bf (s), q(s))

〉
,

•
[
(AnnDn[s](f

s) +Dn[s]⟨f⟩) : q(s)
]
∩K[s] = ⟨bf (s)⟩ : q(s) =

〈 bf (s)

gcd(bf (s),q(s))

〉
,

•
[
(AnnDn[s](f

s) +Dn[s]⟨f⟩) : q(s)∞
]
∩K[s] = ⟨bf (s)⟩ : q(s)∞.

Proof. Let b(s) ̸= 0 be a generator of I∩K[s]. At first, suppose that h(s) ∈ (I+R⟨q(s)⟩)∩K[s].
Then we have

(4) h(s) = P (s) +Q(s)q(s)

where P (s) ∈ I and Q(s) ∈ R. Let d(s) be the greatest common divisor of b(s) and q(s). There
exist b1(s) and q1(s) such that d(s)b1(s) = b(s) and d(s)q1(s) = q(s), and hence b1(s)q(s) =
q1(s)b(s). Since s commutes with all elements in R, multiplying the equation (4) by b1(s), one
obtains

b1(s)h(s) = b1(s)P (s) +Q(s)q1(s)b(s) ∈ I

Thus, b1(s)h(s) ∈ I ∩K[s] = ⟨b(s)⟩ and therefore h(s) ∈ ⟨b(s)⟩ : ⟨b1(s)⟩ = ⟨d(s)⟩ = I ∩K[s] +
⟨q(s)⟩. The other inclusion follows obviously. The second and the third parts can be shown
directly and the proof is complete. □

Note that the second (resp. third) part of the previous theorem can be used to heuristically
find an upper bound for bf (s) (resp. the roots of bf (s)). Since q(s) is in the center of Dn[s],
the quotient and saturation ideals can be computed effectively e.g. via the kernel of a module
homomorphism procedure, cf. [18]. More classical but less effective approach is to use the extra
commutative variable, say T , and the formula

I : q(s)∞ = Dn[s, T ]⟨I, 1− Tq(s)⟩ ∩Dn[s].

Example 2.2. Let f ∈ C[x, y] be the polynomial x(x2+ y3). The annihilator of f s in D[s] can
be generated by the operators P1(s) = 3xy2∂x − y3∂y − 3x2∂y and P2(s) = 3x∂x + 2y∂y − 9s.
Consider the univariate polynomial

q(s) = (s+ 1)(s+ 5/9)(s+ 8/9)(s+ 10/9)(s+ 7/9)(s+ 11/9)(s+ 13/9).

Computing a Gröbner basis, one can see that the ideal in D[s, T ] generated by {P1(s), P2(s),
f, 1− Tq(s)} is the whole ring. From Theorem 2.1 (3), one deduces that q(s) contains all the
roots of bf (s).

Using this approach, we only have to check whether an ideal is the whole ring or not. There-
fore any admissible monomial ordering can be chosen, hence the one, which is generically fast.

Corollary 2.3. Suppose, that P1(s), . . . , Pk(s) generate AnnDn[s](f
s). The following conditions

are equivalent:

(1) α ∈ Q>0 is a root of bf (−s).
(2) Dn[s]⟨P1(s), . . . , Pk(s), f, s+ α⟩ ≠ Dn[s].
(3) Dn⟨P1(−α), . . . , Pk(−α), f⟩ ≠ Dn.

Moreover, in such a case Dn[s]⟨P1(s), . . . , Pk(s), f, s+ α⟩ ∩K[s] = K[s]⟨s+ α⟩.

Proof. Take J = Dn[s]⟨P1(s), . . . , Pk(s), f, s + α⟩ and K = J ∩Dn = ⟨P1(−α), . . . Pk(−α), f⟩.
Since

J = D[s] ⇐⇒ J ∩K[s] = K[s] ⇐⇒ K = Dn,

and gcd(bf (s), s+α) = 1 if and only if bf (−α) ̸= 0, the result follows from applying Theorem 2.1
using q(s) = s+ α. □
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Once generators of AnnD[s] f
s are known, the last corollary provides an algorithm for checking

whether a given rational number is a root of the b-function of f , using Gröbner bases in the
Weyl algebra.

Algorithm 1 checkRoot1 (checks whether α ∈ Q>0 is a root of bf (−s))

Input 1: {P1(s), . . . , Pk(s)} ⊆ Dn[s], a system of generators of AnnDn[s](f
s);

Input 2: f , a polynomial in Rn; α, a number in Q>0;
Output: true, if α is a root of bf (−s); false, otherwise;

K := ⟨P1(−α), . . . , Pk(−α), f⟩; ▷K = J ∩Dn ⊆ Dn

G := reduced Gröbner basis of K w.r.t. ANY term ordering;
return (G ̸= {1});

2.1. Multiplicities. We present two approaches of computing the multiplicity of a root.

Corollary 2.4. Let mα be the multiplicity of α as a root of bf (−s). Consider the ideals
Ji = AnnDn[s](f

s) + ⟨f, (s + α)i+1⟩ ⊆ Dn[s], i = 0, . . . , n. Then the following conditions are
equivalent:

(1) mα > i.
(2) Ji ∩K[s] = ⟨(s+ α)i+1⟩.
(3) (s+ α)i /∈ Ji.

Moreover if Dn[s] ⊋ J0 ⊋ J1 ⊋ · · · ⊋ Jm−1 = Jm, then mα = m. In particular, m ≤ n and
Jm−1 = Jm = · · · = Jn.

Proof. 1 ⇐⇒ 2. Since mα > i if and only if gcd(bf (s), (s+ α)i+1) = (s+ α)i+1, the equivalence
follows by applying Theorem 2.1 (1) using q(s) = (s+ α)i+1.
2 =⇒ 3. If (s+ α)i ∈ Ji ∩K[s], then clearly Ji ∩K[s] ⊋ ⟨(s+ α)i+1⟩.
3 =⇒ 2. Let h(s) ∈ K[s] be the monic generator of the ideal Ji ∩ K[s]. Since (s + α)i+1 ∈
Ji ∩K[s] = ⟨h(s)⟩, there exists j ≤ i+ 1 such that h(s) = (s+ α)j. Suppose that j ≤ i. Then
(s + α)i = (s + α)i−j(s + α)j = (s + α)i−jh(s) ∈ Ji. That, however, contradicts 3 and thus
j = i+ 1.

The rest of the assertion follows by applying the previous result using i = m and i = m− 1,
since (s+ α)m ∈ Jm and (s+ α)m−1 /∈ Jm−1 from the hypothesis. □

Again, as soon as generators of AnnD[s] f
s are known, the last corollary provides an algorithm

for checking whether a given rational number is a root of bf (s) and for computing its multiplicity,
using Gröbner bases for differential operators.

Algorithm 2 checkRoot2 (computes the multiplicity of α ∈ Q>0 as a root of bf (−s))

Input 1: {P1(s), . . . , Pk(s)} ⊆ Dn[s], a system of generators of AnnDn[s](f
s);

Input 2: f , a polynomial in Rn; α, a number in Q>0;
Output: mα, the multiplicity of α as a root of bf (−s);

for i = 0 to n do
J := Dn[s] · ⟨P1(s), . . . , Pk(s), f, (s+ α)i+1⟩; ▷ Ji
G := Gröbner basis of J w.r.t. ANY term ordering;
r := normal form of (s+ α)i with respect to G;
if r = 0 then

mα := i; ▷ r = 0 =⇒ (s+ α)i ∈ Ji
break ▷ leave the for block

end if
end for
return mα;



ALGORITHMS FOR CHECKING RATIONAL ROOTS OF b-FUNCTIONS AND ... 5

Proof. (of Algorithm 2).
Termination: The algorithm checkRoot2 clearly terminates and one only has to consider
the loop from 0 to n because the multiplicity of a root of bf (s) is at most n, see [35].
Correctness: Corollary 2.4 implies the correctness of the method. □

Remark 2.5. There exists another version of checkRoot2 with just one step, due to the formula,
see Corollary 2.4 above,

(
AnnDn[s](f

s) +Dn[s]⟨f, (s+ α)n⟩
)
∩K[s] = ⟨(s+ α)mα⟩.

However, this method only seems to be useful when the multiplicity is close to n, otherwise
checkRoot2 is more effective. The reason is that in general, the multiplicity is far lower than
the number of variables.

This algorithm is much faster, than the computation of the whole Bernstein polynomial via
Gröbner bases, because no elimination ordering is needed for computing a Gröbner basis of
J . Also, the element (s + α)i+1, added as a generator, seems to simplify tremendously such a
computation. Actually, when i = 0 it is possible to eliminate the variable s in advance and we
can perform the whole computation in Dn, see Corollary 2.3 (3) above.
Nevertheless, Algorithm 2 meets the problem to calculate on each step a Gröbner basis Gi

for an ideal of the form I+ ⟨(s+α)i+1⟩ and the set Gi−1 is not used at all for such computation.
A completely new Gröbner basis has to be performed instead. The classical idea of quotient
and saturation are used to solve this obstruction.

Corollary 2.6. Let mα be the multiplicity of α as a root of bf (−s) and I = AnnDn[s](f
s) +

Dn[s]⟨f⟩. The following conditions are equivalent:

(1) mα > i.
(2)

(
I : (s+ α)i

)
+Dn[s]⟨s+ α⟩ ≠ Dn[s].

(3)
(
I : (s+ α)i

)
|s=−α ̸= Dn.

Proof. Given J ⊆ Dn[s] an ideal, we denote by bJ(s) the monic generator of the ideal J ∩K[s].
Then, from Theorem 2.1 (1), condition 2 is satisfied if and only if −α is a root of bI:(s+α)i(s).
This univariate polynomial is nothing but bf (s)/ gcd(bf (s), (s + α)i), due to Theorem 2.1 (2).
Now the claim follows from the equivalence

mα > i ⇐⇒ (s+ α)
∣∣∣ bf (s)

gcd(bf (s),(s+α)i)
.

□

Since s+α belongs to the center of Dn[s], the ideal I : (s+α)i can recursively be computed
by the formulas

I : (s+ α) = (I ∩Dn[s]⟨s+ α⟩)/(s+ α),

I : (s+ α)i = (I : (s+ α)i−1) : (s+ α).

Another algorithm for computing multiplicities using quotient ideals follows. The termination
and correctness follow from the previous corollary.
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Algorithm 3 checkRoot3 (computes the multiplicity of α ∈ Q>0 as a root of bf (−s))

Input 1: {P1(s), . . . , Pk(s)} ⊆ Dn[s], a system of generators of AnnDn[s](f
s);

Input 2: f , a polynomial in Rn; α, a number in Q>0;
Output: mα, the multiplicity of α as a root of bf (−s);

m := 0; I := Dn[s]⟨P1(s), . . . , Pk(s), f⟩; J := I +Dn[s]⟨s+ α⟩;
while G ̸= {1} do

m := m+ 1;
I := I : (s+ α); ▷ I : (s+ α)i

J := I +Dn[s]⟨s+ α⟩; (or J := I|s=−α)
G := reduced Gröbner basis of J w.r.t. ANY term ordering;

end while
return m;

Remark 2.7. Several obvious modifications of the presented algorithms can be useful depending
on the context. Assume, for instance, that q(s) is a known factor of the Bernstein-Sato poly-
nomial and one is interested in computing the rest of bf (s). Then the ideal I : q(s) contains
such information. This easy observation can help us in some special situations.

Remark 2.8. Define the reduced Bernstein-Sato polynomial of f ∈ Rn to be b′f (s) =

bf (s)/(s+1). Recall, that the Jacobian ideal of f is Jf = ⟨ ∂f
∂x1

, . . . , ∂f
∂xn

⟩ ⊂ K[x]. It is known,

that taking ⟨f⟩+ Jf instead of ⟨f⟩ has the following consequence

(AnnD[s] f
s + ⟨f, ∂f

∂x1
, . . . , ∂f

∂xn
⟩) ∩K[s] = ⟨b′f (s)⟩ = ⟨ bf (s)

s+1
⟩.

Hence, all the algorithms above can be modified to this setting, resulting in more effective
computations in the implementation. We decided, however, not to modify the description of
algorithms in order to keep the exposition easier.

2.2. Local versus global b-functions. Here we are interested in what kind of information
one can obtain from the global b-function for computing the local ones and conversely. In order
to avoid theoretical problems we will assume in this paragraph that the ground field is C.
Several algorithms to obtain the local b-function of a hypersurface f have been known without

any Gröbner bases computation but under strong conditions on f . For instance, it was shown
in [21] that the minimal polynomial of −∂tt acting on some vector space of finite dimension
coincides with the reduced local Bernstein polynomial, assuming that the singularity is isolated.

Remark 2.9. Recall, that the singular locus of V (f) is V (⟨f, ∂f
∂x1

, . . . , ∂f
∂xn

⟩). One can define
the local b-function or local Bernstein-Sato polynomial as follows. Let p ∈ Cn be a
point and mp = ⟨{x1 − p1, . . . , xn − pn}⟩ ⊂ Rn the corresponding maximal ideal. Let Dp be
the local Weyl algebra at p, that is Weyl algebra with coefficients from C[x1, . . . , xn]p instead
of Rn = C[x1, . . . , xn]. From the Bernstein’s functional equation (2) it follows that ∃P (s) ∈
D[s], bf (s) ∈ K[s], such that P (s)f · f s = b(s) · f s holds. Since over C[x1, . . . , xn]p there
are invertible non-constant polynomials, there exist Pp(s) ∈ Dp[s], bf,p(s) ∈ K[s], such that
Pp(s)f · f s = bf,p(s) · f s holds. We define local Bernstein-Sato polynomial to be the univariate
monic polynomial bf,p(s) of the minimal degree, such that the previous identity holds.

Theorem 2.10. (Briançon-Maisonobe (unpublished), Mebkhout-Narváez [25]) Let bf,p(s) the
local b-function of f at the point p ∈ Cn and bf (s) the global one. Then bf (s) = lcmp∈Cn bf,p(s) =
lcmp∈Σ(f) bf,p(s).

The computation of the global b-function with Theorem 2.10 is effective, when the singular
locus consists of finitely many isolated singular points. The Singular library gmssing.lib

implemented by M. Schulze [37] and based on his work [36] allows one to compute invariants
related to the Gauss-Manin system of an isolated hypersurface singularity. In the non-isolated
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case the situation is more complicated. For computing the local b-function in this case (which
is important on its own) we suggest using the global b-function as an upper bound and a local
version of the checkRoot algorithm, see Section 2.2.2 below.
T. Oaku presented algorithms for the local b-function in [30, 32]. In these algorithms, no

knowledge of a global b-function is needed. However, these algorithms are quite hard from the
computational point of view. Namely, more complicated elimination in Weyl algebra together
with numerous computations of quotient ideals in a commutative ring need to be executed. An
intersection of a left ideal with a principal subalgebra needs to be performed as well, and for
the local case this has to be done within the localized ring.

In [26], H. Nakayama presented an algorithm for computing local b-functions. One step in
his algorithm uses a bound for the multiplicity of a given rational root of the global b-function.
Then the algorithm checks if this multiplicity agrees with the local one. This approach is very
similar to our checkRoot algorithm.

2.2.1. Localization of non-commutative rings. We refer the reader to [13] and [24] for details
on rings of fractions in non-commutative setting.

Lemma 2.11. Let R1
i
↪→ R2 be a ring extension and S ⊂ R1 a multiplicatively closed set.

Assume S−1R1 and S−1R2 exist and consider the corresponding localization maps ϕ1 : R1 →
S−1R1 and ϕ2 : R2 → S−1R2. Let j : S−1R1 → S−1R2 be the map induced by i. Then j is
injective and for every left ideal I ⊆ R2 one has

S−1I ∩ S−1R1 = S−1(I ∩R1).

Lemma 2.12. Let R be a ring, S ⊆ R a multiplicatively closed set and I ⊆ R a left ideal.
Assume S−1R exists. Then S−1I is not the whole ring S−1R if and only if I ∩ S = ∅.

Example 2.13. Let R = D be the n-th Weyl algebra, p ∈ Kn an arbitrary point and S = K[x]\
mp, cf. Rem. 2.9. Then S is a left and right denominator set and the Ore localization (K[x] \
mp)

−1D is naturally isomorphic to Dp. Analogous construction also holds for the extension
D[s] = K[s]⊗K D.

2.2.2. Local version of the checkRoot algorithms. Theorem 2.1 is general enough to be applied
for checking rational roots of local Bernstein-Sato polynomials. Let K ⊃ Q be algebraically
closed, f ∈ K[x1, . . . , xn], p ∈ Kn and α ∈ Q. Then the first part of Theorem 2.1, see also
Corollary 2.3, tells us that (s+ α) is a factor of the local b-function at p if and only if the left
ideal

(5) AnnDp[s](f
s) +Dp[s]⟨f, s+ α⟩

is not the whole ring Dp[s]. Applying Lemma 2.11 with R1 = D[s], R2 = D⟨t, ∂t⟩ := D ⊗K
K⟨t, ∂t | ∂t · t = t · ∂t + 1⟩, S = K[x] \ mp and I = AnnD⟨t,∂t⟩(f

s) = If , the Malgrange ideal
associated with f , one obtains AnnDp[s](f

s) = Dp[s] AnnD[s](f
s).

Proposition 2.14. Let I = AnnD[s](f
s) +D[s]⟨f⟩ and α be a root of bf (s) of multiplicity mα.

Moreover, for i = 0, . . . ,mα − 1 consider ideals Iα,i =
(
I : (s+ α)i

)
+D[s]⟨s+ α⟩. Then

(1) (s+ α) | bf,p(s) ⇐⇒ p ∈ V
(
(I +D[s]⟨s+ α⟩) ∩K[x]

)
,

(2) mα(p) > i ⇐⇒ p ∈ V (Iα,i ∩K[x]).

There are several ways to check whether an ideal I ⊆ Dp[s] is proper or not. However, it
is an open problem to decide which one is more efficient. Mora division and standard bases
techniques seem to be more suitable in this case, since otherwise a (global) elimination ordering
is needed. Granger, Oaku and Takayama [14] gave algorithms both for standard basis approach
and for the bi-homogenization with respect to the (F, V )-filtration1. On the other hand, using

1The referee pointed us, that there are implementations of these algorithms: kan/sm1 has a package
ecart.sm1, implementing the full algorithm, while Risa/Asir contains a library nk mora/localb.rr, which
implements a restricted version of the algorithm (see the Remark 2.6 in [14]). Some description of the latter
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the approach above, local orderings are unavoidable for obtaining the stratification associated
with local b-functions, see Sect. 5.

2.3. b-functions with respect to weights and checkRoot. The b-function associated with
a holonomic ideal with respect to a weight is presented. We refer to [33] for the details. Let
0 ̸= w ∈ Rn

≥0. Consider the V -filtration with respect to w, {Vm | m ∈ Z} = V on D, where

Vm is spanned by
{
xα∂β | −wα + wβ ≤ m

}
over K. In other words, to xi and ∂i the weights

−wi resp. wi are assigned; with such weights the relation ∂ixi = xi∂i + 1 becomes graded of
degree 0 and hence the algebra D itself becomes graded. Thus the associated graded algebra
grV (D) =

⊕
m∈Z Vm/Vm−1 is isomorphic to D, which allows us to identify them.

For a non-zero operator

P =
∑

α,β∈Nn

aαβx
α∂β ∈ D,

the maximum maxα,β{−wα + wβ | cαβ ̸= 0} ∈ R is denoted by ordV (P ) and the principal
symbol of P is the V -homogeneous operator given by

σV (P ) :=
∑

−wα+wβ=ordV (P )

aαβx
α∂β.

Additionally, for a given ideal I ⊆ D, the associated graded ideal is defined as the vector space
spanned by all its principal symbols, that is, grV (I) := K · {σV (P ) | P ∈ I}.
Quite often the principal symbol (resp. associated graded ideal) is called the initial form

(resp. initial ideal) and it is denoted by in(−w,w)(P ) (resp. in(−w,w)(I)).

Definition 2.15. Let I ⊂ D be a holonomic ideal. Consider 0 ̸= w ∈ Rn
≥0 and s :=

∑n
i=1 wixi∂i.

Then grV (I) ∩ K[s] ̸= 0 is a principal ideal in K[s]. Its monic generator is called the global
b-function of I with respect to the weight w.

Although Theorem 2.1 can not be applied in this setting, since s =
∑

i wixi∂i does not belong
to the center of the algebra, a similar result still holds, due to the properties of the V -filtration,
see Proposition 2.16 below. Also Corollaries 2.3, 2.4 and 2.6 can be established using initial
parts instead of annihilators.

Proposition 2.16.
(
grV (I) + grV (D)⟨q(s)⟩

)
∩K[s] = grV (I) ∩K[s] +K[s]⟨q(s)⟩.

Proof. Consider h(s) = Q+R·q(s), where Q ∈ grV (I) and R ∈ grV (D). Taking V -homogeneous
parts in the preceding expression, one finds Q0 ∈ grV (I) and R0 ∈ grV (D) of degree 0 such
that h(s) = Q0 +R0 · q(s). Now, since q(s) commutes with Q0, one can proceed as in the proof
of Theorem 2.1 (1). □

Many algorithms in the realm ofD-modules are based on the computation of such b-functions.
For some applications like localization, integration and restriction, only the maximal and the
minimal integral roots have to be computed. However, the previous proposition can not be used
to find the set of all integral roots, since neither upper nor lower bound is known in advance
(N. Takayama suggested the following example: for k ∈ Z, in(−1,1)(⟨t∂t+k⟩)∩K[t∂t] = ⟨t∂t+k⟩).
Nevertheless, there is the natural possibility to check a particular root of a b-function with
respect to the non-negative weight w.

3. Computing b-functions via Upper Bounds

As different possible ways to find upper bounds, we present embedded resolutions, topologi-
cally equivalent singularities and A’Campo’s formula. Depending on the context local or global
version of our algorithm is used.

library is contained in [26]. However, both mentioned packages are not sufficiently documented, what hopefully
will be improved in the future.
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3.1. Embedded resolutions. In this part of the paper we set K = C. However, in actual
computation we can assume that the ground field is generated by a finite number of (algebraic
or transcendental) elements over the field Q and the algebraic relations among these elements
are specified.

Definition 3.1. Let h : Y → Cn be a proper birational morphism. We say that h is a global
embedded resolution of the hypersurface defined by a polynomial f ∈ C[x], X = V (f), if the
following conditions are satisfied:

(1) Y is a non-singular variety.
(2) h : Y \ h−1(X) → Cn \X is an isomorphism.
(3) h−1(X) is a normal crossing divisor.

Since h−1(X) is a normal crossing divisor, the morphism F = f ◦ h : Y → C is locally given
by a monomial. Hence, we can define the b-function of F as the least common multiple of the
local ones. If F is locally given by the monomial xα = xα1

1 · · ·xαn
n at the point p, then

bF,p(s) =

α1∏

i=1

(
s+

i

α1

)
· · ·

αn∏

i=1

(
s+

i

αn

)
=

∏

1≤ij≤αj

∏

1≤k≤n

(
s+

ik
sk

)
.

The following is the global version of the classical result by Kashiwara [17]. The upper bound
statement is due to Varchenko ([41]) and Saito ([34, 35]).

Theorem 3.2. For f ∈ Rn, there exists an integer k such that bf (s) is a divisor of the product
bF (s)bF (s+ 1) · · · bF (s+ k). Moreover 0 ≤ k ≤ n− 1.

Proof. Since h is a global embedded resolution of X = V (f), h induces a local embedded
resolution of the germ (X, p) at every point p ∈ X. Now, the existence of k ≥ 0 with the
divisibility property follows from the theorem by Kashiwara [17] and from the fact that the
global b-function is the least common multiple of the local ones, see Theorem 2.10. The proof
for the upper bound can be found in the references above. □

This theorem allows one to find upper bounds also for the global case. Let us apply the
algorithm checkRoot for computing the b-function.

Example 3.3. Let f = (xz + y)(x4 + y5 + xy4) ∈ Q[x, y, z] and B1(s) = bx5(s)by18(s)bz24(s).
Since every root of bf (−s) belongs to the real interval (0, 3), see Theorem 3.2, computing
an embedded resolution of the singularity and using Kashiwara’s result [17], we obtain that
B(s) = B1(s)B1(s + 1)B1(s + 2) is an upper bound for bf (s). Once we know a system of
generators of AnnDn[s] f

s, checking whether each root of the upper bound is a root of the
Bernstein-Sato polynomial was simple. It took less than 5 seconds except for those ones which
appear in the table below. We also observe that when a candidate is not a root indeed, the
computation is very fast. To the best of our knowledge, this example (first appeared in [8]) is
intractable by any computer algebra system.

bf (s) = (s+ 1)2(s+ 17/24)(s+ 5/4)(s+ 11/24)(s+ 5/8)(s+ 31/24)(s+ 13/24)

(s+ 13/12)(s+ 7/12)(s+ 23/24)(s+ 5/12)(s+ 3/8)(s+ 11/12)(s+ 9/8)

(s+ 7/8)(s+ 19/24)(s+ 3/4)(s+ 29/24)(s+ 25/24)

The running time is given in the format minutes:seconds.

Root of B(−s)
Running time

Root of bf (−s) ?
checkRoot2 checkRoot1

5/4 18:47 12:42 Yes
31/24 47:31 31:05 Yes
9/8 0:56 0:24 Yes
29/24 17:41 7:57 Yes
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Remark 3.4. Choosing the lexicographical ordering with ∂x > x inD, when using the checkRoot
algorithm reduced the running time to just 25 sec.

Let us give a brief indication for computing a global embedded resolution of f . Denote by
V1 := V (xz + y) and V2 := V (x4 + y5 + xy4) the two components of V (f). First note that
Sing(V2) ⊂ V1∩V2 and the singular locus Sing(f) = V1∩V2 can be decomposed into two disjoint
algebraic sets as

Sing(f) = V (xz + y, yz4 − yz3 + 1) ∪ V (x, y) =: Y ⊔ Z.

The varieties V1 and V2 intersect transversely at every point of Y . Indeed, let us consider
P = (a, b, c) ∈ Y . Then V1 and V2 are smooth at P and their tangent spaces {cx+ y+az = 0},
{(4a3 + b4)x+ (5b4 + 4ab3)y = 0} can not be the same (a ̸= 0 holds).

Consider π : Ĉ3 → C3, the blow-up of C3 with center in Z. Denote by V̂1 and V̂2 the
corresponding strict transforms of V1 and V2. The exceptional divisor E1 has multiplicity 5

and, V̂1 and V̂2 do not meet in a small neighborhood of E1. Moreover V̂1 and E1 intersect

transversely. The local equation of V̂2 ∪ E is given by the polynomial y5(x4 + y + xy).
Now, one proceeds as in the case of plane curves, since the local equation involves just two

variables. Finally, we obtain seven divisors with normal crossings, see Figure 3.3. This method
can also be applied to the family (xz + y)g(x, y) under some extra conditions on g(x, y).

5 24

18

12

6V̂1
V̂2

Figure 1. Embedded resolution of V ((xz + y)(x4 + y5 + xy4))

Remark 3.5. To the best of our knowledge, resolution of singularities has never been used before
for computing Bernstein-Sato polynomials in an algorithmic way. Recall that an embedded
resolution can be computed algorithmically in any dimension and for any affine algebraic variety
[5], [12, 11]. There is a sophisticated implementation by A. Frühbis-Krüger and G. Pfister [9, 10]
in Singular.

One can find upper bounds for the case of hyperplane arrangements by computing an embed-
ded resolution. This allows one among other to test formulas for Bernstein-Sato polynomials of
non-generic arrangements. A formula for the Bernstein-Sato polynomial of a generic hyperplane
arrangement was given by Walther in [42].

3.2. Topologically equivalent singularities. Let f, g be two topologically equivalent sin-
gularities and assume that bf (s) is known. Since the set Ef = {e2πiα | bf,0(α) = 0} is a
topological invariant of the singularity {f = 0} at the origin [21, 22] and every root belongs to
(−n, 0) (Theorem 3.2), one can find an upper bound for bg(s) from the roots of bf (s) and use
our algorithms for computing bg(s). The upper bound is constructed as

∏
β∈E(s − β), where

E = {α + k | α ∈ Ef , k ∈ Z, α+ k ∈ (−n, 0)}.
In general it is complicated to check, whether two singularities are equivalent. However,

there are some special families for which this can be done. This is the case of quasi-ordinary
singularities, see e.g. [20]. Consider an example of a non-isolated one.

Example 3.6. Let f = z4 + x6y5 and g = f + x5y4z. Since the corresponding discriminants
with respect to z are normal crossing divisors, the associated germs at the origin define quasi-
ordinary singularities. Moreover the characteristic exponents are in both cases the same and
hence they are topologically equivalent, see e.g. [20].



ALGORITHMS FOR CHECKING RATIONAL ROOTS OF b-FUNCTIONS AND ... 11

The Bernstein-Sato polynomial of f at the origin has 27 roots, all of them with multiplicity
one except for α = −1 which has multiplicity two. Here is the list in positive format.

1,
5

6
,
9

10
,
4

3
,
13

10
,
2

3
,
3

4
,
19

20
,
5

12
,
11

10
,
17

12
,
17

20
,
11

12
,
7

10
,
19

12
,
13

20
,
27

20
,
7

6
,
21

20
,
9

20
,
13

12
,
5

4
,
3

2
,
7

12
,
31

20
,
7

4
,
23

20

The exponential of the previous set has 24 elements. Each of them gives three candidates
for bg,0(−s) except for −α = 1 which gives just two. For instance −α = 1/2 gives the following
three possible roots.

1

2
→

{1

2
,
3

2
,
5

2

}

There are 71 possible roots in total. Note that using this approach we do not have any infor-
mation about the multiplicities. Finally one obtains the roots for bg,0(−s).

1,
5

6
,
9

10
,
4

3
,
13

10
,
2

3
,
3

4
,
19

20
,
5

12
,
11

10
,
17

12
,
17

20
,
11

12
,
7

10
,

13

20
,
27

20
,
7

6
,
21

20
,
9

20
,
13

12
,
5

4
,
1

2
,
7

12
,
11

20
,

23

20

Observe that the Bernstein-Sato polynomials are very similar. The roots of bf,0(−s) marked
with a box have disappeared in bg,0(−s) and the ones in bold 3/2, 31/20 have become 1/2, 11/20.

We have selected this example to show the topologically equivalent approach to keep the
exposition as simple as possible. However, there is a family of examples depending on three
indices

fm,p,q = xm + xpyq, gm,p,q = xm + xpyq + xp−1yq−1z

where the polynomials define topologically equivalent singularities if m ≤ p, m ≤ q and at least
one of the two inequalities is strict.

In the table we put the information on timings in [hours:]minutes:seconds format for the com-
putation of the Bernstein-Sato polynomial of g. The symbol “−” means that the computation
did not terminate (or full memory) after 5 hours.

Singular Risa/Asir
deg bg(s)(m, p, q) checkRoot bfct bfctAnn bfct bfunction

(4, 6, 5) 0:27 3:19 0:18 1:32 1:03 26
(5, 7, 6) 7:22 − 12:32 − 28:27 49
(6, 8, 7) 51:15 − 1:33:28 − 2:34:11 57

Observe that although bfctAnn and bfunction are competitive in this family of examples
we notice a better control of the memory due to the fact that many “small” Gröbner bases
were needed for the checkRoot approach while a “big” Gröbner basis is performed for the other
methods. That is why our new algorithm is specially useful for extreme examples.

3.3. A’Campo’s formula. The Jordan form of the local Picard-Lefschetz monodromy of su-
perisolated surface singularities was calculated by Artal-Bartolo in [2]. The main step in this
computation was to present explicitly an embedded resolution for this family and to study the
mixed Hodge structure of the Milnor fibration.

Since every root of the Bernstein-Sato polynomial belongs to the real interval (−n, 0) (The-
orem 3.2) and the characteristic polynomial is a topological invariant, using the results by
Malgrange [21, 22], one can eventually provide an upper bound for the b-function. Let us see
an example that was not feasible even with the powerful specialized implementation by Schulze
[37].

Example 3.7. Let V be the superisolated singularity defined by f = z6 + (x4z + y5 + xy4).
The characteristic polynomial is

∆(t) =
(t5 − 1)(t6 − 1)(t120 − 1)

(t− 1)(t30 − 1)(t24 − 1)
.

This polynomial has 76 different roots modulo Z and thus we know in advance that the
Bernstein-Sato polynomial (resp. the reduced one) has at least 77 (resp. 76) different roots.
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Using the results above in 230 possible candidates, only 77 of them are roots of the b-function
indeed, all of them with multiplicity one.

1, 27
40
, 101
120

, 41
60
, 17
20
, 83
120

, 103
120

, 43
60
, 53
60
, 29
40
, 107
120

, 23
40
, 89
120

, 109
120

, 71
120

, 91
120

, 37
40
, 73
120

, 31
40
,

113
120

, 37
60
, 47
60
, 19
20
, 77
120

, 97
120

, 39
40
, 13
20
, 49
60
, 59
60
, 79
120

, 33
40
, 119
120

, 3
5
, 4
5
, 121
120

, 47
40
, 161
120

, 181
120

, 61
60
,

71
60
, 27
20
, 91
60
, 41
40
, 143
120

, 163
120

, 61
40
, 21
20
, 73
60
, 83
60
, 31
20
, 127
120

, 49
40
, 167
120

, 187
120

, 43
40
, 149
120

, 169
120

, 131
120

,

151
120

, 57
40
, 133
120

, 51
40
, 173
120

, 67
60
, 77
60
, 29
20
, 137
120

, 157
120

, 59
40
, 23
20
, 79
60
, 89
60
, 139
120

, 53
40
, 179
120

, 6
5
, 7
5

The total running time was 41.5 minutes. In the table below we show the candidates for
roots, for which computation ran more than 2 minutes. Again we observe that the detection of
a non-root is very fast indeed.

Candidate Running time Root of bf (−s) ?
181/20 2:52 Yes
91/60 6:01 Yes
61/40 4:53 Yes
31/20 4:21 Yes

Remark 3.8. Spectral numbers are defined using the semi-simple part of the action of the mon-
odromy on the mixed Hodge structure on the cohomology of the Milnor fiber [38], [41]. In [16,
Th. 3.3], [34, Th. 0.7] it is proved, that some roots of the Bernstein-Sato polynomial of a germ
with an isolated critical point at the origin could be obtained from the knowledge of the spectral
numbers of the germ. Since spectral numbers do not change under µ-constant deformations,
this also gives a set of common roots of the Bernstein-Sato polynomials, associated with the
members of a µ-constant deformation of a germ. Therefore, they provide a lower bound for
bf (s), as well as an upper bound.

4. Integral Roots of b-functions

For several applications only integral roots of the b-function are needed, e.g. [33]. We present
here problems related to the so-called Logarithmic Comparison Theorem and Intersection Ho-
mology D-module. Depending on the context local or global version of our algorithm is used.

4.1. Upper bounds from different ideals. Consider a left ideal I ⊆ AnnD[s] f
s. Then

I + ⟨f⟩ ⊆ AnnD[s] f
s + ⟨f⟩ ⊊ D[s], that is the former is a proper ideal. Then define the

relative b-polynomial bIf (s) ∈ K[s] to be the monic generator of
(
I + ⟨f⟩

)
∩ K[s], then

bf (s) | bIf (s). Note, that quite often bIf (s) = 0. But if bIf (s) ̸= 0, it gives us an upper
bound for bf (s). In particular, one can take I, giving rise to a holonomic D[s]-module, that is
GK.dimD[s]/I = GK.dimD[s]/AnnD[s] f

s = n+ 1.

Since (s + 1) | bf (s) | bIf (s), one can consider the reduced relative b-polynomial b̃If (s) ∈
K[s] to be the monic generator of

(
I + ⟨f, ∂f

∂x1
, . . . , ∂f

∂xn
⟩
)
∩K[s].

A prominent example of I as above is the logarithmic annihilator. Let I = Ann
(1)
D[s](f

s) be

the ideal in D[s] generated by the operators P (s) ∈ AnnD[s](f
s) of total degree at most one in

∂i. Let us define b
(1)
f (s) := bI(f s)f (s) =

(
Ann

(1)
D[s](f

s) +D[s]⟨f⟩
)
∩K[s]. The reduced b̃

(1)
f (s) is

useful as well.

4.2. Minimal integral root of bf (s) and the logarithmic comparison problem. Since
every root of bf (s) belongs to the real interval (−n, 0), integral roots are bounded and therefore
the whole Bernstein-Sato polynomial is not needed. Let us see an example that could not be
treated before with the classical methods.
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Example 4.1. Let A be the matrix given by

A =




x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12


 .

Let us denote by ∆i, i = 1, 2, 3, 4, the determinant of the minor resulting from deleting
the i-th column of A, and consider f = ∆1∆2∆3∆4. The polynomial f defines a non-isolated
hypersurface in C12. Following Theorem 3.2, the set of all possible integral roots of bf (−s) is
{11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}.
Using the algorithm checkRoot with the logarithmic annihilator, see Section 4.1 above,

instead of the classical one, we have proved for α = 2, . . . , 11 that

Ann
(1)
Dn[s]

(f s) +Dn[s]⟨f, s+ α⟩ = Dn[s],

and hence −1 is the minimal integral root of bf (s). The following is the timing information
of the whole procedure. Of course, −1 is always a root, but it is interesting to compare the
timings of confirming this fact.

Possible integral roots 1 2 ... 11

Root of b
(1)
f (s) ? Yes No

Running time 1:19:31 ≈ 0:03:24

This example was suggested by F. Castro-Jiménez and J.-M. Ucha for testing the Logarithmic
Comparison Theorem, see e.g. [39]. The use of logarithmic annihilator allowed us to reduce
the computation time. However, for f from this example it is known, that AnnDn[s](f

s) =

Ann
(1)
Dn[s]

(f s) and this fact together with some homogeneous properties were used to compute

other roots of bf (s), see Example 4.4 below.

4.2.1. Quasi-homogeneous polynomials. Assume F ∈ Rn is a w-quasi-homogeneous polynomial
with wi ̸= 0, that is, there are w1, . . . , wn ∈ K such that F =

∑n
i=1 wixi∂i(F ). Take c ∈ K∗

and let us denote f = F|xk=1 for some fixed k. We are interested in studying the relationship
between the Bernstein-Sato polynomials of f and F .

Proposition 4.2. Let F ∈ Rn be a quasi-homogeneous polynomial with respect to the weight
vector w = (w1, . . . , wn). Assume wk ̸= 0 for some k ∈ {1, . . . , n} and define f = F |xk=c for
c ∈ K∗. Then bf (s) divides bF (s).

Proof. Consider the V -filtration on Dn given by the variable xk. Let P (s) ∈ Dn[s] a differential
operator satisfying the functional equation for F . There exists d ≥ 0 such that xd

kP (s) ∈∑
i≥0 x

i
k · V0. From the quasi-homogeneity of F one can deduce that

xk∂k • F s+1 =
1

wk

(
s+ 1−

∑

i ̸=k

wixi∂i

)
• F s+1.

Let D′ be the (n−1)-th Weyl algebra in the variables x1, . . . , x̂k, . . . , xn. Thus V0 = D′[xk∂k]
and xd

kP (s) ·F s+1 can be written in the form Q(s) ·F s+1 where the operator ∂k does not appear
in Q(s) ∈ Dn[s]. The functional equation for F has been converted in the following one:

xd
kP (s) • F s+1 = Q(s) • F s+1 = xd

k bF (s) • F s

Now the substitution xk = c ∈ K∗ can be made and the claim follows. □

Example 4.3. The Bernstein-Sato polynomials of F = x2z + y3 and f = F|z=1 = x2 + y3 are

bF (s) = (s+ 1)
(
s+ 5

6

) (
s+ 7

6

)
︸ ︷︷ ︸

(
s+ 4

3

) (
s+ 5

3

)
.

bf (s)
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From the result by Kashiwara [17] one can see, blowing up the origin of F , that the last two
factors are related to the b-function of {z3 = 0}. This is a general fact.

Example 4.4. Now, we continue with Example 4.1. Let g be the polynomial, resulting from
f by substituting x1, x2, x3, x4, x5, x9 with 1. Using Proposition 4.2 several times, one can
easily see that bg(s) divides bf (s). Finally, the checkRoot algorithm is used to obtain that

(s+ 1)4(s+ 1/2)(s+ 3/2)(s+ 3/4)(s+ 5/4)

is a factor of bg(s) and therefore a factor of bf (s).

Factor of bg(s) (s+ 1/2) (s+ 3/4) (s+ 3/2) (s+ 1)4 (s+ 5/4)
Running time 0:02 0:04 0:10 3:45 4:46

4.3. Intersection homology D-module. In this part of the paper we introduce some new
notation. We refer to [40] for further details. LetX be a complex analytic manifold of dimension
n ≥ 2, OX the sheaf of holomorphic function on X and DX the sheaf of differential operators
with holomorphic coefficients. At a point x ∈ X, we identify the stalks OX,x with the ring
O = C{x1, . . . , xn} of converging power series and DX,x with D = O⟨∂1, . . . , ∂n⟩.
Given a closed subspace Y ⊂ X of pure codimension p ≥ 1, we denote by Hp

[Y ](OX) the sheaf

of local algebraic cohomology with support in Y . Let L(Y,X) ⊂ Hp
[Y ](OX) be the intersection

homology DX-Module of Brylinski-Kashiwara. This is the smallest DX-submodule of Hp
[Y ](OX)

which coincides with Hp
[Y ](OX) at the generic points of Y .

A natural problem is to characterize the subspaces Y such that L(Y,X) coincides with
Hp

[Y ](OX). Indeed, from the Riemann-Hilbert correspondence of Kashiwara-Mebkhout, the

regular holonomicDX-moduleHp
[Y ](OX) corresponds to the perverse sheafCY [p], while L(Y,X)

corresponds to the intersection complex IC•
Y . This way, the condition L(Y,X) = Hp

[Y ](OX) is

equivalent to the following one: the real link of Y at a point x ∈ Y is a rational homology
sphere. Torrelli proved, that the following connection to local Bernstein-Sato polynomial exists.

Theorem 4.5 (Theorem 1.2 in [40]). Let Y ⊂ X be a hypersurface and h ∈ OX,x a local
equation of Y at a point y ∈ Y . The following conditions are equivalent:

(1) L(Y,X)y coincides with Hp
[Y ](OX)y.

(2) The reduced local Bernstein-Sato polynomial of h has no integral root.

The proof of the theorem is based on a natural generalization of a classical result due to
Kashiwara which links the roots of the b-function to some generators of O[ 1

f
]fα, α ∈ C.

Example 4.6. Let Y be the affine variety in X = C3 defined by the polynomial f = z7 +
(x2z + y3)(x3 + y2z). The surface Y has the origin as its only singular point and thus the
local b-function and the global one coincide. The only possible integral roots for the b-function
are −2 and −1. Now consider Jf , the Jacobian ideal of f , cf. Rem. 2.8. Since the reduced
Bernstein-Sato polynomial is required, the ideal

AnnD[s](f
s) +D[s]⟨f, Jf , s+ α⟩

is used for checking rational roots, compare with Corollary 2.3 (2). We see that the previous
ideal is not the whole ring for α = 1 and hence the set of points x ∈ Y such that L(Y,X)x =
Hp

[Y ](OX)x is Y \ {0}.
Using the implementation by Schulze [37] (based on Gauss-Manin connection), the compu-

tation of the whole Bernstein-Sato polynomial took 123 sec., while with our approach only 11
sec. were needed.

Remark 4.7. Given Y as above, the set of points x ∈ Y for which the condition L(Y,X)x =
Hp

[Y ](OX)x is satisfied, defines an open set in Y that can be effectively computed with the

stratification associated with the integral roots of the reduced local b-functions, see the sequence
of varieties (6) below. For instance, in Example 5.1, the open set is V (f) \ V1.
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5. Stratification Associated with Local b-functions

From Theorem 2.10, one can find a stratification of Cn so that bf,p(s) is constant on each
stratum. The first method for computing such stratification was suggested by Oaku [31] (see
also [30], [32] and [3] for further information). However, this method relies on the primary
decomposition of commutative ideals. Following the ideas started in Section 2.2.2, we pro-
pose a new natural algorithm for computing such a stratification. At first, a stratification for
each root of the global b-function is computed. Then one obtains a stratification, associated
with the local b-function, notably without any primary ideal decomposition, see Example 5.1,
5.3, and 5.4 below. We have created an experimental implementation, which was used for
presented examples. The substitution of primary decomposition with elementary operations
clearly decreases the total complexity of this algorithm.

Recall Prop. 2.14: for the ideal I = AnnD[s](f
s) + D[s]⟨f⟩ and for the root α of bf (s) with

the multiplicity mα, we define ideals Iα,i =
(
I : (s + α)i

)
+D[s]⟨s + α⟩ for i = 0, . . . ,mα − 1.

Let Vα,i be the affine variety corresponding to the ideal Iα,i ∩ C[x]. Then

(6) ∅ =: Vα,mα ⊂ Vα,mα−1 ⊂ · · · ⊂ Vα,0 ⊂ Vα,−1 := Cn,

and mα(p) = i if and only if p ∈ Vα,i−1 \ Vα,i. We call this sequence the stratification associated
with the root α. Let us see some examples2 to show how this result can be use to compute a
stratification associated with local b-functions.

Example 5.1. Consider f = (x2 + 9/4y2 + z2 − 1)3 − x2z3 − 9/80y2z3 ∈ C[x, y, z]. The global
b-function is

bf (s) = (s+ 1)2(s+ 4/3)(s+ 5/3)(s+ 2/3).

Take V1 = V (x2 + 9/4y2 − 1, z), V2 = V (x, y, z2 − 1) and V3 = V (19x2 + 1, 171y2 − 80, z).
Then V2 (resp. V3) consists of two (resp. four) different points and V3 ⊂ V1, V1 ∩ V3 = ∅. The
singular locus of f is union of V1 and V2. The stratification associated with each root of bf (s)
is given by

α = −1, ∅ ⊂ V1 ⊂ V (f) ⊂ C3 ;
α = −4/3, ∅ ⊂ V1 ∪ V2 ⊂ C3 ;
α = −5/3, ∅ ⊂ V2 ∪ V3 ⊂ C3 ;
α = −2/3, ∅ ⊂ V1 ⊂ C3.

From this, one can easily find a stratification of C3 into constructible sets such that bf,p(s)
is constant on each stratum.

bf,p(s) =





1 p ∈ C3 \ V (f),

s+ 1 p ∈ V (f) \ (V1 ∪ V2),

(s+ 1)2(s+ 4/3)(s+ 2/3) p ∈ V1 \ V3,

(s+ 1)2(s+ 4/3)(s+ 5/3)(s+ 2/3) p ∈ V3,

(s+ 1)(s+ 4/3)(s+ 5/3) p ∈ V2.

The total running time including the computation of the global Bernstein-Sato polynomial
was 8 min. The system Risa/Asir, which uses the algorithms from [28] by Nishiyama and Noro,
needed more than 7 hours to obtain the same stratification.

Remark 5.2. Note that one can define a stratification associated with the roots of the local
b-functions, that is taking no multiplicities into account. We have observed that our algorithm
is especially useful and very fast for computing this stratification. In particular, this is the case
when each root has multiplicity one. Finally, also observe that in any case the global b-function
is not actually needed, if a set containing the roots of bf (s) is used instead.

Consider more interesting examples.

2The hypersurfaces for examples have been taken from http://www.freigeist.cc/gallery.html
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Example 5.3. Let us proceed with Example 3.3. The stratification associated with every root
of bf (s) except for α = 1 is given by the sequence ∅ ⊂ Z ⊂ C3. For α = 1 of multiplicity 2, the
corresponding sequence is ∅ ⊂ Y ⊔ Z ⊂ V (f) ⊂ C3. Hence the local b-function at p ∈ C3 is

bf,p(s) =





1 p ∈ C3 \ V (f),

s+ 1 p ∈ V (f) \ (Y ⊔ Z),

(s+ 1)2 p ∈ Y,

bf (s) p ∈ Z.

Using the lexicographical ordering with ∂x > x on D during the computation of the intersec-
tion with C[x], cf. Rem. 3.4 reduced the total running time to just 38 sec.

Example 5.4. Let us compute here the stratification associated with local b-functions of Ex-
ample 3.6. Denote by V1, V2 the two axes V1 := V (x, z), V2 := V (y, z). The singular locus is in
both cases the union of these varieties.

bf,p(s) =





1 p ∈ C3 \ V (f),

s+ 1 p ∈ V (f) \ (V1 ∪ V2),

bz4+x6(s) p ∈ V1 \ {0},
bz4+y5(s) p ∈ V2 \ {0},
(s+ 3/2)(s+ 7/4) lcm

(
bz4+x6(s), bz4+y5(s)

)
p = 0.

The stratification given by the singularity {g = 0} is the same as above. The local b-functions
in each stratum is obtained performing the replacements

z4 + x6 7−→ z4 + x6 + x5z,

z4 + y5 7−→ z4 + y5 + y4z,

(s+ 3/2)(s+ 7/4) 7−→ (s+ 1/2).

This can be interpreted as follows. Let P = (a, 0, 0) ∈ V1 \ {0}. The local equation of
f (resp. g) is z4 + x6 = 0 (resp. z4 + x6 + x5z). By the semi-continuity of the Bernstein-
Sato polynomial the local b-function at P divides the Bernstein-Sato polynomial at the origin.
Analogous considerations hold for P ∈ V2 \ {0}. The system Risa/Asir, which apparently
uses the algorithms from [28] by Nishiyama and Noro, did not finish the computation of the
stratification after more than 40 hours.

Remark 5.5. We see some common properties between the factorization of a Bernstein-Sato
polynomial with the so-called central character decomposition by Levandovskyy [18]. In partic-
ular, for bf (s) =

∏
α∈A(s−α)mα , where A ⊂ Q is the set of roots of bf (s), there is an algorithm

for computing the following direct sum decomposition of the module

D[s]/(AnnD[s](f
s) + ⟨f⟩) ∼=

⊕

α∈A

D[s]/(AnnD[s](f
s) + ⟨f⟩) : J(α)∞,

where J(α) = ⟨bf (s)/(s− α)mα⟩. We plane to investigate this topic further and provide cyclic
D[s]-modules, corresponding to different strata.

As mentioned above, there is a very recent paper [28] by Nishiyama and Noro, where the
authors build a stratification without using primary decomposition. The authors use initial
ideals with respect to weight vectors in computations, which is a classical (cf. [33]) alternative
to the methods, utilizing annihilators AnnD[s](f

s). In [1] there is a comparison of performance
of both approaches for the computation of Bernstein-Sato polynomials. Notably, no method is
clearly superior over another. Rather there are classes of examples, where the difference is very
distinct. In particular, initial-based method scores better results on hyperplane arrangements,
while annihilator-based methods are better at complicated singularities, which are not hyper-
plane arrangements. A comparison of two methods for stratification is very interesting and it
is an important task for the future. However, it seems to us that the method we presented
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will allow more thorough analysis of the algebraic situation due to the applicability of central
character decomposition. At the moment it is not clear, whether such a decomposition exists
for initial ideals.

6. Other applications

6.1. Bernstein-Sato Polynomials for Varieties. Let f = (f1, . . . , fr) be an r-tuple in K[x]r.
Denote by K⟨S⟩ the universal enveloping algebra U(gl r), generated by the set of variables
S = (sij), i, j = 1, . . . , r subject to relations:

[sij, skl] = δjksil − δilskj.

Then, we denote by Dn⟨S⟩ := Dn ⊗K K⟨S⟩. Consider a free K[x, s, 1
f
]-module of rank one

generated by the formal symbol f s and denote it by M = K[x, s11, . . . , srr,
1

f1···fr ] · f
s, where

f s = f s11
1 · . . . · f srr

r . The module M has a natural structure of left Dn⟨S⟩-module. Denote by
AnnDn⟨S⟩(f

s) the left ideal of all elements P (S) ∈ Dn⟨S⟩ such that P (S) • f s = 0, that is the
annihilator of f s in Dn⟨S⟩.

Theorem 6.1 (Budur, Mustaţǎ, Saito [7]). For every r-tuple f = (f1, . . . , fr) ∈ K[x]r there ex-
ists a non-zero polynomial in one variable b(s) ∈ K[s] and r differential operators P1(S), . . . , Pr(S) ∈
Dn⟨S⟩ such that

(7)
r∑

k=1

Pk(S)fk · f s = b(s11 + · · ·+ srr) · f s ∈ M.

The Bernstein-Sato polynomial bf (s) of f = (f1, . . . , fr) is defined to be the monic polynomial
of the lowest degree in the variable s satisfying the equation (7). It can be verified that bf (s)
is independent of the choice of a system of generators of ⟨f1, . . . , fr⟩. Then the Bernstein-Sato
polynomial of f can be computed as follows

(AnnDn⟨S⟩(f
s) + ⟨f1, . . . , fr⟩) ∩K[s11 + · · ·+ srr] = ⟨bf (s11 + . . .+ srr)⟩.

In [1] an algorithm to find a system of generators of AnnD⟨S⟩(f
s) was given. Moreover, in

computing the intersection of an ideal with the univariate subalgebra an optimized algorithm
(which avoids elimination with Gröbner basis) was used.

The preceding formula together with Theorem 2.1 can be used to check rational roots of
Bernstein-Sato polynomials also for affine algebraic varieties. Hence, following Corollary 2.6, a
stratification associated with the local b-functions can be computed.

6.2. A remark in Narváez’s paper. In [27], Narváez introduces a polynomial denoted by

β(s) verifying β(s)AnnD[s](f
s) ⊆ Ann

(1)
D[s](f

s). For all the examples treated in [27], he was able

to compute an operator P ′(s) ∈ D[s] such that bf (s)−P ′(s)f ∈ Ann
(1)
D[s](f

s). The last example

in the paper is quite involved and could not be computed by using any computer algebra system
directly. An iterated process for finding approximations of involutive bases was used instead.

Indeed, for this propose the operator is not really needed, since

bf (s)− P (s)f ∈ Ann
(1)
D[s](f

s) ⇐⇒ b
(1)
f (s) = bf (s) ⇐⇒ b

(1)
f (s) | bf (s),

and thus after computing b
(1)
f (s), one only has to check whether each root of the latter polyno-

mial is indeed a root of the b-function and the same with the multiplicities.
By definition the following inclusions hold

β(s)
(
AnnD[s](f

s) + ⟨f⟩
)

⊂ Ann
(1)
D[s](f

s) + ⟨f⟩ ⊂ AnnD[s](f
s) + ⟨f⟩.

This implies that bf (s) | b(1)f (s) | β(s)bf (s). Additionally, if β(s) divides bf (s), then the polyno-

mials b
(1)
f (s) and bf (s) both have the same roots and the previous condition is equivalent to

mα(b
(1)
f (s)) = mα(bf (s)) for every root α of β(s).
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Example 6.2. Let f = (x1x3+x2)(x
7
1−x7

2) be the last example from [27]. The Bernstein-Sato
polynomial and the polynomial β(s) are respectively

bf (s) = (s+ 1)3(s+ 3/4)(s+ 3/8)(s+ 9/8)(s+ 1/4)(s+ 7/8)(s+ 1/2)(s+ 5/8),

β(s) = (s+ 3/4)(s+ 5/8)(s+ 1/2)(s+ 3/8)(s+ 1/4).

Now one only has to check that all roots of β(s) have multiplicity 1 as a root of b
(1)
f (s).

This can be done using Theorem 2.1 with I = Ann
(1)
D[s](f

s) + ⟨f⟩. Using this approach, the

computations become very easy (less than 5 seconds in this example).

7. Conclusion and Further Work

As we have demonstrated, the family of checkRoot algorithms (implemented in the library
dmod.lib of Singular) has many useful applications in the realm of D-modules. Nowadays, it
is the only method that allows one to obtain some roots of the b-function without computing the
whole Bernstein-Sato polynomial. The latter is often infeasible despite all the recent progress
in computational D-module theory.

We emphasize, that presented techniques are elementary (by utilizing the principal ideal do-
main of the center K[s] of Dn[s]) but very powerful from computational point of view. Many
intractable examples and conjectures could be treated with this new method, as we have par-
tially illustrated. Moreover, a stratification associated with the local b-functions can be obtained
without primary decomposition [31] as in the very recent [28]. It is very interesting to study
these algorithms further and compare our approach with the one of [28].

Unfortunately, these techniques cannot be generalized for Bernstein-Sato ideals, since such
ideals lie in K[s1, . . . , sm] for m ≥ 2.

We have demonstrated that one can use the idea of checkRoot for checking rational roots
of b-function of a holonomic ideal with respect to a weight vector [33]. This gives an easier
method for computing, among other, integral roots of such b-functions In this context, it would
be very interesting to have a version of Kashiwara’s result for some holonomic ideals and certain
weights, since many algorithms in D-modules theory are based on integrations and restrictions
which need minimal/maximal roots.
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