000132127 001__ 132127
000132127 005__ 20250923084416.0
000132127 0247_ $$2doi$$a10.1016/j.energy.2024.130511
000132127 0248_ $$2sideral$$a137293
000132127 037__ $$aART-2024-137293
000132127 041__ $$aeng
000132127 100__ $$0(orcid)0000-0003-2484-2504$$aGarcía-Mariaca, Alexander$$uUniversidad de Zaragoza
000132127 245__ $$aCO2 capture feasibility by Temperature Swing Adsorption in heavy-duty engines from an energy perspective
000132127 260__ $$c2024
000132127 5060_ $$aAccess copy available to the general public$$fUnrestricted
000132127 5203_ $$aThis study made an energy performance analysis and an estimate of the volume and weight of an innovative carbon capture and storage (CCS) system by temperature swing adsorption (TSA) hybridised with an organic Rankine cycle (ORC) working with the waste heat contained in the exhaust gases of a natural gas engine. To achieve this, two varying-sized engines are simulated across the entire rpm range and under partial engine loads. Subsequently, energy simulations are conducted at two CO2 capture rates (CCR) and employing three sorbents (MOF-74-Mg, PPN-6-CH2-DETA and activated carbon) to compare the CCS-ORC performance. Results demonstrate the viability of installing CCS-ORC systems in heavy-duty vehicles since they require less than 6 % of the total volume of the studied vehicles. The engine power penalty induced by the CCS-ORC system varies from 1.9 % with MOF-74-Mg to 23.5 % with activated carbon at 100 % of CCR, leading to a maximum 6.14 % rise in engine fuel consumption. Finally, the maximum CO2 capture process energy consumption is 631 kJ/kgCO2, 9.9 % lower than the literature reported for TSA. Based on these promising results, applying the hybridised system presented in this paper for CO2 capture in sectors that use heavy-duty engines is a strategy to implement.
000132127 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-125137OB-I00
000132127 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000132127 590__ $$a9.4$$b2024
000132127 592__ $$a2.211$$b2024
000132127 591__ $$aTHERMODYNAMICS$$b3 / 79 = 0.038$$c2024$$dQ1$$eT1
000132127 591__ $$aENERGY & FUELS$$b31 / 182 = 0.17$$c2024$$dQ1$$eT1
000132127 593__ $$aElectrical and Electronic Engineering$$c2024$$dQ1
000132127 593__ $$aEnergy (miscellaneous)$$c2024$$dQ1
000132127 593__ $$aEnergy Engineering and Power Technology$$c2024$$dQ1
000132127 593__ $$aManagement, Monitoring, Policy and Law$$c2024$$dQ1
000132127 593__ $$aCivil and Structural Engineering$$c2024$$dQ1
000132127 593__ $$aFuel Technology$$c2024$$dQ1
000132127 593__ $$aIndustrial and Manufacturing Engineering$$c2024$$dQ1
000132127 593__ $$aBuilding and Construction$$c2024$$dQ1
000132127 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000132127 700__ $$0(orcid)0000-0002-6103-7136$$aLlera-Sastresa, Eva$$uUniversidad de Zaragoza
000132127 700__ $$0(orcid)0000-0002-6508-6998$$aMoreno, Francisco$$uUniversidad de Zaragoza
000132127 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000132127 773__ $$g292 (2024), 130511 [19 pp.]$$pEnergy$$tEnergy$$x0360-5442
000132127 8564_ $$s5966458$$uhttps://zaguan.unizar.es/record/132127/files/texto_completo.pdf$$yVersión publicada
000132127 8564_ $$s2636100$$uhttps://zaguan.unizar.es/record/132127/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000132127 909CO $$ooai:zaguan.unizar.es:132127$$particulos$$pdriver
000132127 951__ $$a2025-09-22-14:32:47
000132127 980__ $$aARTICLE