000132075 001__ 132075
000132075 005__ 20240301161205.0
000132075 0247_ $$2doi$$a10.1039/c9nr05946f
000132075 0248_ $$2sideral$$a116392
000132075 037__ $$aART-2020-116392
000132075 041__ $$aeng
000132075 100__ $$0(orcid)0000-0001-7689-2269$$aAndreu, Irene
000132075 245__ $$aAnisotropic self-assemblies of magnetic nanoparticles: experimental evidence of low-field deviation from the linear response theory and empirical model
000132075 260__ $$c2020
000132075 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132075 5203_ $$aThe heating ability upon application of an alternating magnetic field of a system of monodisperse and non-interacting superparamagnetic nanoparticles is described by Rosensweig''s model within the linear response limits. But in real applications, nanoparticle systems are rarely monodisperse or non-interacting, and predicting their heating ability is challenging, since it requires considering single-particle, inter-particle and collective effects. Herein we give experimental evidence of a collective effect that invalidates the linear response limits in self-assembled anisotropic arrangements. This effect allows tuning Neel relaxation times and, in turn, blocking temperatures, by just varying the alternating magnetic field amplitude. The analysis of the source magnetic and magnetothermal data leads to the development of an empirical model describing the modified Neel relaxation times in terms of characteristic parameters, whose physical interpretation is discussed. As a result, the dependency of Neel relaxation time on the magnetic field amplitude is assigned to a strong interaction energy contribution created locally by the ordered anisotropic assemblies. The reduction of this energy upon application of higher magnetic fields is related to the loss of preferred orientation of the magnetic moment of nanoparticles within assemblies. Remarkably, this energy contribution does not depend on particle volume distribution, so it does not contribute to widening of the energy barrier distribution of the assemblies, avoiding this detrimental effect of magnetic interactions, and contributing to an excellent heating ability. This work thus provides an analytical framework to analyze or predict the magnetic behavior and heating ability of superparamagnetic nanoparticles displaying collective effects.
000132075 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2014-53961-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-86826-R
000132075 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132075 590__ $$a7.79$$b2020
000132075 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b62 / 333 = 0.186$$c2020$$dQ1$$eT1
000132075 591__ $$aPHYSICS, APPLIED$$b23 / 160 = 0.144$$c2020$$dQ1$$eT1
000132075 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b32 / 178 = 0.18$$c2020$$dQ1$$eT1
000132075 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b29 / 106 = 0.274$$c2020$$dQ2$$eT1
000132075 592__ $$a2.037$$b2020
000132075 593__ $$aNanoscience and Nanotechnology$$c2020$$dQ1
000132075 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000132075 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132075 700__ $$0(orcid)0000-0002-8424-9780$$aUrtizberea, Ainhoa$$uUniversidad de Zaragoza
000132075 700__ $$0(orcid)0000-0003-2553-0633$$aNatividad, Eva$$uUniversidad de Zaragoza
000132075 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000132075 773__ $$g12, 2 (2020), 572-583$$pNanoscale$$tNanoscale$$x2040-3364
000132075 8564_ $$s2167548$$uhttps://zaguan.unizar.es/record/132075/files/texto_completo.pdf$$yPostprint
000132075 8564_ $$s2080544$$uhttps://zaguan.unizar.es/record/132075/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000132075 909CO $$ooai:zaguan.unizar.es:132075$$particulos$$pdriver
000132075 951__ $$a2024-03-01-14:37:35
000132075 980__ $$aARTICLE