000132077 001__ 132077
000132077 005__ 20240301161205.0
000132077 0247_ $$2doi$$a10.1016/j.apsusc.2019.145140
000132077 0248_ $$2sideral$$a116835
000132077 037__ $$aART-2020-116835
000132077 041__ $$aeng
000132077 100__ $$0(orcid)0000-0002-3309-5961$$aCubero, A.$$uUniversidad de Zaragoza
000132077 245__ $$aEffects of laser-induced periodic surface structures on the superconducting properties of Niobium
000132077 260__ $$c2020
000132077 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132077 5203_ $$aIt is well known that the use of ultrashort (fs) pulsed lasers can induce the generation of (quasi-) periodic nanostructures (LIPSS, ripples) on the surface of many materials. Such nanostructures have also been observed in sample''s surfaces irradiated with UV lasers with a pulse duration of 300 ps. In this work, we compare the characteristics of these nanostructures on 1-mm and on 25-µm thick niobium sheets induced by 30 fs n-IR and 300 ps UV pulsed lasers. In addition to conventional continuous or burst mode processing configurations, two-dimensional laser beam and line scanning modes have been investigated in this work. The latter allows the processing of large areas with a more uniform distribution of nanostructures at the surface. The influence of the generated nanostructures on the superconducting properties of niobium has also been explored. For this aim, magnetic hysteresis loops have been measured at different cryogenic temperatures to analyse how these laser treatments affect the flux pinning behaviour and, in consequence, the superconductor''s critical current values. It was observed that laser treatments are able to modify the superconducting properties of niobium samples. © 2019 The Author(s)
000132077 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T54-17R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-83669-C4-1-R
000132077 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132077 590__ $$a6.707$$b2020
000132077 591__ $$aCHEMISTRY, PHYSICAL$$b37 / 162 = 0.228$$c2020$$dQ1$$eT1
000132077 591__ $$aPHYSICS, CONDENSED MATTER$$b16 / 69 = 0.232$$c2020$$dQ1$$eT1
000132077 591__ $$aPHYSICS, APPLIED$$b30 / 160 = 0.188$$c2020$$dQ1$$eT1
000132077 591__ $$aMATERIALS SCIENCE, COATINGS & FILMS$$b1 / 21 = 0.048$$c2020$$dQ1$$eT1
000132077 592__ $$a1.294$$b2020
000132077 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000132077 593__ $$aCondensed Matter Physics$$c2020$$dQ1
000132077 593__ $$aSurfaces, Coatings and Films$$c2020$$dQ1
000132077 593__ $$aSurfaces and Interfaces$$c2020$$dQ1
000132077 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000132077 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132077 700__ $$0(orcid)0000-0003-4839-5286$$aMartínez, E.$$uUniversidad de Zaragoza
000132077 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, L. A.$$uUniversidad de Zaragoza
000132077 700__ $$0(orcid)0000-0002-0500-1745$$ade la Fuente, G. F.$$uUniversidad de Zaragoza
000132077 700__ $$aNavarro, R.
000132077 700__ $$aLegall, H.
000132077 700__ $$aKrüger, J.
000132077 700__ $$aBonse, J.
000132077 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000132077 773__ $$g508 (2020), 145140 [7 pp]$$pAppl. surf. sci.$$tApplied Surface Science$$x0169-4332
000132077 8564_ $$s3206345$$uhttps://zaguan.unizar.es/record/132077/files/texto_completo.pdf$$yVersión publicada
000132077 8564_ $$s2611659$$uhttps://zaguan.unizar.es/record/132077/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132077 909CO $$ooai:zaguan.unizar.es:132077$$particulos$$pdriver
000132077 951__ $$a2024-03-01-14:37:50
000132077 980__ $$aARTICLE