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Abstract 

This microreview tries to answer the question: Are Deep Eutectic Solvents a real 

alternative to Ionic Liquids in metal-catalysed reactions? We have gathered the 

outstanding results of the use of DES in metal-catalysed processes and we have compared 

them to the ones with ILs. The huge possibilities of combinations of the components of 

the DES provides a vast number of different solvents with tunable properties. These DES 

have been successfully applied to different reactions such as, coupling or hydrogenation, 

among others. But work still be necessary to explore the use of DES in other reactions 

and to go in depth in the study of the influence of the nature of the DES. Finally, we also 

present the rise in a new family of solvents, bio-based ionic liquids, complementary to 

the use of DES in order to fully substitute traditional ILs. 
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1 Introduction 

The advent of sustainable chemistry at the end of the 20th century sparked an intense 

search for greener reaction media in order to substitute conventional solvents charged of 

being volatile, flammable or toxic. Thus, an increasing interest arose in using water as 

solvent or supercritical and fluorous fluids as hydrophobic media, but above all ionic 

liquids (ILs) attracted the most attention. This statement is supported by the number of 

publications per year devoted to ionic liquids since 1999, (figure 1a) reaching a plateau 

of around 10000 pub/year since 2016. The same trend is observed if we consider the 

publications dealing with IL and catalysis (figure 1a). However, after this boom of ILs, 

some dissenting voices appeared questioning their toxicity,[1] price and sometimes 

arduous synthesis. The scientific community diverted then its attention to deep eutectic 

solvents (DES), much easier to prepare and handle and with tunable properties depending 

on their components.[2–4]. Deep eutectic solvents are formed by two components, 

normally a hydrogen-bond donor (HBD) and a hydrogen-bond acceptor (HBA). 

Sometimes the difference between ILs, DES and Low Melting Mixtures (LLMs) has been 

controversial and some authors have tried to shed light on these aspects.[5] Since 2011 

an exponential growth on DES publications has been observed (figure 1b), and the same 

trend can be noted when analysing the publications dealing with DES and catalysis (figure 

b. Although the overall numbers are currently far from those related to ILs publications. 

Figure 1 

 



 
Number of publications related to ILs and DES (source WOS) 

 

As Alonso et al. stated in 2016 “The ideal situation would be to perform metal-catalysed 

reactions in DES. However, the number of reactions explored until now is very small, 

with the scope of reactions of this class thus remaining unknown” [6] Nevertheless, it is 

noteworthy the number of recent reviews devoted to the use of DES in catalysis. [7–10] 

Herein we present a comparative study of metal-catalysed reactions both in ILs and DES 

(figure 2) in order to point out the viability and the future perspectives in the use of DES 

as reaction media. 

 

Figure 2 



 
Structure of the main types of DES, LMM and conventional ILs FIGURE 2 HAS BEEN MODIFIED  

 

2 DES vs ILs in metal-catalysed coupling reactions 

Metal-catalysed coupling reactions have become a powerful tool for the efficient and 

sustainable synthesis of organic compounds. Organic solvents, water, ILs, DES and 

supercritical fluids have been widely used in this kind of processes [7,11]. But a growing 

interest in the use of DES in coupling reactions has arisen since the first works of Imperato 

et al. in 2006 [12]. 
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Outstanding results of metal-catalysed cross-coupling reactions carried out in DES.[8,9,13] 

 

2.1 C–C coupling reactions 

Both ILs and DES are suitable solvents for coupling reactions, acting sometimes not only 

as a solvent but also as a catalyst stabilizer and by tuning the reaction selectivity thus 

adding additional advantages with respect to the use of conventional solvents 

[6,9,11,14,15]. In addition, their low-volatility and high-viscosity facilitates the catalytic 

system recoverability and the catalyst reuse, increasing the sustainability of the process. 

Starting with homocoupling reactions, excellent results have been reported for aryl 

homocoupling reactions, catalysed by Pd_NPs in ILs [11], but scarce works describe the 

use of DES as the reaction media. The use of DES for promoting the Ullmann reaction 

has been reported just in two preliminary works [16,13]. In the case of Afshari et al., the 
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immobilization of the NPs onto a carbonaceous-solid support in ChCl-Gly DES 

(Glyceline) has led to the synthesis of biaryl derivatives in 1 h with up to 97% yields [16]. 

Pd catalyzed Heck-Mizoroki reaction between unsaturated halides and alkenes has been 

successfully carried out in LMMs[17,18] and DES.[16,19–22] As can be seen in Saavedra 

et al. works, not all the DES are able to promote the desired coupling, for instance, no 

conversion was observed in the Heck reaction when using hydrophobic DES. 

Nevertheless, in most cases, these solvents overcome the results achieved with 

conventional solvents[19,21]. Recently, Leal-Duaso et al. have systematically studied the 

role of the solvent in the Heck-Mizoroki reaction between iodobenzene and n-butyl 

acrylate[13]. These DES, formed by glycerol and glycerol ethers as HBD and ChCl and 

N00Cl as HBA, have provided better results than those using the IL [bmim]PF6 as reaction 

media. This study reveals that the nature of the DES allows to fine-tune both the Heck-

coupling selectivity and the catalyst recoverability.[13,22]. Although excellent results 

have been described in the abovementioned Pd-NPs/DES systems, it is still necessary to 

test the DES suitability on Heck reaction using less activated halides such as chlorinated 

ones. It is also relevant to mention that all the examples of the application of DES in 

Heck-Mizoroki reactions encompass the use of palladium as catalyst, ignoring the 

possibilities of low-cost metals, such as nickel, iron and cobalt, which have been 

successfully tested in ILs [23,24].  

The use of ionic solvents together with metal complexes have been profusely described 

in the Suzuki-Miyaura reaction.[19,21,25] In general, the best results in this reaction 

have been obtained using ChCl-DES and LMMs. And this process has been applied to 

the selective synthesis of valuable chemicals [11,15]. For instance, Capriati and col. 

prepared benzodithiophene derivatives for optical applications [26], terpenyl compounds 

were obtained by using a ligand-free Pd-catalyst in Glyceline [27] and Delaye et al. have 

prepared imidazo-fused heterocycles using carbohydrate-based LMMs [28]. Similar 

results can be achieved by using Pd_NPs in LMMs, reducing the palladium loading up to 

0.05% and increasing the catalyst recyclability.[18] Interestingly, the linkage of Pd NPs 

to a support such as graphene oxide allows the magnetically recovering of catalyst in the 

DES [29]. 

Ramón and col. raised the issue of designing specific catalysts for the Hiyama cross-

coupling reaction in DES [20,21,30]. NCN-pincer, bypyridine and mesoionic carbene 

ligands inn palladium complexes have been studied and moderate yields were obtained 

in ChCl derived DES, not always improving previous results in conventional solvents and 

ILs.[15,30] Biaryl compounds are also available via Stille reaction between iodo- and 

bromobenzene and tetraalkylstannanes or phenyltrialkylstannanes. LMMs composed of 

sugar-(dimethyl)urea-NH4Cl have been successfully applied to this reaction with 

comparable results to ILs or conventional organic solvents and with additional advantages 

such as catalyst recoverability improvement.[12]. A scalable and air-tolerant catalytic 

system for Negishi coupling of aryl bromides and organozinc substrates has been 

described by Dilauro et al. [31]. The use of a palladium catalyst in ChCl-based DES 

provided excellent yields under mild conditions, and much shorter reaction times 

compared to the ones reported for ILs. 

Finally, Sonogashira coupling of terminal alkynes with aryl or vinyl halides for the 

creation of valuable C(sp)–C(sp2) bonds is being intensively studied using Pd catalysts in 

DES. Among them, carbohydrate-based LMMs [17], urea and glycerol derived 

DES[19,20,22,32,33]. In general, the excellent results are comparable to those provided 

by ILs [9,15]. More interestingly, an example of palladium-free Sonogashira reaction has 

been reported using ChCl-CuCl [34]. In this case, the metal-containing DES acts both as 

the catalyst and the solvent. 



 

2.2 C–N coupling reactions 

Arylated amines are a chemical leitmotiv in many pharmaceuticals, organic materials, 

natural products and catalysts, that is why a great attention is paid to the development of 

catalysed synthetic pathways for their obtaining.  

Although Buchwald-Hartwig Pd-catalysed cross-coupling of amines and aryl halides is 

one of the most useful tool for the preparation of aromatic amines,[35] Ullman-type 

reaction using copper catalysts has been preferred when using DES as reaction media. 

The works of Varma [9] and Capriati[8] gather the scarce works dealing with the use of 

DES in C–N bond formation. Thus, Shaabani and col. [16] presented the first example of 

Ullmann reaction using a recyclable catalytic system composed of magnetic 

carboxamide-functionalized graphene oxide with Cu_NPs. A synergetic effect of ChCl-

Gly DES with the catalyst was responsible for the good yields observed. Capriati and col. 

described the use of CuI as catalyst in ChCl-Gly for a broad scope of substrates with 

excellent yields by just tuning the base (tBuOK or K2CO3) depending on the nature of the 

amine. These results improved the ones described in phosphonium derived ILs using 

CuO2 clusters as catalysts.[36] 

Amide formation by an aminocarbonylation reaction has also successfully been addressed 

using DES. The utilization of Pd(OAc)2 as catalyst, together with ChCl-urea (reline) or 

ChCl-Gly (Glyceline), provided good yields for a wide scope of substates. The catalyst-

solvent system was easily recycled and reusable.[37]  

 

2.3 C-S and C–O coupling reactions 

Thioethers are fundamental building blocks for the synthesis of biologically active 

molecules. Copper catalysts in ILs have been proposed as sustainable and efficient 

systems for its obtaining[38,39] and Pd catalysts have been used in three-component 

reactions in IL for C–S bond formation in a IL.[40] 

In this case, the use of ChCl-urea as solvent has permitted to carry out the synthesis of 

thioethers in excellent yield without the need of metal species, thus DES acting both as 

solvent and catalyst.[41] The same SNAr protocol has also been applied to C–O bond 

formation with excellent results.[42] 

A wide scope of sulfones have been obtained applying a jigsaw-synthesis using ChCl-

acetamide as solvent and PdCl2-Phosphine ligand as catalyst,[43] improving the results 

previously described using IL as an additive in copper-catalysed coupling reaction of aryl 

halides with PhSO2Na.2H2O.[44]  

 

3 DES vs ILs in metal-catalysed hydrogenations 

Metal-catalysed hydrogenation reactions are processes with a huge interest for food, 

pharmaceutical and petrochemical industry. The use of ionic solvents in these reactions 

improves the solubility of hydrogen, thus increasing the reactivity. Different ILs have 

been applied to hydrogenation reactions, revealing the importance of the solvent design. 

It is relevant to note that the presence of irremovable impurities in ILs negatively affects 

the hydrogenation efficiency [45], this would give a good opportunity to the utilization 

of DES, easily available in a high purity. 

However, scarce hydrogenations have been described using DES as reaction media. The 

first example, reported the homogeneous hydrogenation of methyl cinnamate in urea-

carbohydrate LMMs using the Wilkinson’s catalyst. [25] Recently, nine glycerol-based 

DES have been applied to the Pd_NPs catalysed hydrogenation of alkenes, alkynes and 

carbonyl compounds [46]. Improved results compared to previous works were described 

[47] especially in the semi-hydrogenation of alkynes to alkenes.  



DES can be also the H2-source, as in the Ru-catalysed transfer hydrogenation of carbonyl 

compounds under mild conditions [48].  

 

4 Bio-based ionic liquids: a new alternative? 

As discussed herein, DES present advantages that make them a good alternative to 

traditional organic solvents and ILs. However, DES sometimes present some 

disadvantages, such as a moderate viscosity, the temperature stability or the difficulty in 

the recovery due to the loss of one of its components in extraction processes. 

In order to overcome the drawbacks of ILs and DES a new family of solvents is being 

developed: biobased ionic liquids. 

The number of publications dealing with biobased-ILs still low, although increasing in 

the last years. Regarding the synthesis of biobased ILs, amino acids, sugars, choline 

chloride or glycerol derivatives have been used as platform molecules.[48-52] 

Some applications for this new solvents have been described, such as in catalysts,[53-55] 

and in the degradation of organophosphorus pesticides,[56] or as solvents for 

electrochemistry.[57] 

Up to now only few examples of the use of biobased-ILs in metal-catalysed reactions 

have been reported. All of them are related to the stabilization of Pd-NPs and their 

application to catalytic processes. Thus, Gómez et al.[58] described the use of Pd-NPs in 

choline-based ILs as catalysts for hydrogenation reactions and Gaikwald et al [22] 

designed glycerol-derived ILs for in situ generation of Pd-NPs and their application in 

Heck coupling.  

 
Figure 4 

 

 

Sources and applications of bio-based ILs. 

 

5 Conclusions and perspectives 

The works published up to date have demonstrated that the use of DES is a real alternative 

to traditional ILs metal-catalysed reactions. DES improves the activity, stability and 

recoverability of metal catalysts thanks to their ability to interact with metal species and 

in some cases, the use of DES improved both reaction yields and selectivity. The fine 

tuning of the most important DES properties can be done by choosing the right HBA and 

HBD. DES components are easily available and the purity of the solvent is guarantee. 

These aspects are the main advantages of DES compared to ILs. Only two main 

drawbacks of DES should be addressed: the moderate viscosity of some DES and some 

difficulties upon extraction processes. Both issues can be solved by the use of designer 
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DES or biobased ILs or applying to alternative extraction techniques such as the use of 

supercritical fluid extraction. However, the use of DES remains unexplored in less 

common cross-couplings such as Kumada, Corey-House, Fukuyama, Liebeskind-Srogl 

(C–C), Castro-Stephens, Cadiot-Chodkiewicz (C–Csp), Glaser (Csp–Csp), Buchwald-

Hartwig and Chan-Lam (C–N) among others. 

Future works should include computational studies of the role of DES in the reactions 

pathways, broaden the scope of DES (NaDES, chiral DES or DES including metals), 

catalytic studies with other metals apart from copper or palladium and finally try to apply 

green activation methods in DES. 
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