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Abstract: In geophysical surface flows, the sediment particles can be transported under capacity
(equilibrium) conditions or noncapacity (nonequilibrium) conditions. On the one hand, the equi-
librium approach for the bedload transport assumes that the actual transport rate instantaneously
adapts to the local flow features. The resulting system of equations, composed of the shallow water
equations for the flow (SWE) and the Exner equation for the bed evolution, has been widely used
to simulate bedload processes. These capacity SWE + Exner models are highly dependent on the
setup parameters, so that the calibration procedure often disguises the advantages and flaws of the
numerical method. On the other hand, noncapacity approaches account for the temporal and spatial
delay of the actual sediment transport rate with respect to the capacity of the flow. The importance
of assuming nonequilibrium conditions in bedload numerical models remains uncertain however.
In this work, we compared the performances of three different strategies for the resolution of the
SWE + Exner system under capacity and noncapacity conditions to approximate a set of experimental
data with fixed setup parameters. The results indicate that the discrete strategy used to compute
the intercell fluxes significantly affected the solution. Furthermore, the noncapacity approach can
improve the model prediction in regions with complex transient processes, but it requires a careful
calibration of the nonequilibrium parameters.

Keywords: dam-break waves; erodible bed; Exner equation; finite volumes; transient morphody-
namics; noncapacity bedload; conservative numerical schemes

1. Introduction

Bedload sediment transport is an important process in natural water bodies such as
rivers, reservoirs, and estuaries. Bedload refers to the solid particles being transported
within a more or less thick layer near the bed surface. The sediment particles can be
transported under capacity (equilibrium) conditions or noncapacity (nonequilibrium)
conditions. The equilibrium approach assumes that the actual sediment transport rates
are equal to the capacity of the flow to carry solid weight, which is only determined by
instantaneous local flow features and can be formulated by different empirical closure
relations found in the literature [1]. Most of the numerical models proposed for bedload
transport are based on this capacity approach [2–6], which leads to the system composed by
the shallow water equations (SWE) for the flow and associated with the Exner equation [7]
to estimate the bed evolution. Multiple numerical schemes have been proposed for the
resolution of the SWE + Exner system, involving different levels of coupling between
the hydrodynamic and morphodynamic components of the system [8]. Among them,
totally decoupled [9–11], weakly coupled [3,6,12], and fully coupled strategies [4,5,13,14]
have been proposed and used to predict laboratory experiments and real-scale field cases.
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Nevertheless, qualitative and quantitative comparisons of different numerical approaches
for the resolution of the same system of equations are rare, even though they could provide
helpful information for developers of efficient simulation tools, despite consisting of an
important joint effort [15].

These kinds of capacity models for the SWE+Exner system are highly dependent on the
model parameters, such as the bed interface roughness, the bulk porosity of the bed layer,
the critical shear stress at the bed interface for the initiation of the sediment movement, or
the closure relation for the capacity transport rate. Therefore, most of the time, when these
models are used to predict experimental results or real-scale field data, these factors are
used as tuning parameters and calibrated to approximate the observations [16]. This is a
widely accepted procedure, provided that the calibration values remain in the physical
range of validity, since these parameters include complex physical processes that must
be modeled. However, this calibration procedure blurs the advantages and flaws of the
numerical method.

On the other hand, in noncapacity bedload models, the actual transport rates are
computed through advection and mass exchange with the static erodible bed [11]. Natural
morphodynamical systems are always changing in time and space, and hence, absolute
equilibrium states rarely exist in natural conditions. Therefore, intuitively, noncapacity
approaches appear to be more suitable than models based on the equilibrium assumption
since they account for the temporal and spatial delay of the actual sediment transport
rate with respect to its potential capacity. Nonetheless, unlike suspended load models,
for which it has been demonstrated that the nonequilibrium assumption helps to properly
estimate the solid suspended concentration and the bed evolution [17], the way to cope
with inertia effects in the case of bedload transport remains uncertain [18].

The assumption of nonequilibrium conditions in a bedload mathematical model
requires computing the actual transport rate, as well as the net exchange flux between
static and moving bed layers [19]. The physical interaction between flow and sediment
particles at the static–moving bed layer interface was studied at the grain scale by [20,21],
who proposed a reformulation of the SWE + Exner system based on the thickness of the
bedload transport layer. Following this basis, the work in [22] proposed a 1D generalized
model for bedload transport able to evolve from noncapacity to capacity states. This model
helps to improve the results in some widespread benchmark tests [2,9,23] without the need
to recalibrate the setup parameters.

In this work, we compared the performances of three strategies that have proven
efficient for the resolution of the SWE + Exner system under capacity conditions, with ap-
plication to an experimental transient case [24] (submitted) and imposing a fixed set of
model parameters. The selected strategies involve the widespread HLLC [6] and Roe [14]
solvers for the intercell numerical flux, as well as coupled [15,25] and weakly coupled [3,6]
resolution procedures for the hydrodynamic and morphodynamic components of the
system. Furthermore, the experiment was also simulated using the generalized bedload
transport model proposed by Martínez-Aranda et al. [22] in order to analyze the need for
including transient nonequilibrium states in the final bed elevation. The paper is structured
as follows: the governing equations are described in Section 2; then, Section 3 is devoted to
the numerical methods, and the experimental dataset is also briefly introduced; in Section 4,
the numerical results are reported and discussed; finally, the main conclusions are drawn
in Section 5.

2. Governing Equations

Shallow-water models for surface flows are derived from the depth integration of the
Navier–Stokes equations along the flow column. These shallow-type models can be divided
into nonhydrostatic and hydrostatic, which assume a hydrostatic vertical distribution of
the pressure along the flow layer and are more widespread for environmental flows. Using
this hydrostatic hypothesis for the flow movement and neglecting the presence of solid
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particles in the water, the 2D mass and momentum conservation equations for a clear-water
shallow flow can be written as:

∂h
∂t

+
∂

∂x
(hu) +

∂

∂y
(hv) = 0 (1a)

∂(hu)
∂t

+
∂

∂x
(hu2 +

1
2

gh2) +
∂

∂y
(huv) = −gh

∂zb
∂x
− τbx

ρw
(1b)

∂(hv)
∂t

+
∂

∂x
(huv) +

∂

∂y
(hv2 +

1
2

gh2) = −gh
∂zb
∂y
−

τby

ρw
(1c)

h being the vertical flow depth, (u, v) the components of the depth-averaged flow velocity
vector u along the global (x, y) horizontal coordinates, respectively, zb the bed layer eleva-
tion, g the gravitational acceleration, (τbx, τby) the components of the depth-averaged shear
resistance at the bed interface τb for the flow along the global (x, y) horizontal coordinates,
and ρw the density of water.

Furthermore, the mass conservation equation for the bedload transport layer is ex-
pressed as:

(1− ξ)
∂zb
∂t

+
∂

∂x
(qbx) +

∂

∂y
(qby) = 0 (2)

where ξ denotes the bulk porosity of the bed layer and (qbx, qby) are the components of the
bulk bedload rate qb along the global (x, y) horizontal coordinates, respectively.

The equations forming the two-dimensional system (1) and (2) can be rewritten in
vector form as:

∂U
∂t

+∇ · E(U) = Sb(U) + Sτ(U) (3)

where U is the vector of the conserved variables:

U =
(

h, hu, hv, zb
)T

=
(

h, qx, qy, zb
)T (4)

and E(U) =
(
F(U), G(U)

)
are the convective flux vectors along the (x, y) horizontal

coordinates, respectively, expressed as:

F(U) =


hu

hu2 + 1
2 gh2

huv
1

1−ξ qbx

 G(U) =


hv

huv
hv2 + 1

2 gh2

1
1−ξ qby

 (5)

The vector Sb(U) accounts for the momentum source term associated with the varia-
tion of the pressure force on the bed surface:

Sb(U) =


0

−gh ∂zb
∂x

−gh ∂zb
∂y

0

 (6)

The source vector Sτ(U) denotes the momentum dissipation due to the basal resistance:

Sτ(U) =


0

−τbx/ρw
−τby/ρw

0

 (7)
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where the components of the shear resistance at the bed surface τb = (τbx, τby) are com-
monly estimated using the quadratic pure turbulent relation as:

τbx = ρwghC f |u|u
τby = ρwghC f |u|v

(8)

with C f = n2
b h−4/3 being a friction coefficient and nb the bulk Manning’s roughness parameter.

The system of Equation (3), integrated over each computational cell and discretized
in time and space, constitutes the basis of all the two-dimensional Finite Volume (FV)
numerical models described hereafter for bedload transport. Nevertheless, the coupling
between the hydrodynamical and morphodynamical components of the system, the flux
resolution method at the edges between cells, or the solid discharge closure formulation
might differ from one model to another.

Capacity vs. Noncapacity Approach for Bedload Transport

The bedload transport rate qb = (qbx, qby) accounts for the volumetric solid dis-
charge integrated in the bedload transport layer and needs a closure model for estimation.
The solid particles can be transported under equilibrium or nonequilibrium conditions [17].
The equilibrium approach assumes that the actual sediment transport rate is equal to the
capacity of the flow to carry solid weight. This equilibrium bedload rate, referred to as
q∗b, is only determined by instantaneous local flow features and can be formulated by
different empirical closure relations found in the literature [1]. Most of these relations can
be generally written as:

|q∗b| = c θm1 (∆θ)m2

√
(rs − 1)gd3

s (9)

where |q∗b| denotes the bedload rate modulus under equilibrium conditions, c is a con-
stant dimensionless coefficient, m1 and m2 are two constant exponents, rs = ρs/ρw is the
solid/liquid density ratio with ρs being the sediment particles density, and ds is the median
grain diameter. The values of c, m1, m2, and θc depend on the closure relation and are
summarized in Table 1 for some widespread bedload transport rate formulae.

Table 1. Coefficients c, m1, m2, and θc for different capacity solid transport rate formulations (9).

Formulation c m1 m2 θc

MPM [26] 8 0 3/2 0.047
Nielsen [27] 12 1/2 1 0.047
Fernández-Luque [28] 5.7 0 3/2 0.037
Wong [29] 3.97 0 3/2 0.0495

The term ∆θ denotes the positive excess of the Shields stress θ over the critical Shields
stress value for the incipient motion θc, expressed as:

∆θ =

{
θ − θc if θ > θc

0 Otherwise
(10)

For the bedload transport process, the boundary shear stress at the bed surface zb
is assumed fully turbulent and is modeled using the Manning’s resistance Equation (8).
Hence, the dimensionless boundary Shields stress at the bed surface θ reads:

θ =
n2

b |u|
2

(rs − 1)dsh1/3 (11)
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Replacing Equation (11) into (9) for all the formulations in Table 1 allows demonstrat-
ing that |q∗b| ∝ h−1/2 |u|3, and hence, a general formulation for the capacity solid transport
rate based on the Grass law expressed as:

|q∗b| = G(h, θ) |u|3 (12)

has been adopted by other authors [3,5,25]. In Equation (12), the equilibrium bedload
sediment discharge is related to the depth-averaged flow velocity by means of a factor
G(h, θ) [T2L−1], which represents the interaction between the flow and the bed layer
and which depends on the flow characteristics, contrary to the constant value initially
proposed by [30].

On the other hand, in noncapacity transport, the actual bedload rate is computed
through advection and mass exchange with the static erodible bed. Natural morpho-
dynamical systems such as alluvial rivers are always changing in time and space, and
hence, absolute equilibrium states rarely exist in natural conditions. Therefore, noncapacity
approaches seem more suitable than models based on the equilibrium assumption since
they account for the temporal and spatial delay of the actual sediment transport rate with
respect to its potential capacity. However, if the adaptation delay is sufficiently small,
equilibrium models can also be applied, at least in theory [19,31].

A generalized model for 1D noncapacity bedload transport was recently proposed
by [22] and extended to the two-dimensional framework by [32]. The generalized bedload
transport rate is expressed following a modified Grass-type law as:

qbx = G(h, θ, η) |u|2u

qby = G(h, θ, η) |u|2v
(13)

with G(h, θ, η) being an interaction factor between the flow and the bed. Therefore, G is
calculated as a function of the flow depth h, the dimensionless Shields stress θ, and the
bedload transport layer thickness η:

G = Γ1(h) Γ2(θ) Γ3(η) (14)

Expressions for functions Γ1, Γ2, and Γ3 are reported in Table 2 for different empirical
relations found in the literature, where kD and kE are the two positive calibration constants
associated with the detention and entrainment exchange rates, respectively, between the
bedload transport (moving) layer and the underlying static bed stratum.

Table 2. Noncapacity Grass interaction factor G for different solid transport rate formulations.

Formulation Γ1(h) Γ2(θ) Γ3(η) θc

MPM
n3

b
√

g

(rs − 1)
√

h
8
√

∆θ

θ3/2
rs kD

kE

η

ds
0.047

Nielsen
n3

b
√

g

(rs − 1)
√

h
12
θ

rs kD
kE

η

ds
0.047

Fernández-Luque
n3

b
√

g

(rs − 1)
√

h
5.7
√

∆θ

θ3/2
rs kD

kE

η

ds
0.037

Wong
n3

b
√

g

(rs − 1)
√

h
3.97
√

∆θ

θ3/2
rs kD

kE

η

ds
0.0495

The generalized Grass-type model of Equation (14) for the bedload transport has two
important advantages compared with classical capacity models. First, it allows considering
the capacity or noncapacity hypothesis for the bedload solid transport only by changing
the expression to calculate the moving layer thickness η. Assuming the capacity approach
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leads to an instantaneous adaptation of the bedload transport rate to the flow carrying
capacity, the equilibrium transport layer thickness η∗ can be estimated as:

η∗ =
kE

rs kD
∆θ ds (15)

whereas the noncapacity assumption requires estimating the temporal evolution of the
bedload transport layer thickness:

(1− ξ)
∂η

∂t
+

∂ qbx
∂x

+
∂ qby

∂y
= −(1− ξ)(η̇D − η̇E) (16)

where η̇D and η̇E are the detention and entrainment exchange rates, respectively, be-
tween the bedload transport layer and the underlying static stratum, which can be esti-
mated as [20]:

η̇D = kD
η

ds

√
(rs − 1)gd3

s

ds
η̇E = kE

∆θ

rs

√
(rs − 1)gd3

s

ds
(17)

Therefore, when equilibrium conditions are reached, η = η∗, leading to η̇D = η̇E, and
hence, Equation (16) reduces to the widespread Exner equation [7].

3. Numerical Models and Simulations

The following section contains the description of the different numerical models
considered in this paper. All models have already been presented with more details in
other publications, so only the most important features are presented here. After that,
the test case used to compare them is described.

3.1. Roe-Based Solvers: R-Cap and R-NCap

Here, we briefly introduce the fully coupled model proposed by [14], based on the
augmented Roe approach and using the generalized bedload transport formulation (13).
The updating formulation for the conserved variables at the i-th cell Ui between times
t = tn and t = tn+1 is expressed as:

Un+1
i = Un

i −
∆t
Ai

NE

∑
k=1

R−1
k F

↓−
k lk (18)

where Ai is the i-th cell area, ∆t = tn+1 − tn is the time step, NE is the number of edges of
the i cell, R−1

k is the inverse of the rotation matrix Rk at the k-th cell edge [33], lk is the edge
length, and F ↓−k is the numerical normal flux to the k-th cell edge.

The upwind computation ofF ↓−k is based on the eigenstructure of the pseudo-Jacobian
matrix of the coupled system M̃k = (̃J − H̃)k, at the cell edges. The term J̃k denotes
the approximated Jacobian matrix of the convective flux J̃k = ∂(E · n̂)k/∂U, whereas H̃k
is the nonconservative matrix of the bed-pressure source term (6) at the k-th cell edge,
Sb = H̃k ∂U/∂x̂n, being n̂ the outward normal unit vector and (x̂n, ŷt) the normal and
transverse axes to the cell edge, respectively [14].

Using the generalized bedload transport Equation (13), the fully coupled pseudo-
Jacobian matrix M̃k can be expressed as:

M̃k =


0 1 0 0

gh̃− ũ2
n 2ũn 0 gh̃

−ũnṽt ṽt ũn 0
−(ũn ã + ṽt b̃) ã b̃ 0


k

(19)
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where h̃, ũn, and ṽt are the edge-averaged depth, normal velocity, and tangential velocity
to the edge, respectively, whereas ã and b̃ represent the edge-averaged derivatives of the
normal bedload flux

( 1
1−ξ G|u|2 u · n̂

)
with respect to the normal (qn) and tangential (qt)

flow discharges, respectively.
The approximate matrix M̃k of Equation (19) is diagonalizable with four approx-

imate real eigenvalues, λ̃m,k for m = {1, · · · , 4}, resulting from the resolution of the
characteristic polynomial:

Pλ = (ũn − λ̃)
[
−λ̃[(ũn − λ̃)2 − gh̃] + gh̃ã(λ̃− ũn)

]
= 0 (20)

The associated orthogonal basis of eigenvectors (ẽm)k of M̃k is used to build the matrix
P̃k = (ẽ1, ẽ2, ẽ3, ẽ4)k, which satisfies:

M̃k = (P̃Λ̃P̃−1)k Λ̃k =

 λ̃1 0
. . .

0 λ̃4


k

(21)

Following Murillo and Navas-Montilla [34], the conserved variable increment δÛk
and the integrated resistance source terms (S̃τ)k (7) at the cell edge are projected on the
eigenvector basis in order to obtain the wave and source strength vectors, Ãk and B̃k,
respectively, leading to:

Ãk = (α̃1, . . . , α̃4)
T
k = P̃−1

k δÛk

B̃k = (β̃1, . . . , β̃4)
T
k = P̃−1

k (S̃τ)k
(22)

The approximate upwind solution F ↓−k for the numerical flux at the k-th cell edge is
defined as:

F ↓−k = F(RkUi) + ∑
m−

(λ̃mγ̃mẽm)k (23)

where γ̃m = α̃m − β̃m/λ̃m and the subscript m− under the sum indicates waves traveling
inward the i-th cell.

It is worth mentioning that this approach allows a full coupling of the morphological
bed evolution with the hydrodynamical flow, leading to a robust scheme able to deal with
capacity and noncapacity formulations for the bedload transport. The updating procedure
for transport layer thickness η depends on the assumption made for the bedload transport:

• On the one hand, assuming the capacity hypothesis, the cell-centered value of the
transport thickness at the next time step tn+1 is directly computed using:

ηn+1
i =

kE
rs kD

(∆θ)n+1
i ds (24)

where (∆θ)n+1
i is the nondimensional Shields excess (10) at the i-th cell computed

with the conserved variables updated to time tn+1. This model is referred to as R-Cap;
• On the other hand, the assumption of the noncapacity approach requires solving

Equation (16) at each time step using the updating formula:

ηn+1
i = ηn

i −
∆t
Ai

NE

∑
k=1

Fη↓
k lk − ∆t (η̇D − η̇E)

n
i (25)

with Fη↓
k being the numerical flux at the k-th intercell edge for the homogeneous

transport equation and (η̇D − η̇E)
n
i denoting the cell-centered balance between the

detention and entrainment rates (17) at time tn.
To compute the numerical flux (Fη

p )
↓
k for the p-th sediment class at the k-th cell edge,

the left-hand side of the transport Equation (16) is integrated along the normal direc-
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tion x̂n to the edge, and the numerical flux at the intercell interface is approximated
using the linearized homogeneous Riemann problem [32]:

∂η

∂t
+ λ̃η,k

∂η

∂x̂n
= 0

η(x̂, 0) =

{
ηn

i if x̂n < 0
ηn

j if x̂n > 0

(26)

where the virtual bedload wave celerity λ̃η,k is defined as:

λ̃η,k =

(
δ
(
G|u|2 u · n̂

)
(1− ξ) δη

)
k

(27)

Therefore, the intercell numerical flux for the transport thickness is computed as:

Fη↓
k =

{
1

1−ξ

(
G|u|2 u · n̂

)n
i if λ̃η,k > 0

1
1−ξ

(
G|u|2 u · n̂

)n
j if λ̃η,k < 0

(28)

Finally, regardless of which approach is selected, the cell-centered value of the bed-flow
Grass interaction factor G at the next time step tn+1 is computed using Equation (14) as:

Gn+1
i = Γ1(hn+1

i ) Γ2(θ
n+1
i ) Γ3(η

n+1
i ) (29)

with Γ1, Γ2, and Γ3 as in Table 2.

3.2. HLLC-Based Solvers

For more information about the two models presented in this section, the reader may
refer to [6], which described the models in detail and discussed their performance against
four different test cases. The most important features of these models are presented here.

3.2.1. HLLC-CM

Equations (1a) to (11) still remain valid for this model, but the friction source terms Sτ

are not included in the intercell flux formulation, so that Equation (18) may be rewritten as:

Un+1
i = Un

i −
∆t
Ai

NE

∑
k=1

R−1
k F̂k lk + Sτ,i∆t (30)

with F̂k being the flux vector at the edge k that encompasses the bed-pressure term Sb
through a lateralization step as proposed by [35].

No transport layer is considered here, and a capacity approach (qb = q∗b ) using
Equation (22) and the MPM coefficients (Table 1) is used. Besides this different formulation
of the bedload rate, the HLLC-based Coupled Model (HLLC-CM) uses another flux solver
at the interface. Except for the transverse momentum equation, the fluxes at the interfaces
associated with the variables of Equation (4) use the HLL formula [36]:

F̂ ′k =
S+FL − S−FR + S+S−(UR −UL)

S+ − S−
(31)

where F̂ ′k stands for the flux at the k-th edge between two cells represented by the subscripts
R and L, omitting the lateralization step, which concerns the normal momentum equation
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only. S+ and S− then respectively correspond to the most positive and negative wave speed
estimates. For the mass and normal momentum equations, they are chosen as follows:

S+ = min(λ1
L, λ1

R, 0)

S− = max(λ4
L, λ4

R, 0)
(32)

whereas for the bed level evolution equation, S+ is expressed as:

S+ = max(λ2
L, λ2

R, 0) (33)

S− keeps the same formulation however. λ used in Equations (32) and (33) are the
eigenvalues of the pseudo-Jacobian matrix M derived for the system of Equation (3) in
which the bed-pressure terms were incorporated. This matrix is very similar to Equation (19),
but is cell-centered instead of being edge-averaged, despite being expressed in terms of the
local system of coordinates (x̂n, ŷt) instead of the global one (x, y), thanks to the rotational
invariance property [37]:

M =


0 1 0 0

gh− u2
n 2un 0 gh

−unvt vt un 0
1

1−ξ
∂qb,n

∂h
1

1−ξ
∂qb,n
∂qn

1
1−ξ

∂qb,n
∂qt

0

 (34)

The three nonzero terms of the last row of Equation (34) depend on the considered
bedload formulation, but only ∂qb,n

∂h will actually be present in the characteristic polyno-
mial, hence being important for the eigenvalues. Since the MPM formula was selected for
the HLLC-CM, this term equals:

∂qb,n

∂h
= −12

√
g(rs − 1)d3

s

n2
bqn
(
q2

n + q2
t
) 1

2

(rs − 1)dsh
7
3
− θc

 1
2

7
3

n2
bqn
(
q2

n + q2
t
)1/2

(rs − 1)dsh10/3 (35)

The eigenvalues of M can then be approximated as proposed by [13]:

λ1 =
1
2
(un − c−

√
(un − c)2 − 4gh

1− ξ

∂qb,n

∂h
1

un + c
)

λ2 =
1
2
(un − c +

√
(un − c)2 − 4gh

1− ξ

∂qb,n

∂h
1

un + c
)

λ3 = un

λ4 = un + c

(36)

with c =
√

gh.
To remedy the overly diffusive behavior of the HLL scheme, Reference [38] suggested

incorporating the contact discontinuity into the wave pattern for the transverse momentum
equation, which is equivalent to:

µ̂nt = ĥunvt =

{
vt,L q̂n if ũn ≥ 0
vt,R q̂n if ũn < 0

(37)

The last step of this flux scheme consists of the lateralization of Sb. For all the equations,
F̂ ′k = F̂k, with the exception of the normal momentum equation, for which:

σ̂k,n = σ̂′k,n − gh̃(zb,R − zb,L)
Si

SR − SL
(38)
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where σn = hu2
n +

gh2

2 is the normal momentum flux and Si = SL if the considered cell is
left ofthe edge. Otherwise, Si = SR.

Altogether, Equations (31), (37), and (38) constitute the lateralized HLLC flux scheme
used hereafter for the HLLC-CM.

3.2.2. HLLC-WCM

In contrast with the HLLC-CM, the HLLC-based Weakly Coupled Model (HLLC-
WCM), relies on the hypothesis that the transport of sediment is low enough to overlook its
influence on the system eigenvalues. The Exner equation is hence decoupled from the SWE.
Consequently, the lateralization of the slope source terms no longer influences the Jacobian
matrix. The well-known eigenvalues of the Jacobian matrix of the purely hydraulic system
of Equations (1a)–(1c) can now be used for the HLLC scheme:

λ1 = un − c

λ2 = un

λ3 = un + c

(39)

Regarding the update of zb, the same finite-volume approach is followed, but a new
estimation of q̂b,k,n must be provided:

zn+1
b = zn

b −
∆t
Ai

NE

∑
k=1

1
1− ξ

q̂b,nlk (40)

q̂b,k,n =

{
qb,n,L if λ̂b ≥ 0
qb,n,R if λ̂b < 0

(41)

where λ̂b is computed as proposed by [3] and is quite similar to Equation (27):

λ̂b = 1
1−ξ

∆qn,b
∆z′b

∆z′b =

{
∆zb if ∆zb > ds
−S f ∆s if ∆zb ≤ ds

(42)

with ∆s being the distance between the centers of the two adjacent cells.

The flux solver associated with zb is hence not based on the HLLC scheme, but on an
upwind approach where the sign of the virtual eigenvalue λ̂b will determine the cell whose
qb,n should correspond to the q̂b,k,n at the k-th interface. For the hydrodynamic equations,
nothing changes from the lateralized HLLC-CM, except for the eigenvalues.

As [6] highlighted, the choice of this solver is not only meant to simplify the imple-
mentation of the governing equations, but also to avoid the excessively diffusive behavior
of the HLLC scheme applied to the bed elevation that [39] also tried to avoid with a slightly
different approach. Moreover, the HLLC-WCM looks to be more stable than the HLLC-CM
in the case of the high transport of the sediment [6].

3.3. Test Case

The test case selected to compare the different models presented above consisted of a
two-dimensional dam-break occurring in a flume with a 90◦ bend and with an initial finite
sandy layer of 0.075 m. Meurice et al. [24] reproduced this experiment in a laboratory and
provided both water- and bed level results with different data-retrieval techniques [24].
Here, these results were used to assess the capabilities and limits of the different models.

The geometry of the flume and the position of the gauges used to record the evolution
of the water level are illustrated in Figure 1. The water level of the reservoir was initially
maintained 0.26 m above the nonerodible bed level of the channel (reference level). An alu-
minum gate separated the reservoir from the inlet channel and could be raised manually
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to simulate a quasi-instantaneous dam-break on an erodible bed. After 3.92 m, the water
front would enter the second part of the flume that was perpendicular to the first one. This
would lead the flow to show 2D and even 3D features. At the downstream end of this
second part, the water flowed freely in a dissipation reservoir.

2.39 m

2.44 m

0.495 m

3.42 m3.92 m

0.495 m
0.25 m

0.12 m

0.48 m

4.42 m

0.59 m
0.33 m0.28 m
0.075 m

0.18 m

Gate

(a)

(b)

0.44 m

G1 G2 G3

G4

G5

1.85 m

3.39 m

1.46 m

2.93 m

0.08 mx

y

(0,0)

x

z

(0,0)

Figure 1. (a) Plane view of the experimental flume and position of the gauges G1 to G5; (b) vertical
cut taken along the longitudinal axis of the first part of the flume.

Water levels were recorded continuously at five different points with ultrasonic gauges,
and no less than thirty-four different runs were performed. Hereafter, the numerical results
were compared with the aggregated experimental results, rather than with one test only.

Bed levels were recorded with two different techniques. The temporal evolutions of
different bed level cross-sections were recorded through laser profilometry, while pho-
togrammetry was used to capture the final topography after the drainage of the channel.
Hereafter, only the photogrammetric results were used to compare the experiments with
the simulations because of their total spatial coverage of the channel. This last technique
was used to reconstruct the topography consecutive to three different experimental runs.
The average topography was then calculated and is represented in Figure 2. This was
the dataset that was compared with the numerical results as far as the bed level surface
was concerned.

On the one hand, large accumulation regions appeared downstream of the inner
corner and in the outer corner stagnation zone. On the other hand, marked local erosion
was detected downstream of the outer corner stagnation zone, as well as at the end of the
channel outlet reach, where the rigid floor of the channel was practically reached, if not
completely because of the free outflow. Furthermore, marked one-directional antidunes
were found at the beginning of the channel inlet reach. These bed forms were created
during the first stages of dam-break wave advance and progressively disappeared as they
became closer to the corner region. It is worth mentioning that a slightly eroded zone
appeared close to the inner corner, with a maximum erosion lower than 2 cm with respect
to the original bed level.
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Figure 2. Final topography obtained after the channel drainage using photogrammetry and averaged
over the three experimental runs available.

In order to assess the suitability of the above numerical schemes for predicting the
experimental observations, all the models were set with the parameters summarized
in Table 3. A triangular unstructured mesh with 36,212 cells was used for all models.
The resolution varied across the mesh. It was fixed at 0.5 m and 0.05 m in the reservoir
and in the channel, respectively, but was increased to 0.005 m in the corner region in order
to capture the local transient structures of the flow. All the simulations lasted 180 s, even
though the bed evolution occurred mainly during the first 20 s and practically stopped
after 120 s from the dam-break initiation.

Table 3. Setup of the simulations.

Water density ρw 1000 kg/m3

Solid density ρs 2650 kg/m3

Solid particles’ diameter ds 1.7 mm
Manning’s roughness coeff. nb 0.0165 sm−1/3

Bed porosity ξ 0.44
Bedload formulation Meyer-Peter and Müller [26]
Critical Shields stress θc 0.047

Finally, particular attention was devoted to the downstream boundary condition.
Since the flow conditions varied during the experiment, both supercritical and subcritical
flows were obtained at the outlet. Different conditions should thus be applied depending
on the Froude number. These conditions were described in detail by [6] and are briefly
recalled here.

For supercritical flows, all the hydraulic information came from upstream and F̂k = FL.
However, when the flow was subcritical, an M2-type axis developed and went through the
critical depth at the boundary. An imposed water depth boundary condition could then be
applied so that:

q̂k,n = qn,L + (un,L − cL)(hc,L − hL)

σ̂k,n = σn,L + (un,L − cL)
2(hc,L − hL)

µ̂k,n = µn,L + vt,L(q̂k,n − qn,L)

(43)

with hc,L being the critical depth of the cell left of the boundary.
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When it comes to the conservation of the sediment however, information must come
both from upstream and downstream, as suggested by the eigenvalues of the coupled
model (see Equation (36)). Using the Rankine–Hugoniot relation and making the hypothesis
that the sediment depth at the boundary was zero, another boundary condition could be
developed for both super- and sub-critical flows:

q̂b,k,n = qb,n,L − λhs,L (44)

where λ = λ1 and λ = λ̂b for the coupled models (R-Cap, R-NCap, and HLLC-CM) and
the decoupled one (HLLC-WCM), respectively, and where hs,L is the sediment depth of the
cell left of the interface.

4. Results and Discussion

This section presents the results of the different models considered for the test case de-
scribed in Section 3.3. First, the performances of the three capacity models were compared
to each other. Secondly, the noncapacity features were applied and discussed through
a comparison with the experimental data, the original R-Cap model results, and those
acquired by a short sensitivity analysis.

4.1. Comparison Between the Roe- and HLLC-Based Capacity Models

Figure 3 shows the temporal evolution of the water surface level (wsl) at the gauge
points measured during the experiment. The arrival time of the dam-break wave was
well predicted at the gauge points G1, G2, and G3, located upstream of the corner region,
with the Roe- and HLLC-based models. However, at the gauge points placed downstream
of the corner region (G4 and G5), all the numerical models showed a shorter arrival time of
the dam-break wave than those observed in the laboratory. Furthermore, the R-Cap model
showed a slightly higher wsl than the HLLC solvers, especially at the wavefront, for all the
gauge points measured. Nevertheless, the transient flow structure was reasonably well
predicted by all the numerical models.

In order to assess the performance of the different numerical schemes to predict the
bed changes caused by the dam-break wave, the final bed elevation obtained with the R-
Cap- and HLLC-based solvers was compared against the photogrammetry measurements.
Figure 4 shows the 2D maps of the bed elevation zb obtained with the R-Cap- and HLLC-
based models at the final time t = 180 s. Several common aspects should be pointed out
for the three models:

• First, the three models were able to predict the bed degradation close to the outlet
boundary reasonably well. However, none of them were able to obtain the bed forms
observed in the experimental measurements at the beginning of the inlet reach;

• Second, the R-Cap and the HLLC-WCM reproduced the main structures observed
in the experiments for the final bed elevation well. However, the HLLC-CM led
to a highly diffusive estimation of the bedload flux at the intercell edges, and the
model was not able to reproduce the main features of the measured topography (see
Figure 2). However, none of the schemes were able to accurately predict the absolute
accumulation of bed material observed in the experiments downstream of the inner
corner, nor the depth in the opposite eroded region;

• Third, the R-Cap and HLLC-WCM computed a marked eroded zone close to the inner
corner. Although slight erosion was observed in this region in the laboratory, both
numerical models overestimated the bed degradation. That was in reality due to the
formation and development of a 3D vortex downstream of the inner corner. Such
a vortex cannot correctly be reproduced by depth-averaged models, which would
neglect some vertical recirculation, which would itself hamper the erosion near the
inner corner. Relaxing the assumption of a hydrostatic pressure distribution along the
flow column might help to improve the accuracy of the numerical model predictions,
since the vertical accelerations within the flow play an important role in this region.
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Figure 3. wsl (cm) at gauge points G1, G2, G3, G4, and G5.
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Figure 4. Bed elevation zb 2D maps obtained with the R-Cap- and HLLC-based models at t = 180 s.
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Table 4 shows the global RMSE for the computed bed level zb 2D maps with respect
to the photogrammetric data in Figure 2. The HLLC-WCM showed the lowest RMSE,
followed by the R-Cap and the HLLC-CM. Since only a limited area—i.e., the bend region
and roughly two meters downstream of it—was subject to large differences between the
models, no model performed strikingly better than any other when looking at the RMSE.
Nevertheless, these results were in line with the visual observations made previously.

Table 4. Global RMSE for the bed level zb with the HLLC-CM, HLLC-WCM, and R-Cap.

Global RMSE for zb (cm)

HLLC-CM HLLC-WCM R-Cap

1.07 0.96 1.02

In order to quantitatively identify the performance of the schemes more locally, final
bed profiles taken along x = 6.34 m (A), x = 6.77 m (B), and y = 0.60 m (C) were obtained
with the three numerical models and compared against the photogrammetric data, as
shown in Figure 5.

Figure 5. Final bed level profiles along x = 6.34 m (A), x = 6.77 m (B), and y = 0.60 m (C) with the
R-Cap, HLLC-CM, and HLLC-WCM. Experimental photogrammetric data are also plotted.

Regarding Profile (A), the R-Cap model approximated the maximum of the accumula-
tion region better than the HLLC-based models. However, the depth of the overeroded
region close to the inner corner also increased with the R-Cap solver due to its lower
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numerical diffusion. Eventually, the R-Cap model showed the lowest RMSE for the bed
level zb along this profile (RMSE = 0.95 cm), whereas the HLLC-based models showed
higher errors (see Table 5).

The HLLC-WCM performed slightly better than the R-Cap model along Profile (B) (see
Figure 5), with RMSEs of 1.39 cm and 1.45 cm, respectively. The main reason for this similar
performance was that the HLLC-WCM scheme better approximated the accumulation
height in the outer corner upstream region and the bed slope at the outlet reach of the
channel, whereas the R-Cap model slightly improved the prediction of the erosion zone
downstream of the outer corner. However, the HLLC-CM again performed worse than the
others (RMSE = 1.50 cm), especially in the erosion zone downstream of the outer corner.

Finally, the three model performed quite similarly along Profile (C), with an RMSE
below 0.5 cm and were able to predict the general trend of the bed change, as is shown in
Figure 5. However, none of them were able to approximate the formation of dunes in the
inlet reach of the channel. The formation of this kind of bed form is directly related to the
vertical structure of the flow near the bed surface [19] and is hence difficult to mimic using
depth-averaged bedload transport models.

Table 5. Bed-level zb RMSE for Profiles x = 6.34 m, x = 6.77 m, and y = 0.60 m with the R-Cap,
HLLC-CM and HLLC-WCM.

Profile
zb RMSE (cm)

HLLC-CM HLLC-WCM R-Cap

x = 6.34 m 1.53 1.47 0.95
x = 6.77 m 1.50 1.39 1.45
y = 0.60 m 0.50 0.48 0.45

4.2. Application of the R-NCap Model

The main feature of the R-NCap model is the progressive adaptation of the bedload
transport rate qb to the local flow conditions until the equilibrium transport state is reached,
contrary to the capacity models, which assume instantaneous adaptation. The celerity
of this adaptation is controlled by the entrainment and detention constants kE and kD,
respectively, but also directly depends on the dimensionless Shields stress excess ∆θ at
the bed interface [22]. This is one of the main differences between the proposed R-NCap
scheme and other nonequilibrium bedload models, which assume a constant value for the
adaptation length Lb [19,31,40] and compute the entrainment rate as:

η̇E =
|q∗b|

(1− ξ) Lb
(45)

where |q∗b| is the modulus of the equilibrium bedload rate (9).
Comparing the proposed R-NCap with former noncapacity models based on Equation (45)

for the formulation of Meyer-Peter and Müller [26], it can be easily derived that the equivalent
adaptation length applied by the R-NCap models scales with:

Lb =
8 rs ds

1− ξ

√
∆θ

kE
(46)

and hence, the equivalent adaptation length increases at regions where the boundary
Shields stress excess is high. Furthermore, the smaller the entrainment constant kE,
the larger the adaptation length Lb is.

This property of the R-NCap model was used to improve the numerical prediction
in the inner corner region. One of the main flaws in the numerical results obtained with
the capacity R-Cap and HLLC-WCM models was the appearance of a marked overeroded
region near the inner corner. This overeroded zone was not observed in the experimental
measurements. The simulation showed that the marked erosion happened at the first
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stages of the dam-break progress throughout the corner region, when a vortex was formed
downstream of the inner corner. The right panel of Figure 6 shows the velocity vectors at
the corner region for the R-Cap simulation at t = 15 s. The formation of the vortex was
clearly associated with the appearance of the overeroded zone, but by neglecting vertical
features, the sediment was highly sheared and eventually advected downstream.

Moreover, the changes in the flow direction in the inner corner region led to high bed
Shields stresses, which contributed to increasing the erosion within this region. The left
panel of Figure 6 is a 2D map of the maximum values of bed Shields stress excess ∆θ as
computed by the R-Cap model. The maximum ∆θ was around 1.0 in most of the channel,
but increased in the inner corner region until reaching a maximum value greater than 2.5,
leading to a high erosion in this zone.

Figure 6. Flow structure with the R-Cap model: (left) 2D map of the maximum ∆θ; (right) zoom of
the inner corner region. The velocity vectors are superimposed with the bed elevation.

Considering the 2D map of the maximum ∆θ recorded for the R-Cap model and the
features of the sediment used in this experiment, we analyzed the sensitivity of the R-NCap
model by setting the entrainment and detention constants, kE and kD, respectively, to the
values summarized in Table 6. Therefore, four simulations using the R-NCap model were
carried out, varying the entrainment constant from kE = 1.60 to kE = 0.05, but maintaining
the kE/kD ratio equal to 20. It is worth mentioning that, considering the characteristic
maximum value of the bed Shields stress excess ∆θ recorded for the simulation with the
R-Cap model, the ratio kE/kD = 20 was chosen to ensure that the relation between the
characteristic thickness of the bedload transport layer under equilibrium conditions and
the sediment diameter remained η∗/ds ≈ 10 (15) for all the simulations from T0 to T4.

Therefore, as kE decreased, the characteristic value of the equivalent adaptation length
increased from Lb ≈ 5 cm for the case T1 to Lb ≈ 150 cm for the case T4. The incre-
ment of the adaptation length means that the spatial and temporal delay between the
actual bedload transport rate and the flow carrying capacity became larger, and hence,
the nonequilibrium states were enabled. Note that these values for the η∗/ds ratio and the
adaptation length Lb only corresponded to the inner corner region, where the bed Shields
stress was higher during the first stages of the dam-break wave. In other regions of the
channel, the equivalent Lb would be shorter and the η∗/ds ratio smaller.
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Table 6. Noncapacity setup for the analysis of the R-NCap model’s behavior.

Test Model
kE/KD KE KD ∆θ η∗/ds (15) Lb (46)

(-) (-) (-) (-) (-) (cm)

T0 R-Cap 20 - - 1.4 9.4 -

T1 R-NCap 20 1.60 0.080 1.4 9.4 4.8
T2 R-NCap 20 0.20 0.010 1.4 9.4 38.1
T3 R-NCap 20 0.10 0.005 1.4 9.4 76.1
T4 R-NCap 20 0.05 0.0025 1.4 9.4 152.3

Figure 7 shows the final topography at time t = 180 s. When the R-NCap model was
applied, the adaptation of the actual bedload solid rate to the flow capacity in the inner
corner region became noninstantaneous. Hence, the appearance of the overeroded zone
was not only delayed in time, but also moved further downstream of the inner corner.
As kE decreased, the noncapacity state in that region was enabled, until the formation of
the overeroded zone was avoided. The other main features of the topography observed in
the laboratory were maintained, even if alterations in the bed level zb results also occurred
in other regions of the channel.

Figure 7. Bed elevation zb 2D maps obtained with the R-NCap model at t = 180 s.

Table 7 shows the global RMSE for the numerical topographies computed with the
R-NCap model with respect to the photogrammetric data (Figure 2). The improvement of
the global performance using the R-NCap model was not marked, but an optimal value for
the entrainment constant kE = 0.20 could be found, corresponding to Test T2. Once again,
the difference between the models may look limited regarding this indicator, because of the
close results that they showed before the bend (Figure 5C), but it highlights the importance
of properly calibrating the model. Poor calibration choices could indeed lead to worse
results with the R-NCap than with the R-Cap model.
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Table 7. Global RMSE for the bed level zb with R-Cap and R-NCap models.

Test Global RMSE for zb (cm)

T0: R-Cap 1.02

T1: R-NCap kE = 1.60 1.01
T2: R-NCap kE = 0.20 0.98
T3: R-NCap kE = 0.10 1.02
T4: R-NCap kE = 0.05 1.15

The final bed level zb computed with the R-NCap model is plotted along the profiles
in Figure 8. The results from the R-Cap model and the photogrammetric data are also
depicted for comparison purposes. For Profile (A), the activation of the nonequilibrium
states led to the avoidance of the overeroded zone, but a spatial delay of the accumulation
zone was also predicted, as well as a reduction of the accumulation height. Furthermore,
the prediction of the bed slope at the outlet reach of the channel was increasingly worse as
kE decreased. Despite the gain of accuracy allowed by the noncapacity feature near the
inner corner, these worse and worse slope predictions led to higher RMSE values for the
R-NCap model than for the R-Cap one along that profile (see Table 8).

Figure 8. Final bed level profiles along x = 6.34 m (A) and x = 6.77 m (B) with the R-NCap model.
Experimental photogrammetric data and results from the R-Cap model are also plotted.

For Profile (B), the R-NCap model improved the prediction of the bed slope in the
channel outlet reach without significantly affecting other regions (see Figure 8). This also
improved the RMSE of the bed level zb with respect to the photogrammetric data along this
profile, in comparison with the R-Cap model, as highlighted by Table 8. The best agreement
was given for kE ∈ [0.10, 0.20] with a ratio kE/kD = 20.
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Table 8. Bed level zb RMSE for the profiles x = 6.34 m and x = 6.77 m with the R-Cap and
R-NCap models.

Test
zb RMSE (cm)

x = 6.34 m x = 6.77 m

T0: R-Cap 0.95 1.45

T1: R-NCap kE = 1.60 1.70 1.32
T2: R-NCap kE = 0.20 1.61 1.05
T3: R-NCap kE = 0.10 1.51 1.13
T4: R-NCap kE = 0.05 1.69 1.34

5. Conclusions

In this work, we compared the performance of different strategies for the resolution
of the SWE + Exner system under capacity and noncapacity conditions. The selected
capacity strategies involved the coupled HLLC model (HLLC-CM) [13], the weakly coupled
HLLC model (HLLC-WCM) [6], and the fully coupled augmented Roe model (R-Cap) [14].
The three models were used to predict an experimental transient case [24] imposing a fixed
set of noncalibrated configuration parameters. The experiment consisted of the propagation
of a dam-break wave along a channel with a 90◦ bend and a uniform erodible bed, where
the free surface evolution was measured at five different gauge points, while the final
topography was measured after the channel drainage using photogrammetry.

Regarding the free surface evolution, although the R-Cap model showed a slightly
higher wsl than the HLLC solvers, especially at the dam-break wavefront, the transient
flow structure was reasonably well predicted by all the numerical models (Figure 3). When
it comes to the final bed level estimation, the three models were able to predict the bed
degradation close to the outlet boundary quite well (Figure 4). However, none of them
were able to obtain the bed forms observed in the experimental measurements at the
beginning of the inlet reach. The R-Cap and the HLLC-WCM models reproduced the
main topographical structures observed during the experiments well, but the HLLC-CM
led to an overly diffusive estimation of the bedload flux at the intercell edges, while the
model was not able to clearly reproduce these main structures. The lowest global RMSE for
the bed elevation zb was obtained with the HLLC-WCM, but the R-Cap model improved
the prediction of the final bed level in some important regions (Figure 5). Therefore,
the selection of the numerical approach for solving the intercell fluxes is not a trivial choice
when a movable bed boundary is involved and should be carefully assessed. The HLLC-
CM results indicated that the adaptation of fixed-bed diffusive solvers to erodible bed
problems might lead to an erroneous bed evolution prediction. Hence, the use of highly
diffusive centered solvers designed for fixed-bed conditions, as the widespread FORCE
approach [41,42], should be thoroughly analyzed when movable boundaries are considered.

None of the capacity models were able to accurately predict the absolute accumulation
of bed material observed in the experiments downstream of the inner corner, nor the depth
in the opposite eroded region. Furthermore, the R-Cap and HLLC-WCM computed a
markedly eroded zone close to the inner corner. Although slight erosion was observed in
this region in the laboratory, both numerical models overestimated the bed degradation in
this zone as a consequence of their inability to accurately capture all the 3D features of the
vortex that formed and developed downstream of the inner corner. At this inner corner
region, the vertical accelerations in the flow played a key role, especially at the first stages
of the dam-break wave arrival, and assuming a nonhydrostatic pressure distribution along
the flow column for the shallow-type equations might help to improve the accuracy of the
predictions obtained with the bedload capacity formulation. Further research is required in
order to apply the nonhydrostatic pressure assumption when a movable bottom boundary
is involved.

In order to improve the model predictions near the inner corner, the experiment
was also simulated using the generalized bedload transport model proposed by Martínez-
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Aranda et al. [22] (R-NCap) in order to analyze the influence of the transient nonequilibrium
states on the final bed elevation. When the R-NCap model was applied, the adaptation
of the actual bedload solid rate to the flow capacity in the inner corner region became
noninstantaneous, and the appearance of the overeroded zone was delayed in time and
space (Figure 7). As the equivalent adaptation length Lb was increased by imposing
smaller values of the nonequilibrium parameters kE and kD, the noncapacity state in
the inner corner was activated until the formation of the overeroded zone was fully
avoided. The other main features of the final topography observed in the laboratory
were maintained, but alterations in the bed level zb also occurred in these other regions.
The lowest global RMSE for the bed elevation zb was obtained with moderate values of the
nonequilibrium parameters—around kE = 0.2. When the noncapacity states were “forced”
by imposing an excessive equivalent adaptation length Lb, the global RMSE for the bed level
zb increased, and the general performance of the R-NCap model was reduced. Even though
the noncapacity approach can improve the model prediction in regions with complex
transient processes, it requires a careful calibration of the nonequilibrium parameters,
which can be a difficult task due to the lack of physical reference values. Furthermore,
detailed experimental studies are required to assess whether the noncapacity states in the
bedload transport actually occur in nature and how they affect the bed evolution in highly
transient flows.
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Abbreviations
The following abbreviations are used in this manuscript:

HLLC Harten–Lax–van Leer with Contact
SWE Shallow-Water Equations
MPM Meyer-Peter and Müller
R-Cap Roe-based Capacity Model
R-NCap Roe-based Noncapacity Model
HLLC-CM HLLC-based Coupled Model
HLLC-WCM HLLC-based Weakly Coupled Model
wsl water surface level
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