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Abstract: The problems related to the increase in the generation of discarded tires demonstrate the
need for profitable, efficient, cost-effective, and sustainable processes for their waste management.
In particular, the valorization of pyrolytic solids for energy storage applications is of interest. In
this study, four processes were performed: (1) pyrolysis; (2) chemical activation and pyrolysis; (3)
pyrolysis and physical activation; and (4) chemical activation, pyrolysis, and physical activation.
The process consisting of chemical activation, pyrolysis, and physical activation yielded 52% solid
material with the highest electrical conductivity (2.43 Ω–1 cm–1) and a surface area of 339 m2/g with
an average pore size of 3.6 nm. In addition, it was found that pore size had a greater effect on the
conductivity than surface area. Liquid and gas fraction compositions were modified by the presence
of chemical activation: aromatization reactions were favored, and limonene was not observed in
the liquid fraction, while an increase on the CH4 concentration caused an increment in the heating
value of the gas fraction. It was demonstrated that chemical and physical activation enhance the
properties of the pyrolytic solid product derived from waste tires that make it suitable for the partial
substitution of materials for electric energy storage applications.

Keywords: pyrolysis; chemical activation; physical activation; waste tires

1. Introduction

Economic and population growth, as well as increased urbanization and industri-
alization, have caused accelerated waste generation [1]. Among the different types of
solid waste, tires are particularly problematic. The global annual generation of waste tires
is estimated at 1.2 billion tires, in addition to the 4 billion tires already accumulated in
landfills [2]. Inadequate management of these waste tires generates environmental and
health problems, such as the propagation of disease-carrying pests [3] and uncontrolled
release of atmospheric pollutants (including highly toxic species such as dioxins, polycyclic
aromatic hydrocarbons, and fine particulate matter), when burned in open fires [4]. Ad-
ditionally, stockpiles of waste tires have a negative effect on communities’ perceptions of
their surrounding areas. The vast amount of waste generated nowadays dictates the need
for an urgent transition towards circular economy schemes, reducing waste generation and
minimizing the extraction of non-renewable resources [5].

Waste tires have a high calorific value and volatile matter content, as well as a moderate
sulfur content [6]. These properties make them an ideal material for thermochemical
processes like pyrolysis, which can lead to the recovery of liquid fuels, syngas, and pyrolytic
carbon black [7]. Typically, after pyrolysis, 40–60% ends as liquid fraction [8] that can be
used as fuel or as chemical feedstock [9]. Between 5 and 20% results in a gas fraction [8]
with a high calorific value that allows its use as fuel for the pyrolysis processes [10]. The
solid fraction is mainly composed of carbon black and represents 30–40% of the total
pyrolytic products [8].
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Waste tire pyrolysis has been the subject of ample research, such as the kinetics
of the pyrolysis reaction [11], reactor design, and product characterization [6,12]. This
thermochemical conversion pathway has demonstrated that the recycling of waste tires,
accompanied by material and energy recovery, is important from both an economic and
environmental aspect [13]. Despite advances in the proper management of waste tires, there
are still environmental problems related to their inadequate disposal, probably because
the conventional processes are expensive or the products do not have a commercial appli-
cation [14,15]. As Wójtowicz and Serio [16] reported, economic viability of the pyrolysis
process is obtained when the products generated are not limited only to primary products.
Furthermore, some authors [14,17–19] suggest that the profitability of the pyrolysis of
waste tires could depend on the application of the solid fraction.

Activation processes are used to produce high-quality activated carbon from waste
tires [20] and the activation process used plays an important role regarding the commercial
applications of this solid product obtained from waste tire pyrolysis. Several investiga-
tions analyze the effect of the activation methods with the objective of improving the
morphological characteristics of the carbonaceous solid [21,22]. There are two types of
activation process: physical and chemical. The main advantages of physical activation are
simplicity and low cost, with steam and CO2 being the most common agents used [23].
On the other hand, during chemical activation, the tire is impregnated with a chemical
agent prior to carbonization. The advantages of this process include a higher carbon yield
and better control of porosity [23]. Some chemical agents used in waste tire activation are
ZnCl2, H3PO4 [21], H2O2 [24], KOH [25], and H2SO4 [26]. Different applications have been
explored for the pyrolytic solids from waste tires, such as reinforcement on the rubber
industry [27], as adsorbents mainly used for the removal of pollutants [28], activated carbon
used as catalyst for biodiesel production [2,29], and recently as anodes in energy storage
devices [25,26]. These studies provide information on the application of the solid fraction
as an electrode; however, a complete valorization of all the pyrolytic tire products and an
analysis of the effects on their properties of the parameters of the process are still necessary.
Chemical composition, a high surface area, and proper porosity formation in the solid
fraction are the main factors contributing to their good performance as electrodes [15]. In
this study, we explore combinations of waste tire activation, using physical and chemical
pathways, and pyrolysis to recover pyrolytic carbon black with suitable properties for its
use in energy-storage devices (high surface area, type of pores created, and high electrical
conductivity). In addition, liquid and gas products are analyzed with the aim of performing
a preliminary analysis of the value of these subproducts.

2. Materials and Methods
2.1. Overview

Four different pyrolysis/activation experiments were performed in which the pres-
ence of chemical or physical activation is varied. In Process 1, waste tire powder was
pyrolyzed without the presence of either chemical or physical activation. In Process 2,
waste tire powder was chemically activated and then pyrolyzed. In Process 3, pyrolysis
was performed, followed by physical activation. Finally, Process 4 consisted of chemical
activation followed by pyrolysis, and then physical activation. The feedstock (waste tire
powder and chemically activated waste tire powder) was characterized, as well as the
resulting solid, liquid, and gas products. In the following sections of the manuscript,
the products obtained are identified with the initial letter of the product followed by the
number of the process. For example, products from Process 1 are represented as solid: S1,
liquid: L1, and gas: G1.

2.2. Feedstock Preparation and Characterization

Prior to pyrolysis, the waste tires (untreated and acid-treated waste tire) were sub-
jected to proximal analysis, elemental analysis, heating value tests, and thermogravimetric
analysis. Metal- and textile-free waste tire powder was obtained from Lehigh Technologies,
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Inc. (Georgia, USA) with a particle size range of 75–125 µm. The chemical activation process
was based on an adapted version of the methodology suggested by Naskar et al. [26]: tire
powder was impregnated with H2SO4 98% w/w for 14 h at 70 ◦C, in a volume tire/H2SO4
ratio of 1:3 to ensure complete impregnation. Then, the sample was filtered under vacuum
and washed with distilled water to achieve neutral pH, followed by final drying at 105 ◦C
for 24 h. Moisture content was determined by the ISO 5068:1983 method, ash content by
ASTM D3172-13, volatile matter by ISO 562-1981, and fixed carbon was determined by
difference. An elemental analyzer (Leco, model CHN628, St. Joseph, MI, USA) was utilized
to determine carbon, hydrogen, and nitrogen content according to ASTM D5373-08, while
sulfur determination was done using the S-628 module of the same analyzer according
to ASTM D4239. The heating value was obtained using a Parr Calorimeter 1341 (Parr
Instruments, Moline, IL, USA) and a thermogravimetric analysis was performed using a
thermogravimetric analyzer (Linseis, model STA PT1600, Selb, Germany). For this last anal-
ysis, approximately 10 mg of sample was heated at a rate of 20 ◦C/min until a temperature
of 850 ◦C was reached, which was maintained for 1 h under N2 atmosphere.

2.3. Pyrolysis Process

A fixed bed reactor consisting of a vertical cylindrical quartz tube with a diameter of
1 cm and length of 40 cm, with a thermocouple controller placed in the center of the sample
bed, was used for the pyrolysis tests (Figure 1). The pyrolysis parameters were fixed for all
processes (tests): approximately 1.5 g of sample was heated at a rate of 20 ◦C/min until a
maximum temperature of 850 ◦C was reached and maintained for 1 h with an N2 flow of
50 mL/min throughout the pyrolysis tests. Physical activation, when included in the test,
was performed after pyrolysis by introducing CO2 with a flowrate of 150 mL/min during
3 h at 850 ◦C. Each experiment was performed in duplicate. Solid and liquid fraction
yield were determined by weighting the reactor and the condensation system before and
after each experiment, while the gas yield was calculated by difference. The solid fraction
obtained in each replica of the same process was mixed and characterized, while the liquid
and gas fractions of each replica were analyzed separately.
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Figure 1. Illustration of the pyrolysis reactor unit, consisting of a fixed bed reactor followed by a
condensation system at 0 ◦C and a micro-GC for gas characterization.

2.4. Solid Fraction Characterization

A scanning electron microscope (SEM; JEOL, model JSM-6490LV, Akishima, Japan)
was utilized to observe the surface morphology of the solid fraction. N2 adsorption-
desorption isotherms at 77 K were obtained with a NOVA 2000e instrument (Quantachrome
Instruments, Boynton Beach, FL, USA). The surface area was calculated using the multi-
point BET method [30], while pore size distribution was calculated by the BJH method [31].
Before the analysis, samples were outgassed at 300 ◦C for 1 h to remove moisture and
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impurities. As electrical conductivity is an important parameter of carbon materials used
in electrode applications, it was measured using the four-point probe method (Figure 2).
The four-point probe test was performed using approximately 2 mg of sample evenly
distributed on adhesive tape resting on a microscope glass slide. Then, 30 resistance
measurements were performed using an 34401A digital multimeter (Agilent Technologies,
Santa Clara, CA, USA). The four probes were placed in a straight line at equal distance
from one another on the sample. During the test, a current was passed through the two
outer probes and the potential difference measured across the two inner probes was used to
calculate the resistance value [32]. The thickness was measured with a confocal microscope
(Carl Zeiss: Axio CSM 700, Jena, Germany) to convert resistance into resistivity. Finally,
the conductivity (σ) of the carbon material was calculated. A one-way analysis of variance
(ANOVA) test was performed on the collected conductivity data from all solid fractions to
detect differences in the mean of the conductivity values. Then, Tukey’s test was conducted
to identify which solid fractions were significantly different from one another.
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2.5. Liquid and Gas Fraction Characterization

The liquid obtained from the pyrolysis tests was subjected to a qualitative chemical
characterization to identify the main compounds and the group to which they belong:
aromatic, aliphatic, heterocyclic aromatic, and compounds with heteroatoms. The char-
acterization of a representative replica from each process was performed using a gas
chromatograph 7890A coupled to a selective mass detector MSD 5975C (GC-MS; Agilent
Technologies, Santa Clara, CA, USA). The experimental procedure is described in [33].
Although this characterization technique is useful and commonly used, detection limita-
tions should be considered. Compound identification by this technique could be uncertain
as isomers, homologues, or altogether different compounds have a similar structure. In
addition, search results below 80% accuracy indicate that compounds are not presented in
the library.

As depicted in Figure 1, an in-line micro-GC (Agilent 3000A, Santa Clara, CA, USA)
was used to determine the composition of the gas. The detection of CO2, C2H4, C2H6,
C2H2, H2S, H2, N2, CH4, and CO was performed in each sample injection conducted
every 160 s. Other gases such as SO2 and H2SO3 were not considered for discussion, as
previous studies reported its presence on insignificant amounts [34]. The data provided
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by the micro-GC were normalized and quantification of the gas species was performed by
a numerical integration using N2 as the internal standard. The volume composition was
expressed on an N2-free basis. The lower heating value of the gas produced was calculated
as a weighted average of the heating value of each compound (Equation (1)):

LHVgas = ∑ Xi × LHVi (1)

where LHVgas is the lower heating value of the gas produced during the process, Xi is the
molar fraction of each chemical species i in the gas mixture, and LHVi is the lower heating
value of each chemical species i.

3. Results and Discussion
3.1. Feedstock Characterization

Table 1 shows the results of the proximal and elemental analyses conducted on the
waste tire powder and acid-treated waste tire powder.

Table 1. Proximal and elemental analyses of the waste tire powder and acid-treated waste tire powder.

Waste Tire Powder Acid-Treated Waste Tire Powder

Moisture (wt%) 1.12 ± 0.09 1.65 ± 0.19
Ash (wt%) 6.55 ± 0.23 3.94 ± 0.07

Volatile matter (wt%) 67.16 ± 0.04 47.04 ± 0.58
Fixed carbon a (wt%) 25.16 ± 0.18 47.37 ± 0.46

Nitrogen (wt%) 0.32 ± 0.01 0.26 ± 0.25
Carbon (wt%) 81.52 ± 0.08 71.63 ± 0.28

Hydrogen (wt%) 7.34 ± 0.09 4.02 ± 0.12
Sulfur (wt%) 1.76 ± 0.09 6.93 ± 0.19

Oxygen and other a (wt%) 9.06 ± 0.13 17.16 ± 0.56
a Calculated by difference.

The waste tire powder results are in good agreement with those reported by other
authors [35,36]. A slight increase in moisture is observed after H2SO4 activation, which
may be associated with an increased surface area and its consequent absorption properties.
Volatile matter and ash content decreased with the acid treatment, which leads to a higher
fixed carbon content, which could indicate a carbonization of the material. Regarding the
elemental analysis, both materials have a high carbon content. The presence of sulfur is
attributed to the vulcanization process performed during tire manufacturing, and, although
it is present in both materials, the acid-treated waste tire powder has a higher content
of sulfur, probably owing to the type of acid used during activation. The higher heating
value of the waste tire powder was 36.62 ± 0.18 MJ/kg and the lower heating value was
34.79 ± 0.18 MJ/kg. These results are similar to those found in other investigations [37,38],
which are highly dependent on the type and manufacturer of the waste tire [34], mainly by
the variations of natural rubber/synthetic rubber composition.

Figure 3 shows the thermogravimetric analysis conducted on both materials. During
the waste tire powder decomposition, three mass losses were observed. Up to 250 ◦C, the
loss of moisture and additives occurs; between 250 and 480 ◦C, the natural rubber and
styrene-butadiene rubber decomposition reaches almost 50% of the initial mass; and, after
450 ◦C, the butadiene rubber decomposes [39]. However, acid-treated waste tire powder
loses mass at a lower temperature (~150 ◦C). This is because of desulfonation reactions
where H2SO3 is eliminated, causing the formation of unsaturated groups in the hydro-
carbon, which leads to a better char-forming material [26]. The derivative thermograms
showed a decrease on the intensity peak associated to the decomposition of rubbers on the
acid-treated waste tire, which is consistent with the decrease of the volatile matter content
occurred on this sample. Finally, after 700 ◦C, the degradation of the waste tire powder is
diminished, while the acid-treated waste tire powder required a higher temperature. It is
reported that waste tire pyrolysis is complete around 600 ◦C [38]. However, we observed
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that the decomposition of waste tires ended after 700 ◦C, which can be attributed to the
high heating rate used. Using a heating rate of 10 ◦C/min, Kwon and Castaldi [40] reported
that pyrolysis is completed around 500 ◦C; however, Williams and Besler [41] analyzed
the pyrolysis process at different heating rates, concluding that all samples tested required
higher temperatures to complete the thermal degradation when higher heating rates were
used, demonstrating that increasing the heating rate results in shifting the loss of mass
towards higher temperatures. In addition, the observed differences can also be attributed
to differences in composition between the tire samples used in this study compared with
those used in referenced studies.
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Figure 3. Thermogravimetric analysis performed under N2 atmosphere: (a) thermograms and
(b) derivative thermograms of waste tire powder and acid-treated waste tire powder.

3.2. Pyrolysis Product Yields

Table 2 shows the product yields from each process. An increase in the solid yield
is observed during the processes with chemical activation, while the opposite occurs
with physical activation. Gas yield was too low (1.32%) when none of the activation
process was involved. Although gas yield from waste tire pyrolysis is frequently reported
between 5 and 20% [8], there are some studies that report a gas yield lower than 4% [9,18].
Vapor residence time might be associated with the obtained low value in the gas yield,
as secondary decomposition of liquids into gases cannot occur [42]. Chemical activation
led to higher solid and gas yields; therefore, the liquid yield decreased, which occurred
because a significant part of the volatiles that generate the liquid fraction in pyrolysis are
lost during chemical activation.
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Table 2. Solid, gas, and liquid yields of each pyrolysis process expressed as a percentage of the
weight of the sample fed into the pyrolysis reactor. Note: Average and standard deviation were
calculated considering only experimentally reliable values.

Process Solid (%) Liquid (%) Gas (%) a

1 Pyrolysis 34.69 ± 2.54 65.79 1.32
2 Chemical activation and pyrolysis 57.19 ± 0.07 13.59 ± 5.57 29.21 ± 5.50
3 Pyrolysis and physical activation 24.82 ± 2.32 60.93 15.89

4 Chemical activation, pyrolysis, and
physical activation 52.22 ± 1.58 9.1 ± 1.10 38.7 ± 0.48

a Calculated by difference.

3.3. Solid Fraction Characterization

The chemical and physical activation had an effect on the solid fraction morphol-
ogy, as can be seen in Figure 4. Carbon black particles have spherical shapes forming
aggregates [43], and a rough surface and microporosity were observed in S2 and S4.
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In energy storage applications, a high surface area carbon electrode material pro-
vides a greater space for charge separation between the electrode and the ions in the
electrolyte [15,44]. Surface area and porosity varied between the different pyrolytic solids
obtained. It was observed that chemical activation increases surface area, but not as much
as physical activation (Table 3). Apparently, the increase in surface area is not related to
pore size, which can be attributed to different pore morphologies or pore size distribution.
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Table 3. Surface area, pore size, pore volume, and conductivity results of solid fraction from each process.

Solid
Sample Process Surface Area

(m2/g) Pore Size (nm) Pore Volume
(cm3/g)

Conductivity
(Ω−1 m−1)

S1 Pyrolysis 107.9 33.0 0.9 0.7 ± 0.3
S2 Chemical activation and pyrolysis 151.5 5.1 0.2 1.9 ± 0.2
S3 Pyrolysis and physical activation 313.4 13.4 1.0 1.3 ± 0.1

S4 Chemical activation, pyrolysis,
and physical activation 339.1 3.6 0.3 2.4 ± 0.1

The adsorption–desorption isotherms and the pore size distribution are presented in
Figure 5. The activations performed before pyrolysis had an important effect on the pore
size of the solid fraction. The Boudouard reaction that occurs during physical activation
causes the development of micropores, mesopores, and macropores [39], which increases
surface area. Apparently, chemical activation with H2SO4 generates a more controlled
porosity than physical activation, which can be seen in the pore size distribution plot
(Figure 5b). The processes with chemical activation presented the formation of micropores.
This may be due to the elimination of H2SO3 and sulfur dioxide during carbonization,
which previously occupied space.
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Figure 5. Plots of (a) adsorption–desorption isotherms and (b) pore size distribution for all pyroly-
sis solids.

The conductivity results (Figure 6 and Table 3) indicate that morphological character-
istics caused by the chemical activation of the solid fraction led to a higher conductivity
value, which is valuable in energy storage applications as electrodes. An ANOVA test
was performed to evaluate significant differences in conductivity among processes. A
p value < 0.0001 indicated no equal means; therefore, at least one process is different from
the rest; similarly, Tukey’s test showed that each of the solids are significantly different
from one another.



Appl. Sci. 2021, 11, 6342 9 of 17Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 16 
 

 
Figure 6. (a) Boxplots of conductivity results and (b) plot of Tukey’s test. Notes: Boxplots show the 
median, mean, interquartile range, and range from each solid fraction; if an interval in Tukey’s test 
plot does not contain zero, the corresponding means are significantly different. 

S1 has the lowest conductivity value, while S4 has the highest conductivity value 
from all of the solid samples evaluated. S2 reported the second highest conductivity—
higher even than that obtained for S3. This suggests that chemical activation favors 
nanopore size formation, which increases its conductivity. On the other hand, physical 
activation causes a clear increase in surface area, but the pores formed are not necessarily 
nanosized. Therefore, despite S3 having a high surface area, its conductivity is lower than 
S2, which has a lower surface area, but experiences nanopore formation. Figure 7 
compares the effect of the surface area and the pore size on the electrical conductivity. As 
can be seen in Figure 7a, there is not a clear effect of the surface area on the conductivity; 
despite S3 have a high surface area, its conductivity is lower than S2, which has a lower 
surface area, but experiences nanopore formation. Figure 7b shows that pore size has a 
stronger effect on conductivity, which in turn is heavily influenced by the presence of 
chemical activation. 

(b)

C
on

du
ct

iv
ity

 (Ω
−1

m
−1

)

(a)

−1 0 1 2

Figure 6. (a) Boxplots of conductivity results and (b) plot of Tukey’s test. Notes: Boxplots show the
median, mean, interquartile range, and range from each solid fraction; if an interval in Tukey’s test
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S1 has the lowest conductivity value, while S4 has the highest conductivity value from
all of the solid samples evaluated. S2 reported the second highest conductivity—higher
even than that obtained for S3. This suggests that chemical activation favors nanopore
size formation, which increases its conductivity. On the other hand, physical activation
causes a clear increase in surface area, but the pores formed are not necessarily nanosized.
Therefore, despite S3 having a high surface area, its conductivity is lower than S2, which
has a lower surface area, but experiences nanopore formation. Figure 7 compares the
effect of the surface area and the pore size on the electrical conductivity. As can be seen in
Figure 7a, there is not a clear effect of the surface area on the conductivity; despite S3 have
a high surface area, its conductivity is lower than S2, which has a lower surface area, but
experiences nanopore formation. Figure 7b shows that pore size has a stronger effect on
conductivity, which in turn is heavily influenced by the presence of chemical activation.
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Figure 7. Analysis of the conductivity results: (a) surface area effect and (b) pore size effect on the
electrical conductivity.

Similar results were obtained by Zhang et al. [45], who successfully synthetized
nitrogen-enriched biochar-based electrode material for supercapacitors from lignosulfonate,
graphene oxide, and p-phenylenediamine, with 0.3 Sm−1 (0.3 Ω−1 m−1) being the highest
conductivity value obtained. Parant et al. [46] studied the behavior of carbon black particles
in a water suspension for their use in flow batteries, concluding that their carbon black
sample preparation demonstrates good conductivity between 0.01 Sm−1 and 0.5 Sm−1.
The four solid samples obtained in our study presented higher conductivity values. As
electrical conductivity is a crucial factor in terms of electrochemical performance [45],
the higher conductivity values from solids obtained from processes involving chemical
activation demonstrate the material potential in electric energy storage applications.

3.4. Liquid Fraction Qualitative Characterization

The qualitative composition of the liquid fraction (Table 4) varied mainly with the
presence of chemical activation; physical activation did not have a significant effect on
its composition. L1 and L3, which are formed during processes that did not involve a
chemical activation, reported the presence of compounds like D-limonene and benzene.
On the other hand, naphthalene and its derivatives are compounds found in L2 and L4.
The compounds presented on the liquid fraction have also been reported by other au-
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thors [10]. Among the complex composition of the liquid fraction, limonene is a major and
valuable compound that increases the economic potential of these pyrolytic fractions [47].
It has been reported that limonene concentration significantly decreased at high pyrolysis
temperatures [39,47,48], as it is decomposed or transformed into aromatic compounds at
higher temperatures (>450 ◦C) [39,48]; however, some studies have reported the presence
of limonene at temperatures above 700 ◦C [39,47]. In this study, the dominant presence of
limonene may be associated with the transient conditions of the pyrolysis system and the
vapor residence time. The high heating rate might also be an important factor [47].

Table 4. Main compounds found within the liquid fraction from each process expressed as area %.

L1 L2 L3 L4

Compound Area % Compound Area % Compound Area % Compound Area %

D-limonene 23 Naphthalene 42 D-limonene 27 Naphthalene 32
Benzene 8 Benzothiazole 6 Benzene 9 Benzothiazole 7

Quinoline 5 Anthracene 6 Benzothiazole 5 Pyrene 6
Benzenediamine 5 Benzene 5 Benzenediamine 5 Anthracene 6

Benzothiazole 4 Indene 5 Quinoline 5 Benzene 5
Naphthalene 3 Biphenyl 4 Styrene 5 Indene 5
Heptan-2-one,

6-hydroxy-5-methyl-6-
vinyl

3 Quinoline 4 Xylene 4 Difenil 4

Styrene 3 Pyrene 3
Heptan-2-one,

6-hydroxy-5-methyl-
6-vinyl

4 Phenanthrene 3

Other compounds a 12 Other compounds b 7 Other compounds a 12 Other compounds b 9
Unknown 33 Unknown 18 Unknown 23 Unknown 24

a Insignificant amounts of compounds such as indene, p-Cymene, heptatriene, and cyclohexene; b insignificant amounts of compounds
such as mesitylene, chamazulene, and fluorene.

The influence of the pyrolysis temperature on the limonene concentration has been
amply investigated, while the effect of the heating rate [47] and pressure [48] have received
significantly less attention. Moreover, the influence of chemical activations on the feedstock
previous pyrolysis has been even less studied. Table 4 shows a clear effect of the chemical
activations on limonene yield: D-limonene was not presented on the liquid fraction from
acid-treated waste tire (L2 and L4), while it was the main compound on the liquid fraction
from nonactivated waste tire (L1 and L3). These results are possibly associated with the
decrease on the volatile matter content from 67.16% to 47.04% observed on the acid-treated
waste tire (Table 1). As the volatile matter of a tire is mainly constituted by rubbers [49] and
limonene is derived from rubber [50], a decrease of the limonene yield was expected on the
acid-treated waste tire, which is in agreement with TGA and proximal analysis results.

Liquid fractions from all processes present sulfur-based compounds such as benzothia-
zole, commonly used during the vulcanization process [51]. The undesirable sulfur content
is an obstacle for its utilization as fuel for its environmental pollution potential [4]; therefore,
further effort focused on the reduction of its content must be made [39]. Desulfurization
processes have been studied by some researchers [52].

Compounds were assigned to major categories, which are depicted in Figure 8. The
percentage of aliphatic and aromatic compounds changed considerably depending on
whether or not the waste tire was chemically activated. The lower content of aliphatic and
higher content of aromatic in L2 and L4 may be attributed to aromatization reactions such
as Diels-Alder, converting aliphatic into aromatic compounds. It has been reported that
pyrolysis temperatures >600 ◦C favor aromatic formation reactions [39,47].
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Figure 8. Liquid fraction qualitative characterization classified by aliphatic, aromatics, heterocyclic
aromatics, compounds with heteroatoms, and unknown compounds.

3.5. Gas Fraction Characterization

The gas fraction is mainly composed of H2, CO, CO2, CH4, C2H6, C2H4, and H2S.
The changes in the composition of the evolved gas from pyrolysis with respect to time/
temperature are presented in Figure 9. Most of the gas was produced after reaching a
temperature of 300 ◦C. During pyrolysis, G1 and G3 presented the same behavior and
composition, while the results of G2 and G4 were very similar to each other, indicating
that the chemical activation caused the differences presented in the gas fraction. Some
of the differences caused by the chemical activation were the generation of H2S at higher
temperatures and the presence of H2, which were only observed with the acid-treated
waste tire powder (G2 and G4). When temperature was maintained at 850 ◦C, only low
concentrations of CO and CO2 were generated in all processes. Then, during physical
activation (Processes 3 and 4), only CO was generated via the Boudouard reaction, in
which the solid fraction (carbon) reacts with the injected CO2 to produce CO. The CO
concentration was higher in processes involving the acid-treated tire powder.

Of relevance is the observed increase in H2S in the gas fraction, which is depicted in
Figure 9b,d. H2SO4 is used during chemical activation; therefore, the gas fraction from the
chemically activated waste tires presented a slight increase in H2S, which coincides with
Susa and Haydary [34], who reported that, at higher temperatures, the sulfur tends to be
distributed in the gas fraction. However, H2S is typically found in the pyrolytic gas from
waste tires, owing to the decomposition of the sulfur links of the vulcanized rubber [53]. In
addition, it has been reported that the thermal decomposition of H2SO4—adsorbed during
the chemical activation—produces SO2. [54] In addition, the presence of H2SO3 could be
also presented in the gas phase [55]. Therefore, further studies carefully analyzing the
sulfur distribution on the different pyrolytic fractions when using acid-treated waste tire
powder are required. As the presence of sulfur represents an obstacle to the utilization of
the pyrolytic products, techniques for their removal should also be considered.
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Figure 9. Composition of the evolved gas with respect to time/temperature from (a) G1, (b) G2, (c) G3, and (d) G4. Notes:
H2 and CH4 concentrations in (b,d) were divided by four for comparison purposes with values obtained in (a,c); the
remaining % in volume corresponds to injected gases (N2 and CO2).
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The differences in the total % in volume from each gas detected between gases from
waste tire pyrolysis and chemically activated tire pyrolysis are presented in Figure 10. As
all experiments were performed in a N2 atmosphere, data were analyzed on an N2-free
basis. Although H2S is slightly higher in acid-treated waste tire powder, its proportion
with respect to the total volume is much lower because a greater amount of other gases
was generated. In the case of CO2, it is desirable to keep its percentage at a low level, as it
has no energy value. This also occurs in the processes with the chemically activated waste
tire powder. Another compound of interest is CH4. In this case, it is desirable to observe
an increase that indicates a greater energy capacity of the gas, which is also observed in the
processes using chemically activated waste tire powder.
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As pyrolytic gas can be used as fuel for the same pyrolysis process, it is relevant to
calculate its heating value using Equation 1. The heating value increases considerably
when the chemical activation is included; G1 presented a value of 7.73 ± 1.53 MJ/kg and
G3 of 12.57 ± 0.37 MJ/kg, while G2 presented a lower heating value of 27.47 ± 0.52 MJ/kg
and G4 of 30.49 ± 0.34 MJ/kg.

4. Conclusions

In the present study, the effect of the chemical and physical activations on the charac-
teristics of derived pyrolytic products was analyzed. As the solid fraction utilization can
be responsible for the profitability of the pyrolysis process, a higher solid yield is desired,
which was observed in the presence of chemical activation prior to pyrolysis. The properties
of the solid fraction varied with the type of activation; while CO2 activation increased sur-
face area, chemical activation decreased pore size. We observed a correlation between small
pore size and high conductivity values. In this manner, the solid fraction from acid-treated
tires presented the best electrical conductivity, higher than that of biomass-based electrode
materials. Liquid fraction was highly influenced by the chemical activation; liquids derived
from nonactivated waste tires presented limonene as the main compound, while liquids
from acid-treated presented a higher percentage of aromatic compounds, suggesting that,
during chemical activation, a significant percentage of volatiles that generate the liquid
fraction was eliminated and aromatization reactions were favored because of the high
pyrolysis temperature. The chemical activation also resulted in a greater concentration of
gases, such as H2 and CH4, leading to a higher heating value. The enhanced properties of
the pyrolytic products derived from acid-treated waste tires demonstrate the possibility of
recovering valuable products, including a solid product for energy storage applications.
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13. Koreňová, Z.; Juma, M.; Annus, J.; Markoš, J.; Jelemenský, L. Kinetics of pyrolysis and properties of carbon black from a scrap tire.
Chem. Pap. 2006, 60, 422–426. [CrossRef]

14. Martínez, J.D.; Cardona-Uribe, N.; Murillo, R.; García, T.; López, J.M. Carbon black recovery from waste tire pyrolysis by
demineralization: Production and application in rubber compounding. Waste Manag. 2019, 85, 574–584. [CrossRef]

15. Maroufi, S.; Mayyas, M.; Sahajwalla, V. Nano-carbons from waste tyre rubber: An insight into structure and morphology. Waste
Manag. 2017, 69, 110–116. [CrossRef] [PubMed]

16. Wójtowicz, M.A.; Serio, M.A. Pyrolysis of Scrap Tires: Can It Be profitable? Chemtech: Rio de Janeiro, Brazil, 1996.
17. López, F.A.; Centeno, T.A.; Rodríguez, O.; Alguacil, F.J. Preparation and characterization of activated carbon from the char

produced in the thermolysis of granulated scrap tyres. J. Air Waste Manag. Assoc. 2013, 63, 534–544. [CrossRef] [PubMed]
18. Kaminsky, W.; Mennerich, C. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1,3-butadiene, styrene and

carbon black. J. Anal. Appl. Pyrolysis 2001, 58–59, 803–811. [CrossRef]
19. Ko, D.; Mui, E.; Lau, K.; McKay, G. Production of activated carbons from waste tire-Process design and economical analysis.

Waste Manag. 2004, 24, 875–888. [CrossRef]
20. López, G.; Olazar, M.; Artetxe, M.; Amutio, M.; Elordi, G.; Bilbao, J. Steam activation of pyrolytic tyre char at different

temperatures. J. Anal. Appl. Pyrolysis 2009, 85, 539–543. [CrossRef]
21. Teng, H.; Lin, Y.C.; Hsu, L.Y. Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide.

J. Air Waste Manag. Assoc. 2011, 50, 1940–1946. [CrossRef]

http://doi.org/10.1016/j.fuel.2019.116754
http://doi.org/10.1016/j.rser.2016.09.110
http://doi.org/10.1016/j.rser.2013.02.038
http://doi.org/10.1016/j.jclepro.2019.118010
http://doi.org/10.1007/s40518-014-0019-0
http://doi.org/10.1016/j.wasman.2009.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19896820
http://doi.org/10.1016/j.wasman.2011.04.005
http://doi.org/10.1021/ef049686x
http://doi.org/10.1007/s12649-017-0079-7
http://doi.org/10.1007/s12649-019-00695-w
http://doi.org/10.2478/s11696-006-0077-x
http://doi.org/10.1016/j.wasman.2019.01.016
http://doi.org/10.1016/j.wasman.2017.08.020
http://www.ncbi.nlm.nih.gov/pubmed/28818399
http://doi.org/10.1080/10962247.2013.763870
http://www.ncbi.nlm.nih.gov/pubmed/23786145
http://doi.org/10.1016/S0165-2370(00)00129-7
http://doi.org/10.1016/j.wasman.2004.03.006
http://doi.org/10.1016/j.jaap.2008.11.002
http://doi.org/10.1080/10473289.2000.10464221


Appl. Sci. 2021, 11, 6342 16 of 17

22. Li, S.; Yao, Q.; Wen, S.; Chi, Y.; Yan, J.; Li, S.; Yao, Q. Properties of Pyrolytic Chars and Activated Carbons Derived from Pilot-Scale
Pyrolysis of Used Tires. J Air Waste Manag. Assoc. 2005, 55, 1315–1326. [CrossRef] [PubMed]

23. Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Comparison of the Properties of Activated Carbons Produced in One-Stage and
Two-Stage Processes. C 2018, 4, 41. [CrossRef]

24. Dimpe, K.M.; Ngila, J.C.; Nomngongo, P.N. Application of waste tyre-based activated carbon for the removal of heavy metals in
wastewater. Cogent Eng. 2017, 4, 1–11. [CrossRef]

25. Shilpa; Kumar, R.; Sharma, A. Morphologically tailored activated carbon derived from waste tires as high-performance anode for
Li-ion battery. J. Appl. Electrochem. 2018, 48, 1–13. [CrossRef]

26. Naskar, A.K.; Bi, Z.; Li, Y.; Akato, S.K.; Saha, D.; Chi, M.; Bridges, C.A.; Paranthaman, M.P. Tailored recovery of carbons from
waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Adv. 2014, 4, 38213–38221. [CrossRef]
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