000132074 001__ 132074
000132074 005__ 20240301161205.0
000132074 0247_ $$2doi$$a10.1016/j.combustflame.2018.07.005
000132074 0248_ $$2sideral$$a107674
000132074 037__ $$aART-2018-107674
000132074 041__ $$aeng
000132074 100__ $$0(orcid)0000-0002-7767-3057$$aMarrodán, L.$$uUniversidad de Zaragoza
000132074 245__ $$aThe inhibiting effect of NO addition on dimethyl ether high-pressure oxidation
000132074 260__ $$c2018
000132074 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132074 5203_ $$aThe high-pressure dimethyl ether (DME, CH3OCH3) oxidation has been investigated in a plug flow reactor in the 450–1050 K temperature range. Different pressures (20, 40 and 60 bar), air excess ratios (¿ = 0.7, 1 and 35), and the absence/presence of NO have been tested, for the first time under these conditions. An early reactivity of DME and a negative temperature coefficient (NTC) zone have been observed under the studied conditions, although under very oxidizing conditions (¿ = 35), NTC zone is almost imperceptible because DME is completely consumed at lower temperatures. A chemical kinetic mechanism has been used to describe the DME high-pressure oxidation, with a good agreement with the experimental trends observed. In general, modeling calculations with the present mechanism have been successfully compared with experimental data from literature. The presence of NO has an inhibiting effect on DME high-pressure consumption at low-temperatures because of: (i) the competition between CH3OCH2+O2¿CH3OCH2O2 and CH3OCH2+NO2¿CH3OCH2O+NO reactions, and (ii) the participation of NO in CH3OCH2O2+NO¿CH3OCH2O+NO2 reaction, preventing CH3OCH2O2 radicals continue reacting through a complex mechanism, which includes a second O2 addition and several isomerizations and decompositions, during which highly reactive OH radicals are generated. Consequently, NO and NO2 are interchanged in a cycle but never consumed.
000132074 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-65226
000132074 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132074 590__ $$a4.12$$b2018
000132074 591__ $$aENGINEERING, MECHANICAL$$b12 / 129 = 0.093$$c2018$$dQ1$$eT1
000132074 591__ $$aENGINEERING, CHEMICAL$$b23 / 137 = 0.168$$c2018$$dQ1$$eT1
000132074 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b10 / 88 = 0.114$$c2018$$dQ1$$eT1
000132074 591__ $$aTHERMODYNAMICS$$b6 / 60 = 0.1$$c2018$$dQ1$$eT1
000132074 591__ $$aENERGY & FUELS$$b30 / 103 = 0.291$$c2018$$dQ2$$eT1
000132074 592__ $$a1.29$$b2018
000132074 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ1
000132074 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000132074 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000132074 593__ $$aFuel Technology$$c2018$$dQ1
000132074 593__ $$aEnergy Engineering and Power Technology$$c2018$$dQ1
000132074 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132074 700__ $$0(orcid)0000-0002-5971-6842$$aArnal, Á.J.
000132074 700__ $$0(orcid)0000-0001-5426-6486$$aMillera, Á.$$uUniversidad de Zaragoza
000132074 700__ $$0(orcid)0000-0002-5420-0943$$aBilbao, R.$$uUniversidad de Zaragoza
000132074 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, M.U.$$uUniversidad de Zaragoza
000132074 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000132074 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000132074 773__ $$g197 (2018), 1-10$$pCombust. flame$$tCombustion and Flame$$x0010-2180
000132074 8564_ $$s756218$$uhttps://zaguan.unizar.es/record/132074/files/texto_completo.pdf$$yPostprint
000132074 8564_ $$s1547018$$uhttps://zaguan.unizar.es/record/132074/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000132074 909CO $$ooai:zaguan.unizar.es:132074$$particulos$$pdriver
000132074 951__ $$a2024-03-01-14:37:24
000132074 980__ $$aARTICLE