000132080 001__ 132080
000132080 005__ 20240301161205.0
000132080 0247_ $$2doi$$a10.1021/acssuschemeng.0c01032
000132080 0248_ $$2sideral$$a117810
000132080 037__ $$aART-2020-117810
000132080 041__ $$aeng
000132080 100__ $$aSoares, B. P.
000132080 245__ $$aGlycerol ethers as hydrotropes and their use to enhance the solubility of phenolic acids in water
000132080 260__ $$c2020
000132080 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132080 5203_ $$aThe use of glycerol ethers (with alkyl side chains ranging from one to six methyl groups) as hydrotropes to enhance the solubility of gallic and syringic acids in water was here studied. These compounds were selected due to their biological and industrial applications and for serving as model molecules for lignin solubilization. The results obtained were compared against traditional cosolvents, demonstrating the exceptional hydrotropic ability of glycerol ethers. Setschenow constants show that the hydrophobicities of both solute and hydrotrope play an important role in the solubility enhancement by hydrotropy, shedding light into its molecular mechanism. The solubility curves of gallic acid and syringic acid in the aqueous glycerol ether solutions were fitted using a recently proposed statistical thermodynamics-based model. This allowed the estimation of solute recovery from hydrotropic solution by using water as the antisolvent. Unlike what is usually claimed it is here shown that in some conditions it is impossible to recover the solute by simply adding water. This analysis paves the way for a rational design and selection of hydrotropes, in which both solubility enhancement and solute recovery are critical parameters to be taken into account.
000132080 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E37-17R$$9info:eu-repo/grantAgreement/ES/MCIU/RTI2018-093431-B-100$$9info:eu-repo/grantAgreement/ES/MEC/FPU14-04338
000132080 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000132080 590__ $$a8.198$$b2020
000132080 591__ $$aENGINEERING, CHEMICAL$$b14 / 143 = 0.098$$c2020$$dQ1$$eT1
000132080 591__ $$aGREEN & SUSTAINABLE SCIENCE & TECHNOLOGY$$b6 / 44 = 0.136$$c2020$$dQ1$$eT1
000132080 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b29 / 178 = 0.163$$c2020$$dQ1$$eT1
000132080 592__ $$a1.877$$b2020
000132080 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000132080 593__ $$aRenewable Energy, Sustainability and the Environment$$c2020$$dQ1
000132080 593__ $$aEnvironmental Chemistry$$c2020$$dQ1
000132080 593__ $$aChemistry (miscellaneous)$$c2020$$dQ1
000132080 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000132080 700__ $$aAbranches, D. O.
000132080 700__ $$aSintra, T. E.
000132080 700__ $$0(orcid)0000-0002-3256-2089$$aLeal-Duaso, A.$$uUniversidad de Zaragoza
000132080 700__ $$0(orcid)0000-0003-1199-2087$$aGarcía, J. I.
000132080 700__ $$0(orcid)0000-0002-2676-8814$$aPires, E.$$uUniversidad de Zaragoza
000132080 700__ $$aShimizu, S.
000132080 700__ $$aPinho, S. P.
000132080 700__ $$aCoutinho, J. A. P.
000132080 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000132080 773__ $$g8, 14 (2020), 5742-5749$$pACS sustain. chem. & eng.$$tACS Sustainable Chemistry and Engineering$$x2168-0485
000132080 8564_ $$s492199$$uhttps://zaguan.unizar.es/record/132080/files/texto_completo.pdf$$yPostprint
000132080 8564_ $$s1691724$$uhttps://zaguan.unizar.es/record/132080/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000132080 909CO $$ooai:zaguan.unizar.es:132080$$particulos$$pdriver
000132080 951__ $$a2024-03-01-14:38:09
000132080 980__ $$aARTICLE