000132096 001__ 132096
000132096 005__ 20240301161205.0
000132096 0247_ $$2doi$$a10.3390/w13131840
000132096 0248_ $$2sideral$$a127090
000132096 037__ $$aART-2021-127090
000132096 041__ $$aeng
000132096 100__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda S.$$uUniversidad de Zaragoza
000132096 245__ $$aComparative analysis of HLLC-and roe-based models for the simulation of a dam-break flow in an erodible channel with a 90¿ bend
000132096 260__ $$c2021
000132096 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132096 5203_ $$aIn geophysical surface flows, the sediment particles can be transported under capacity (equilibrium) conditions or noncapacity (nonequilibrium) conditions. On the one hand, the equilibrium approach for the bedload transport assumes that the actual transport rate instantaneously adapts to the local flow features. The resulting system of equations, composed of the shallow water equations for the flow (SWE) and the Exner equation for the bed evolution, has been widely used to simulate bedload processes. These capacity SWE + Exner models are highly dependent on the setup parameters, so that the calibration procedure often disguises the advantages and flaws of the numerical method. On the other hand, noncapacity approaches account for the temporal and spatial delay of the actual sediment transport rate with respect to the capacity of the flow. The importance of assuming nonequilibrium conditions in bedload numerical models remains uncertain however. In this work, we compared the performances of three different strategies for the resolution of the SWE + Exner system under capacity and noncapacity conditions to approximate a set of experimental data with fixed setup parameters. The results indicate that the discrete strategy used to compute the intercell fluxes significantly affected the solution. Furthermore, the noncapacity approach can improve the model prediction in regions with complex transient processes, but it requires a careful calibration of the nonequilibrium parameters. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
000132096 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000132096 590__ $$a3.53$$b2021
000132096 591__ $$aWATER RESOURCES$$b36 / 99 = 0.364$$c2021$$dQ2$$eT2
000132096 591__ $$aENVIRONMENTAL SCIENCES$$b148 / 279 = 0.53$$c2021$$dQ3$$eT2
000132096 592__ $$a0.716$$b2021
000132096 593__ $$aAquatic Science$$c2021$$dQ1
000132096 593__ $$aGeography, Planning and Development$$c2021$$dQ1
000132096 593__ $$aBiochemistry$$c2021$$dQ1
000132096 594__ $$a4.8$$b2021
000132096 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132096 700__ $$aMeurice R.
000132096 700__ $$aSoares-Frazão S.
000132096 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro P.$$uUniversidad de Zaragoza
000132096 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000132096 773__ $$g13, 13 (2021), 1840 [24 pp]$$pWater (Basel)$$tWater (Switzerland)$$x2073-4441
000132096 8564_ $$s10313208$$uhttps://zaguan.unizar.es/record/132096/files/texto_completo.pdf$$yVersión publicada
000132096 8564_ $$s2715518$$uhttps://zaguan.unizar.es/record/132096/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132096 909CO $$ooai:zaguan.unizar.es:132096$$particulos$$pdriver
000132096 951__ $$a2024-03-01-14:43:27
000132096 980__ $$aARTICLE